1
|
Cordero RD, Jackson DA. Can fish species co-occurrence patterns be predicted by their trait dissimilarities? ROYAL SOCIETY OPEN SCIENCE 2023; 10:230160. [PMID: 38026008 PMCID: PMC10645092 DOI: 10.1098/rsos.230160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Trait-based analyses have been successful in determining and predicting species association outcomes in diverse communities. Most studies have limited the scope of this approach to the biotic responses of a small number of species or geographical regions. We focused on determining whether three biologically relevant traits (body size, temperature preference and trophic level) influence the patterns of co-occurrence between multiple species. We used fish species presence/absence from 9204 lakes in Ontario, Canada, to obtain effect sizes of 2001 species-pair co-occurrence values, using a null model approach. Euclidean distances between each species-pair were calculated for each of the three traits selected. Multiple regression models and randomization tests were used to determine the direction and significance of the relationship of each trait with the observed co-occurrence values. The results show that species temperature preference was significantly related to co-occurrence patterns, indicating the effect of environmental filtering. Trophic level was significantly related to co-occurrence values for both linear and quadratic terms, suggesting that segregation between species is driven by large differences in this trait (predation effects). Unexpectedly, body size was not significantly related to the observed co-occurrence patterns. We provide a new approach to test relationships between species assemblages and trait conditions.
Collapse
Affiliation(s)
- Ruben D. Cordero
- Ecology and Evolutionary Biology, University of Toronto Faculty of Arts & Science¸ Toronto, Ontario Canada, M5S 3G3
| | - Donald A. Jackson
- Ecology and Evolutionary Biology, University of Toronto Faculty of Arts & Science¸ Toronto, Ontario Canada, M5S 3G3
| |
Collapse
|
2
|
Cerezer FO, Dambros CS, Coelho MTP, Cassemiro FAS, Barreto E, Albert JS, Wüest RO, Graham CH. Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes. Nat Commun 2023; 14:6070. [PMID: 37770447 PMCID: PMC10539357 DOI: 10.1038/s41467-023-41812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Speciation rates vary greatly among taxa and regions and are shaped by both biotic and abiotic factors. However, the relative importance and interactions of these factors are not well understood. Here we investigate the potential drivers of speciation rates in South American freshwater fishes, the most diverse continental vertebrate fauna, by examining the roles of multiple biotic and abiotic factors. We integrate a dataset on species geographic distribution, phylogenetic, morphological, climatic, and habitat data. We find that Late Neogene-Quaternary speciation events are strongly associated with body-size evolution, particularly in lineages with small body sizes that inhabit higher elevations near the continental periphery. Conversely, the effects of temperature, area, and diversity-dependence, often thought to facilitate speciation, are negligible. By evaluating multiple factors simultaneously, we demonstrate that habitat characteristics associated with elevation, as well as body size evolution, correlate with rapid speciation in South American freshwater fishes. Our study emphasizes the importance of integrative approaches that consider the interplay of biotic and abiotic factors in generating macroecological patterns of species diversity.
Collapse
Affiliation(s)
- Felipe O Cerezer
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland.
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Cristian S Dambros
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marco T P Coelho
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - Fernanda A S Cassemiro
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elisa Barreto
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Rafael O Wüest
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| |
Collapse
|
3
|
DiBattista JD, Shalders TC, Reader S, Hay A, Parkinson K, Williams RJ, Stuart-Smith J, McGrouther M. A comprehensive analysis of all known fishes from Sydney Harbour. MARINE POLLUTION BULLETIN 2022; 185:114239. [PMID: 36274563 DOI: 10.1016/j.marpolbul.2022.114239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fishes represent an important natural resource and yet their diversity and function in dynamic estuaries with relatively high levels of human pressure such as Sydney Harbour have rarely been quantified. Further, Eastern Australia supports the survival and persistence of an increasing number of tropical species found within temperate estuaries owing to increasing average ocean temperatures. A re-valuation of the number of fish species known from Sydney Harbour is therefore needed. In this study, we generated an up-to-date and annotated checklist of fishes recorded from Sydney Harbour based on verified natural history records as well as newly available citizen science records based on opportunistic observations and structured surveys. We explored the spatial and temporal distribution of these records. In addition, we quantified the function, conservation status, and commercial importance of the identified fishes. The number of fish species recorded from Sydney Harbour now stands at 675, an increase of 89 species (15 %) when compared to the most recent evaluation in 2013. We attribute this increase in fish diversity over a relatively short time to the contribution of newer citizen science programs as well as the influx and survival of fishes in the Harbour with preferences for warmer waters. Some fish families were also overrepresented in the more urbanized and polluted sections of the Harbour. In forecasting further environmental impacts on the fishes of Sydney Harbour, we recommend increased integration of collaborative citizen science programs and natural history collections as a means to track these changes.
Collