1
|
Lillipuu EM, Májeková M, Dvorský M, Liancourt P, Hájek T, Mudrák O. Drought avoidance strategy drives the assembly of plant communities in grasslands restored on former arable land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125844. [PMID: 40381304 DOI: 10.1016/j.jenvman.2025.125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Restoring species-rich grasslands on former arable land is challenging due to persistent tillage effects. Comparing community- and individual-level traits between restored and ancient grasslands may identify environmental limitations. In 10 restored and 9 ancient reference grasslands (White Carpathian region, Czechia), we measured five functional traits for 110 grassland species, representing a nutrient acquisitive-conservative spectrum - specific leaf area (SLA), leaf area, leaf dry matter content (LDMC), and plant height, plus water potential at turgor loss point to assess drought-resistance strategy (avoidance or tolerance). We sampled species composition on the community scale (2 m × 2 m) and the fine scale of plant-to-plant interactions (20 cm × 20 cm). We then quantified for each trait the community-weighted means (CWM) and patterns of functional diversity (trait convergence - environmental filtering for a specific trait; or trait divergence - selection for differences between species). For six species, we also measured intraspecific trait variability, assessing the individual species responses to restored and ancient grasslands. Lower CWMSLA and CWMleaf area, and their convergence on fine scale indicates higher dominance of a nutrient-conservative strategy in restored grasslands. Intraspecific trait variability for these traits showed opposite values, suggesting that the environment affects seed germination or plant seedling establishment differently from the performance of adult plants. Both scales (community and fine) showed difference in drought-stress resistance mechanisms between grasslands. Higher values of CWM for turgor loss point and its convergence indicate strong environmental filtering of species with an avoidant drought-resistance strategy, suggesting strong limitation by disrupted water regime in restored grasslands.
Collapse
Affiliation(s)
- Epp Maria Lillipuu
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic; Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 01, Třeboň, Czech Republic; Institute of Soil Biology and Biochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| | - Maria Májeková
- Department of Botany, State Museum of Natural History Stuttgart, Stuttgart, Germany.
| | - Miroslav Dvorský
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 01, Třeboň, Czech Republic.
| | - Pierre Liancourt
- Department of Botany, State Museum of Natural History Stuttgart, Stuttgart, Germany.
| | - Tomáš Hájek
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic; Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 01, Třeboň, Czech Republic.
| | - Ondřej Mudrák
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic; Institute for Environmental Studies, Charles University, Albertov 6, 128 00, Prague, Czech Republic; Institute of Soil Biology and Biochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Martin AR, Li G, Cui B, Mariani RO, Vicario K, Cathline KA, Findlay A, Robertson G. A high-throughput approach for quantifying turgor loss point in grapevine. PLANT METHODS 2024; 20:180. [PMID: 39581961 PMCID: PMC11587569 DOI: 10.1186/s13007-024-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Quantifying drought tolerance in crops is critical for agriculture management under environmental change, and drought response traits in grape vine have long been the focus of viticultural research. Turgor loss point (πtlp) is gaining attention as an indicator of drought tolerance in plants, though estimating πtlp often requires the construction and analysis of pressure-volume (P-V) curves which are very time consuming. While P-V curves remain a valuable tool for assessing πtlp and related traits, there is considerable interest in developing high-throughput methods for rapidly estimating πtlp, especially in the context of crop screening. We tested the ability of a dewpoint hygrometer to quantify variation in πtlp across and within 12 clones of grape vine (Vitis vinifera subsp. vinifera) and one wild relative (Vitis riparia), and compared these results to those derived from P-V curves. At the leaf-level, methodology explained only 4-5% of the variation in πtlp while clone/species identity accounted for 39% of the variation, indicating that both methods are sensitive to detecting intraspecific πtlp variation in grape vine. Also at the leaf level, πtlp measured using a dewpoint hygrometer approximated πtlp values (r2 = 0.254) and conserved πtlp rankings from P-V curves (Spearman's ρ = 0.459). While the leaf-level datasets differed statistically from one another (paired t-test p = 0.01), average difference in πtlp for a given pair of leaves was small (0.1 ± 0.2 MPa (s.d.)). At the species/clone level, estimates of πtlp measured by the two methods were also statistically correlated (r2 = 0.304), did not deviate statistically from a 1:1 relationship, and conserved πtlp rankings across clones (Spearman's ρ = 0.692). The dewpoint hygrometer (taking ∼ 10-15 min on average per measurement) captures fine-scale intraspecific variation in πtlp, with results that approximate those from P-V curves (taking 2-3 h on average per measurement). The dewpoint hygrometer represents a viable method for rapidly estimating intraspecific variation in πtlp, and potentially greatly increasing replication when estimating this drought tolerance trait in grape vine and other crops.
Collapse
Affiliation(s)
- Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada.
| | - Guangrui Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Boya Cui
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Rachel O Mariani
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Kale Vicario
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Kimberley A Cathline
- Horticultural & Environmental Sciences Innovation Centre, Niagara College, Welland, Canada
| | - Allison Findlay
- Horticultural & Environmental Sciences Innovation Centre, Niagara College, Welland, Canada
| | - Gavin Robertson
- Horticultural & Environmental Sciences Innovation Centre, Niagara College, Welland, Canada
| |
Collapse
|
3
|
Huang R, Di N, Xi B, Yang J, Duan J, Li X, Feng J, Choat B, Tissue D. Herb hydraulics: Variation and correlation for traits governing drought tolerance and efficiency of water transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168095. [PMID: 37879470 DOI: 10.1016/j.scitotenv.2023.168095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Hydraulic traits dictate plant response to drought, thus enabling better understanding of community dynamics under global climate change. Despite being intensively documented in woody species, herbaceous species (graminoids and forbs) are largely understudied, hence the distribution and correlation of hydraulic traits in herbaceous species remains unclear. Here, we collected key hydraulic traits for 436 herbaceous species from published literature, including leaf hydraulic conductivity (Kleaf), water potential inducing 50 % loss of hydraulic conductivity (P50), stomatal closure (Pclose) and turgor loss (Ptlp). Trait variation of herbs was analyzed and contrasted with angiosperm woody species within the existing global hydraulic traits database, as well as between different growth forms within herbs. Furthermore, hydraulic traits coordination was also assessed for herbaceous species. We found that herbs showed overall more negative Pclose but less negative Ptlp compared with angiosperm woody species, while P50 did not differ between functional types, regardless of the organ (leaf and stem). In addition, correlations were found between Kleaf and P50 of leaf (P50leaf), as well as between Pclose, P50leaf and Kleaf. Within herbs, graminoids generally exhibited more negative P50 and Ptlp, but lower Kleaf, relative to forbs. Within herbs, no clear pattern regarding hydraulic traits-climate relationship was found. Our analysis provided insights into herb hydraulic, and highlighted the knowledge gaps need to be filled regarding the response of herbs to drought.
Collapse
Affiliation(s)
- Ruike Huang
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010020, People's Republic of China
| | - Nan Di
- Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010020, People's Republic of China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Rd, Beijing 100083, People's Republic of China
| | - Jinyan Yang
- CSIRO Land and Water, Black Mountain, Australian Capital Territory 2601, Australia
| | - Jie Duan
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Rd, Beijing 100083, People's Republic of China.
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China.
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| |
Collapse
|
4
|
Belovitch MW, NeSmith JE, Nippert JB, Holdo RM. African savanna grasses outperform trees across the full spectrum of soil moisture availability. THE NEW PHYTOLOGIST 2023; 239:66-74. [PMID: 36967595 DOI: 10.1111/nph.18909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
Models of tree-grass coexistence in savannas make different assumptions about the relative performance of trees and grasses under wet vs dry conditions. We quantified transpiration and drought tolerance traits in 26 tree and 19 grass species from the African savanna biome across a gradient of soil water potentials to test for a trade-off between water use under wet conditions and drought tolerance. We measured whole-plant hourly transpiration in a growth chamber and quantified drought tolerance using leaf osmotic potential (Ψosm ). We also quantified whole-plant water-use efficiency (WUE) and relative growth rate (RGR) under well-watered conditions. Grasses transpired twice as much as trees on a leaf-mass basis across all soil water potentials. Grasses also had a lower Ψosm than trees, indicating higher drought tolerance in the former. Higher grass transpiration and WUE combined to largely explain the threefold RGR advantage in grasses. Our results suggest that grasses outperform trees under a wide range of conditions, and that there is no evidence for a trade-off in water-use patterns in wet vs dry soils. This work will help inform mechanistic models of water use in savanna ecosystems, providing much-needed whole-plant parameter estimates for African species.
Collapse
Affiliation(s)
| | | | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA, 30601, USA
- School of Animal Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
5
|
Barkaoui K, Volaire F. Drought survival and recovery in grasses: Stress intensity and plant-plant interactions impact plant dehydration tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1489-1503. [PMID: 36655754 DOI: 10.1111/pce.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Plant dehydration tolerance confers drought survival in grasses, but the mortality thresholds according to soil water content (SWC), vapour pressure deficit (VPD) and plant-plant interactions are little explored. We compared the dehydration dynamics of leaf meristems, which are the key surviving organs, plant mortality, and recovery of Mediterranean and temperate populations of two perennial grass species, Dactylis glomerata and Festuca arundinacea, grown in monocultures and mixtures under a low-VPD (1.5 kPa) versus a high-VPD drought (2.2 kPa). The lethal drought index (LD50 ), that is, SWC associated with 50% plant mortality, ranged from 2.87% (ψs = -1.68 MPa) to 2.19% (ψs = -4.47 MPa) and reached the lowest values under the low-VPD drought. Populations of D. glomerata were more dehydration-tolerant (lower LD50 ), survived and recovered better than F. arundinacea populations. Plant-plant interactions modified dehydration tolerance and improved post-drought recovery in mixtures compared with monocultures. Water content as low as 20.7%-36.1% in leaf meristems allowed 50% of plants to survive. We conclude that meristem dehydration causes plant mortality and that drought acclimation can increase dehydration tolerance. Genetic diversity, acclimation and plant-plant interactions are essential sources of dehydration tolerance variability to consider when predicting drought-induced mortality.
Collapse
Affiliation(s)
- Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Volaire
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, INRAE, Montpellier, France
| |
Collapse
|
6
|
Griffin-Nolan RJ, Felton AJ, Slette IJ, Smith MD, Knapp AK. Traits that distinguish dominant species across aridity gradients differ from those that respond to soil moisture. Oecologia 2023; 201:311-322. [PMID: 36640197 DOI: 10.1007/s00442-023-05315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Many plant traits respond to changes in water availability and might be useful for understanding ecosystem properties such as net primary production (NPP). This is especially evident in grasslands where NPP is water-limited and primarily determined by the traits of dominant species. We measured root and shoot morphology, leaf hydraulic traits, and NPP of four dominant North American prairie grasses in response to four levels of soil moisture in a greenhouse experiment. We expected that traits of species from drier regions would be more responsive to reduced water availability and that this would make these species more resistant to low soil moisture than species from wetter regions. All four species grew taller, produced more biomass, and increased total root length in wetter treatments. Each species reduced its leaf turgor loss point (TLP) in drier conditions, but only two species (one xeric, one mesic) maintained leaf water potential above TLP. We identified a suite of traits that clearly distinguished species from one another, but, surprisingly, these traits were relatively unresponsive to reduced soil moisture. Specifically, more xeric species produced thinner roots with higher specific root length and had a lower root mass fraction. This suggest that root traits are critical for distinguishing species from one another but might not respond strongly to changing water availability, though this warrants further investigation in the field. Overall, we found that NPP of these dominant grass species responded similarly to varying levels of soil moisture despite differences in species morphology, physiology, and habitat of origin.
Collapse
Affiliation(s)
- Robert J Griffin-Nolan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA. .,Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Andrew J Felton
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.,Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ingrid J Slette
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.,Long Term Ecological Research Network Office, National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, 93101, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
7
|
Bushey JA, Hoffman AM, Gleason SM, Smith MD, Ocheltree TW. Water limitation reveals local adaptation and plasticity in the drought tolerance strategies of
Bouteloua gracilis. Ecosphere 2023. [DOI: 10.1002/ecs2.4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Julie A. Bushey
- Western Ecosystems Technology, Inc. Cheyenne Wyoming USA
- Water Management and Systems Research Unit, Agricultural Research Service United States Department of Agriculture Fort Collins Colorado USA
- Department of Forest and Rangeland Stewardship, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Ava M. Hoffman
- Department of Biostatistics Fred Hutchinson Cancer Center Seattle Washington USA
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sean M. Gleason
- Water Management and Systems Research Unit, Agricultural Research Service United States Department of Agriculture Fort Collins Colorado USA
| | - Melinda D. Smith
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Troy W. Ocheltree
- Department of Forest and Rangeland Stewardship, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| |
Collapse
|
8
|
Weithmann G, Schuldt B, Link RM, Heil D, Hoeber S, John H, Müller-Haubold H, Schüller LM, Schumann K, Leuschner C. Leaf trait modification in European beech trees in response to climatic and edaphic drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1272-1286. [PMID: 34854183 DOI: 10.1111/plb.13366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Leaf morphological and physiological traits control the carbon and water relations of mature trees and are determinants of drought tolerance, but it is not well understood how they are modified in response to water deficits. We analysed five sun-canopy leaf traits (mean leaf size (LS), specific leaf area (SLA), Huber value (HV), water potential at turgor loss point (Ψtlp ) and foliar carbon isotope signature (δ13 C)) in European beech (Fagus sylvatica L.) across three precipitation gradients sampled in moist (2010), dry (2019) and very dry (2018) summers, and tested their response to short-term water deficits (climatic water balance (CWB) preceding sample collection) and long-term water availability (mean annual precipitation (MAP), plant-available soil water capacity (AWC) and neighbourhood competition). Across the 34 sites, LS varied seven-fold (3.9-27.0 cm2 ), SLA four-fold (77.1-306.9 cm²·g-1 ) and HV six-fold (1.0-6.65 cm2 ·m-2 ). In the 2018 dataset, LS showed a negative and HV a positive relationship to MAP, which contradicts relations found in multi-species samples. Average Ψtlp ranged from -1.90 to -2.62 MPa and decreased across the sites with decreasing CWB in the month prior to measurement, as well as with decreasing MAP and AWC in 2019. Studied leaf traits varied considerably between years, suggesting that mast fruiting and the severe 2018 drought caused the formation of smaller leaves. We conclude that sun-canopy leaf traits of European beech exhibit considerable plasticity in response to climatic and edaphic aridity, and that osmotic adjustment may be an important element in the drought response strategy of this anisohydric tree species.
Collapse
Affiliation(s)
- G Weithmann
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - B Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - R M Link
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - D Heil
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - S Hoeber
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - H John
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - H Müller-Haubold
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - L-M Schüller
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - K Schumann
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - C Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Tordoni E, Petruzzellis F, Di Bonaventura A, Pavanetto N, Tomasella M, Nardini A, Boscutti F, Martini F, Bacaro G. Projections of leaf turgor loss point shifts under future climate change scenarios. GLOBAL CHANGE BIOLOGY 2022; 28:6640-6652. [PMID: 36054311 PMCID: PMC9825879 DOI: 10.1111/gcb.16400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Predicting the consequences of climate change is of utmost importance to mitigate impacts on vulnerable ecosystems; plant hydraulic traits are particularly useful proxies for predicting functional disruptions potentially occurring in the near future. This study assessed the current and future regional patterns of leaf water potential at turgor loss point (Ψtlp ) by measuring and projecting the Ψtlp of 166 vascular plant species (159 angiosperms and 7 gymnosperms) across a large climatic range spanning from alpine to Mediterranean areas in NE Italy. For angiosperms, random forest models predicted a consistent shift toward more negative values in low-elevation areas, whereas for gymnosperms the pattern was more variable, particularly in the alpine sector (i.e., Alps and Prealps). Simulations were also developed to evaluate the number of threatened species under two Ψtlp plasticity scenarios (low vs. high plasticity), and it was found that in the worst-case scenario approximately 72% of the angiosperm species and 68% of gymnosperms within a location were at risk to exceed their physiological plasticity. The different responses to climate change by specific clades might produce reassembly in natural communities, undermining the resilience of natural ecosystems to climate change.
Collapse
Affiliation(s)
- Enrico Tordoni
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
| | - Francesco Petruzzellis
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Azzurra Di Bonaventura
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | | | | | - Andrea Nardini
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Francesco Boscutti
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | | | - Giovanni Bacaro
- Department of Life SciencesUniversity of TriesteTriesteItaly
| |
Collapse
|
10
|
Fletcher LR, Scoffoni C, Farrell C, Buckley TN, Pellegrini M, Sack L. Testing the association of relative growth rate and adaptation to climate across natural ecotypes of Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:413-432. [PMID: 35811421 DOI: 10.1111/nph.18369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ecophysiologists have reported a range of relationships, including intrinsic trade-offs across and within species between plant relative growth rate in high resource conditions (RGR) vs adaptation to tolerate cold or arid climates, arising from trait-based mechanisms. Few studies have considered ecotypes within a species, in which the lack of a trade-off would contribute to a wide species range and resilience to climate change. For 15 ecotypes of Arabidopsis thaliana in a common garden we tested for associations between RGR vs adaptation to cold or dry native climates and assessed hypotheses for its mediation by 15 functional traits. Ecotypes native to warmer, drier climates had higher leaf density, leaf mass per area, root mass fraction, nitrogen per leaf area and carbon isotope ratio, and lower osmotic potential at full turgor. Relative growth rate was statistically independent of the climate of the ecotype native range and of individual functional traits. The decoupling of RGR and cold or drought adaptation in Arabidopsis is consistent with multiple stress resistance and avoidance mechanisms for ecotypic climate adaptation and would contribute to the species' wide geographic range and resilience as the climate changes.
Collapse
Affiliation(s)
- Leila R Fletcher
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Colin Farrell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Mueller KE, Ocheltree TW, Kray JA, Bushey JA, Blumenthal DM, Williams DG, Pendall E. Trading water for carbon in the future: Effects of elevated CO 2 and warming on leaf hydraulic traits in a semiarid grassland. GLOBAL CHANGE BIOLOGY 2022; 28:5991-6001. [PMID: 35751572 PMCID: PMC9544398 DOI: 10.1111/gcb.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The effects of climate change on plants and ecosystems are mediated by plant hydraulic traits, including interspecific and intraspecific variability of trait phenotypes. Yet, integrative and realistic studies of hydraulic traits and climate change are rare. In a semiarid grassland, we assessed the response of several plant hydraulic traits to elevated CO2 (+200 ppm) and warming (+1.5 to 3°C; day to night). For leaves of five dominant species (three graminoids and two forbs), and in replicated plots exposed to 7 years of elevated CO2 , warming, or ambient climate, we measured: stomatal density and size, xylem vessel size, turgor loss point, and water potential (pre-dawn). Interspecific differences in hydraulic traits were larger than intraspecific shifts induced by elevated CO2 and/or warming. Effects of elevated CO2 were greater than effects of warming, and interactions between treatments were weak or not detected. The forbs showed little phenotypic plasticity. The graminoids had leaf water potentials and turgor loss points that were 10% to 50% less negative under elevated CO2 ; thus, climate change might cause these species to adjust their drought resistance strategy away from tolerance and toward avoidance. The C4 grass also reduced allocation of leaf area to stomata under elevated CO2 , which helps explain observations of higher soil moisture. The shifts in hydraulic traits under elevated CO2 were not, however, simply due to higher soil moisture. Integration of our results with others' indicates that common species in this grassland are more likely to adjust stomatal aperture in response to near-term climate change, rather than anatomical traits; this contrasts with apparent effects of changing CO2 on plant anatomy over evolutionary time. Future studies should assess how plant responses to drought may be constrained by the apparent shift from tolerance (via low turgor loss point) to avoidance (via stomatal regulation and/or access to deeper soil moisture).
Collapse
Affiliation(s)
- Kevin E. Mueller
- Department of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Troy W. Ocheltree
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| | - Julie A. Kray
- Rangeland Resources & Systems Research, Agricultural Research Service, United States Department of AgricultureFort CollinsColoradoUSA
| | - Julie A. Bushey
- Water Management Research, Agricultural Research Service, United States Department of AgricultureFort CollinsColoradoUSA
| | - Dana M. Blumenthal
- Rangeland Resources & Systems Research, Agricultural Research Service, United States Department of AgricultureFort CollinsColoradoUSA
| | | | - Elise Pendall
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
12
|
Kramp RE, Liancourt P, Herberich MM, Saul L, Weides S, Tielbörger K, Májeková M. Functional traits and their plasticity shift from tolerant to avoidant under extreme drought. Ecology 2022; 103:e3826. [PMID: 35857330 DOI: 10.1002/ecy.3826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022]
Abstract
Under climate change, extreme droughts will limit water availability for plants. However, the species-specific responses make it difficult to draw general conclusions. We hypothesized that changes in species' abundance in response to extreme drought can be best explained by a set of water economic traits under ambient conditions in combination with the ability to adjust these traits towards higher drought resistance. We conducted a four-year field experiment in temperate grasslands using rainout shelters with 30% and 50% rainfall reduction. We quantified the response as the change in species abundance between ambient conditions and the rainfall reduction. Abundance response to extreme drought was best explained by a combination of traits in ambient conditions and their functional adjustment, most likely reflecting plasticity. Smaller leaved species decreased less in abundance under drought. With increasing drought intensity, we observed a shift from drought tolerance, i.e. an increase in leaf dry matter content, to avoidance, i.e. a less negative turgor loss point (TLP) in ambient conditions and a constancy in TLP under drought. We stress the importance of using a multidimensional approach of variation in multiple traits and the importance of considering a range of drought intensities to improve predictions of species' response to climate change.
Collapse
Affiliation(s)
- Rosa E Kramp
- Plant Ecology Group, University of Tübingen, Germany
| | - Pierre Liancourt
- Plant Ecology Group, University of Tübingen, Germany.,Botany Department, State Museum of Natural History Stuttgart, Germany.,Institute of Botany, Czech Academy of Science, Czech Republic
| | | | - Lara Saul
- Plant Ecology Group, University of Tübingen, Germany
| | - Sophie Weides
- Department of Environmental Sciences, University of Basel, Switzerland
| | | | | |
Collapse
|
13
|
Stears AE, Adler PB, Blumenthal DM, Kray JA, Mueller KE, Ocheltree TW, Wilcox KR, Laughlin DC. Water availability dictates how plant traits predict demographic rates. Ecology 2022; 103:e3799. [PMID: 35724968 DOI: 10.1002/ecy.3799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
A major goal in ecology is to make generalizable predictions of organism responses to environmental variation based on their traits. However, straightforward relationships between traits and fitness are rare and likely vary with environmental context. Characterizing how traits mediate demographic responses to the environment may enhance predictions of organism responses to global change. We synthesized 15 years of demographic data and species-level traits in a shortgrass steppe to determine whether the effects of leaf and root traits on growth and survival depend on seasonal water availability. We predicted that (1) species with drought-tolerant traits, such as lower leaf turgor loss point (TLP) and higher leaf and root dry matter content (LDMC and RDMC), would be more likely to survive and grow in drier years due to higher wilting resistance, (2) these traits would not predict fitness in wetter years, and (3) traits that more directly measure physiological mechanisms of water use such as TLP would best predict demographic responses. We found that graminoids with more negative TLP and higher LDMC and RDMC had higher survival rates in drier years. Forbs demonstrated similar yet more variable responses. Graminoids grew larger in wetter years, regardless of traits. However, in both wet and dry years, graminoids with more negative TLP and higher LDMC and RDMC grew larger than less negative TLP and low LDMC and RDMC species. Traits significantly mediated the impact of drought on survival, but not growth, suggesting survival could be a stronger driver of species' drought response in this system. TLP predicted survival in drier years, but easier-to-measure LDMC and RDMC were equal or better predictors. These results advance our understanding of the mechanisms by which drought drives population dynamics, and show that abiotic context determines how traits drive fitness.
Collapse
Affiliation(s)
- Alice E Stears
- Botany Department and Program in Ecology, University of Wyoming, Laramie, WY
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT
| | | | - Julie A Kray
- USDA-ARS Rangeland Resources Research Unit, Fort Collins, CO
| | - Kevin E Mueller
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Troy W Ocheltree
- Warner College of Natural Resources, Colorado State University, Fort Collins, CO
| | - Kevin R Wilcox
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY
| | - Daniel C Laughlin
- Botany Department and Program in Ecology, University of Wyoming, Laramie, WY
| |
Collapse
|
14
|
Chi CJE, Zinsmeister D, Lai IL, Chang SC, Kuo YL, Burkhardt J. Aerosol Impacts on Water Relations of Camphor ( Cinnamomum camphora). FRONTIERS IN PLANT SCIENCE 2022; 13:892096. [PMID: 35795349 PMCID: PMC9251497 DOI: 10.3389/fpls.2022.892096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Major parts of anthropogenic and natural aerosols are hygroscopic and deliquesce at high humidity, particularly when depositing to leaf surfaces close to transpiring stomata. Deliquescence and subsequent salt creep may establish thin, extraordinary pathways into the stomata, which foster stomatal uptake of nutrients and water but may also cause stomatal liquid water loss by wicking. Such additional water loss is not accompanied by a wider stomatal aperture with a larger CO2 influx and hypothetically reduces water use efficiency (WUE). Here, the possible direct impacts of aerosols on physical and physiological parameters of camphor (Cinnamomum camphora) were studied (i) in a greenhouse experiment using aerosol exclusion and (ii) in a field study in Taiwan, comparing trees at two sites with different aerosol regimes. Scanning electron microscopy (SEM) images showed that leaves grown under aerosol exclusion in filtered air (FA) were lacking the amorphous, flat areas that were abundant on leaves grown in ambient air (AA), suggesting salt crusts formed from deliquescent aerosols. Increasing vapor pressure deficit (VPD) resulted in half the Ball-Berry slope and double WUE for AA compared to FA leaves. This apparent contradiction to the wicking hypothesis may be due to the independent, overcompensating effect of stomatal closure in response to VPD, which affects AA more than FA stomata. Compared to leaves in a more polluted region in the Taiwanese Southwest, NaCl aerosols dominated the leaf surface conditions on mature camphor trees in Eastern Taiwan, while the considerably lower contact angles and the 2.5 times higher minimum epidermal conductances might have come from organic surfactants. Interpretations of SEM images from leaf surface microstructures should consider amorphous areas as possible indicators of aerosol deposition and other hygroscopic material. The amount and type of the material determine the resulting impacts on plant water relations, together with the surrounding atmosphere and ecophysiological traits.
Collapse
Affiliation(s)
- Chia-Ju Ellen Chi
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Daniel Zinsmeister
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - I-Ling Lai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chieh Chang
- Department of Natural Resources and Environmental Studies, Center for Interdisciplinary Research on Ecology and Sustainability, National Dong Hwa University, Hualien, Taiwan
| | - Yau-Lun Kuo
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jürgen Burkhardt
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Kuppler J, Kotowska MM. A meta-analysis of responses in floral traits and flower-visitor interactions to water deficit. GLOBAL CHANGE BIOLOGY 2021; 27:3095-3108. [PMID: 33774883 DOI: 10.1111/gcb.15621] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Alterations in water availability and drought events as predicted by climate change scenarios will increasingly impact natural communities with effects already emerging at present. Water deficit leads to increasing physiological stress in plants, likely affecting floral development and causing changes in floral morphology, nectar and pollen production or scent. Understanding how these floral traits are altered by water deficit is necessary to predict changes in plant-pollinator interactions and how communities are impacted in the future. Here we employ a meta-analysis approach to synthesize the current evidence of experimental water deficit on floral traits and plant-pollinator interactions. Furthermore, we explore experimental factors potentially increasing heterogeneity between studies and provide ideas how to enhance comparability between studies. In the end, we highlight future directions and knowledge gaps for floral traits and plant-pollinator interactions under water deficit. Our analysis showed consistent decreases in floral size, number of flowers and nectar volume to reduced water availability. Other floral traits such as the start of flowering or herkogamy showed no consistent pattern. This indicates that effects of reduced water availability differ between specific traits that are potentially involved in different functions such as pollinator attraction or efficiency. We found no general decreasing visitation rates with water deficit for flower-visitor interactions. Furthermore, the comparison of available studies suggests that increased reporting of plant stress severity and including more hydraulic and physiological measurements will improve the comparability across experiments and aid a more mechanistic understanding of plant-pollinator interactions under altered environmental conditions. Overall, our results show that water deficit has the potential to strongly affect plant-pollinator interactions via changes in specific floral traits. Linking these changes to pollination services and pollinator performance is one crucial step for understanding how changing water availability and drought events under climate change will alter plant and pollinator communities.
Collapse
Affiliation(s)
- Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Martyna M Kotowska
- Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Leverett A, Hurtado Castaño N, Ferguson K, Winter K, Borland AM. Crassulacean acid metabolism (CAM) supersedes the turgor loss point (TLP) as an important adaptation across a precipitation gradient, in the genus Clusia. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:703-716. [PMID: 33663679 DOI: 10.1071/fp20268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/30/2021] [Indexed: 05/25/2023]
Abstract
As future climates continue to change, precipitation deficits are expected to become more severe across tropical ecosystems. As a result, it is important that we identify plant physiological traits that act as adaptations to drought, and determine whether these traits act synergistically or independently of each other. In this study, we assessed the role of three leaf-level putative adaptations to drought: crassulacean acid metabolism (CAM), the turgor loss point (TLPΨ) and water storage hydrenchyma tissue. Using the genus Clusia as a model, we were able to explore the extent to which these leaf physiological traits co-vary, and also how they contribute to species' distributions across a precipitation gradient in Central and South America. We found that CAM is independent of the TLPΨ and hydrenchyma depth in Clusia. In addition, we provide evidence that constitutive CAM is an adaptation to year-long water deficits, whereas facultative CAM appears to be more important for surviving acute dry seasons. Finally, we find that the other leaf traits tested did not correlate with environmental precipitation, suggesting that the reduced transpirational rates associated with CAM obviate the need to adapt the TLPΨ and hydrenchyma depth in this genus.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; and Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama; and Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; and Corresponding author.
| | - Natalia Hurtado Castaño
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; and Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Kate Ferguson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
17
|
Májeková M, Hájek T, Albert ÁJ, Bello F, Doležal J, Götzenberger L, Janeček Š, Lepš J, Liancourt P, Mudrák O. Weak coordination between leaf drought tolerance and proxy traits in herbaceous plants. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Maria Májeková
- Institute of Evolution and Ecology University of Tübingen Tübingen Germany
- Department of Soil Science Comenius University Bratislava Slovak Republic
| | - Tomáš Hájek
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Institute of Botany Czech Academy of Sciences Třeboň Czech Republic
| | - Ágnes J. Albert
- Institute of Botany Czech Academy of Sciences Třeboň Czech Republic
| | - Francesco Bello
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- CIDE‐CSIC Valencia Spain
| | - Jiří Doležal
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Institute of Botany Czech Academy of Sciences Třeboň Czech Republic
| | - Lars Götzenberger
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Institute of Botany Czech Academy of Sciences Třeboň Czech Republic
| | - Štěpán Janeček
- Faculty of Science Charles University Prague Czech Republic
| | - Jan Lepš
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Pierre Liancourt
- Institute of Evolution and Ecology University of Tübingen Tübingen Germany
- Institute of Botany Czech Academy of Sciences Třeboň Czech Republic
| | - Ondřej Mudrák
- Institute of Botany Czech Academy of Sciences Třeboň Czech Republic
| |
Collapse
|
18
|
Bachle S, Nippert JB. Microanatomical traits track climate gradients for a dominant C4 grass species across the Great Plains, USA. ANNALS OF BOTANY 2021; 127:451-459. [PMID: 32780105 PMCID: PMC7988519 DOI: 10.1093/aob/mcaa146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Andropogon gerardii is a highly productive C4 grass species with a large geographic range throughout the North American Great Plains, a biome characterized by a variable temperate climate. Plant traits are often invoked to explain growth rates and competitive abilities within broad climate gradients. For example, plant competition models typically predict that species with large geographic ranges benefit from variation in traits underlying high growth potential. Here, we examined the relationship between climate variability and leaf-level traits in A. gerardii, emphasizing how leaf-level microanatomical traits serve as a mechanism that may underlie variation in commonly measured traits, such as specific leaf area (SLA). METHODS Andropogon gerardii leaves were collected in August 2017 from Cedar Creek Ecosystem Science Reserve (MN), Konza Prairie Biological Station (KS), Platte River Prairie (NE) and Rocky Mountain Research Station (SD). Leaves from ten individuals from each site were trimmed, stained and prepared for fluorescent confocal microscopy to analyse internal leaf anatomy. Leaf microanatomical data were compared with historical and growing season climate data extracted from PRISM spatial climate models. KEY RESULTS Microanatomical traits displayed large variation within and across sites. According to AICc (Akaike's information criterion adjusted for small sample sizes) selection scores, the interaction of mean precipitation and temperature for the 2017 growing season was the best predictor of variability for the anatomical and morphological traits measured here. Mesophyll area and bundle sheath thickness were directly correlated with mean temperature (annual and growing season). Tissues related to water-use strategies, such as bulliform cell and xylem area, were significantly correlated with one another. CONCLUSIONS The results indicate that (1) microanatomical trait variation exists within this broadly distributed grass species, (2) microanatomical trait variability appears likely to impact leaf-level carbon and water use strategies, and (3) microanatomical trait values vary across climate gradients, and may underlie variation in traits measured at larger ecological scales.
Collapse
Affiliation(s)
- Seton Bachle
- Division of Biology, Kansas State University, Manhattan, KS, USA
- For correspondence. E-mail
| | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
19
|
Blumenthal DM, LeCain DR, Porensky LM, Leger EA, Gaffney R, Ocheltree TW, Pilmanis AM. Local adaptation to precipitation in the perennial grass Elymus elymoides: Trade-offs between growth and drought resistance traits. Evol Appl 2021; 14:524-535. [PMID: 33664792 PMCID: PMC7896711 DOI: 10.1111/eva.13137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding local adaptation to climate is critical for managing ecosystems in the face of climate change. While there have been many provenance studies in trees, less is known about local adaptation in herbaceous species, including the perennial grasses that dominate arid and semiarid rangeland ecosystems. We used a common garden study to quantify variation in growth and drought resistance traits in 99 populations of Elymus elymoides from a broad geographic and climatic range in the western United States. Ecotypes from drier sites produced less biomass and smaller seeds, and had traits associated with greater drought resistance: small leaves with low osmotic potential and high integrated water use efficiency (δ13C). Seasonality also influenced plant traits. Plants from regions with relatively warm, wet summers had large seeds, large leaves, and low δ13C. Irrespective of climate, we also observed trade-offs between biomass production and drought resistance traits. Together, these results suggest that much of the phenotypic variation among E. elymoides ecotypes represents local adaptation to differences in the amount and timing of water availability. In addition, ecotypes that grow rapidly may be less able to persist under dry conditions. Land managers may be able to use this variation to improve restoration success by seeding ecotypes with multiple drought resistance traits in areas with lower precipitation. The future success of this common rangeland species will likely depend on the use of tools such as seed transfer zones to match local variation in growth and drought resistance to predicted climatic conditions.
Collapse
Affiliation(s)
| | - Daniel R. LeCain
- USDA‐ARS Rangeland Resources & Systems Research UnitFort CollinsCOUSA
| | | | | | - Rowan Gaffney
- USDA‐ARS Rangeland Resources & Systems Research UnitFort CollinsCOUSA
| | - Troy W. Ocheltree
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsCOUSA
| | | |
Collapse
|
20
|
Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc Natl Acad Sci U S A 2020; 117:22249-22255. [PMID: 32839346 DOI: 10.1073/pnas.1922030117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the 1930s Dust Bowl drought in the central United States, species with the C3 photosynthetic pathway expanded throughout C4-dominated grasslands. This widespread increase in C3 grasses during a decade of low rainfall and high temperatures is inconsistent with well-known traits of C3 vs. C4 pathways. Indeed, water use efficiency is generally lower, and photosynthesis is more sensitive to high temperatures in C3 than C4 species, consistent with the predominant distribution of C3 grasslands in cooler environments and at higher latitudes globally. We experimentally imposed extreme drought for 4 y in mixed C3/C4 grasslands in Kansas and Wyoming and, similar to Dust Bowl observations, also documented three- to fivefold increases in C3/C4 biomass ratios. To explain these paradoxical responses, we first analyzed long-term climate records to show that under nominal conditions in the central United States, C4 grasses dominate where precipitation and air temperature are strongly related (warmest months are wettest months). In contrast, C3 grasses flourish where precipitation inputs are less strongly coupled to warm temperatures. We then show that during extreme drought years, precipitation-temperature relationships weaken, and the proportion of precipitation falling during cooler months increases. This shift in precipitation seasonality provides a mechanism for C3 grasses to respond positively to multiyear drought, resolving the Dust Bowl paradox. Grasslands are globally important biomes and increasingly vulnerable to direct effects of climate extremes. Our findings highlight how extreme drought can indirectly alter precipitation seasonality and shift ecosystem phenology, affecting function in ways not predictable from key traits of C3 and C4 species.
Collapse
|
21
|
Laughlin DC, Delzon S, Clearwater MJ, Bellingham PJ, McGlone MS, Richardson SJ. Climatic limits of temperate rainforest tree species are explained by xylem embolism resistance among angiosperms but not among conifers. THE NEW PHYTOLOGIST 2020; 226:727-740. [PMID: 31981422 DOI: 10.1111/nph.16448] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Hydraulic failure explains much of the increased rates of drought-induced tree mortality around the world, underlining the importance of understanding how species distributions are shaped by their vulnerability to embolism. Here we determined which physiological traits explain species climatic limits among temperate rainforest trees in a region where chronic water limitation is uncommon. We quantified the variation in stem embolism vulnerability and leaf turgor loss point among 55 temperate rainforest tree species in New Zealand and tested which traits were most strongly related to species climatic limits. Leaf turgor loss point and stem P50 (tension at which hydraulic conductance is at 50% of maximum) were uncorrelated. Stem P50 and hydraulic safety margin were the most strongly related physiological traits to climatic limits among angiosperms, but not among conifers. Morphological traits such as wood density and leaf dry matter content did not explain species climatic limits. Stem embolism resistance and leaf turgor loss point appear to have evolved independently. Embolism resistance is the most useful predictor of the climatic limits of angiosperm trees. High embolism resistance in the curiously overbuilt New Zealand conifers suggests that their xylem properties may be more closely related to growing slowly under nutrient limitation and to resistance to microbial decomposition.
Collapse
Affiliation(s)
- Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Sylvain Delzon
- INRA, BIOGECO, University of Bordeaux, 33615, Pessac, France
| | | | - Peter J Bellingham
- Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Matthew S McGlone
- Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| | - Sarah J Richardson
- Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| |
Collapse
|
22
|
Sun S, Jung E, Gaviria J, Engelbrecht BMJ. Drought survival is positively associated with high turgor loss points in temperate perennial grassland species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shanwen Sun
- Department of Plant Ecology Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
| | - Eun‐Young Jung
- Department of Plant Ecology Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
| | - Julian Gaviria
- Department of Plant Ecology Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
| | - Bettina M. J. Engelbrecht
- Department of Plant Ecology Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
- Smithsonian Tropical Research Institute Balboa Ancón Panama
| |
Collapse
|
23
|
Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community. Oecologia 2020; 192:55-66. [PMID: 31932921 DOI: 10.1007/s00442-019-04567-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022]
Abstract
Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil-water deficits. Yet, the link between plant drought resistance and phenology remains unclear in perennial grassland ecosystems. To evaluate the role of soil water availability and plant drought tolerance in driving phenology, we measured leaf hydraulic conductance (Ksat), resistance to hydraulic failure (P50), leaf gas exchange, plant and soil water stable isotope ratios (δ18O), and several phenology metrics on ten perennial herbaceous species in mixed-grass prairie. The interaction between P50 and δ18O of xylem water explained 67% of differences in phenology, with lower P50 values associated with later season activity, but only among shallow-rooted species. In addition, stomatal control and high water-use efficiency also contributed to the late flowering and late senescence strategies of plants that had low P50 values and relied upon shallow soil water. Alternatively, plants with deeper roots did not possess drought-tolerant leaves, but had high hydraulic efficiency, contributing to their ability to efficiently move water longer distances while maintaining leaf water potential at relatively high values. The suites of traits that characterize these contrasting strategies provide a mechanistic link between phenology and plant-water relations; thus, these traits could help predict grassland community responses to changes in water availability, both temporally and vertically within the soil profile.
Collapse
|
24
|
McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC. A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants. PLANT, CELL & ENVIRONMENT 2019; 42:2789-2807. [PMID: 31273812 DOI: 10.1111/pce.13607] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The vast majority of measurements in the field of plant hydraulics have been on small-diameter branches from woody species. These measurements have provided considerable insight into plant functioning, but our understanding of plant physiology and ecology would benefit from a broader view, because branch hydraulic properties are influenced by many factors. Here, we discuss the influence that other components of the hydraulic network have on branch vulnerability to embolism propagation. We also modelled the impact of changes in the ratio of root-to-leaf areas and soil texture on vulnerability to hydraulic failure along the soil-to-leaf continuum and showed that hydraulic function is better maintained through changes in root vulnerability and root-to-leaf area ratio than in branch vulnerability. Differences among species in the stringency with which they regulate leaf water potential and in reliance on stored water to buffer changes in water potential also affect the need to construct embolism resistant branches. Many approaches, such as measurements on fine roots, small individuals, combining sap flow and psychrometry techniques, and modelling efforts, could vastly improve our understanding of whole-plant hydraulic functioning. A better understanding of how traits are coordinated across the whole plant will improve predictions for plant function under future climate conditions.
Collapse
Affiliation(s)
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| |
Collapse
|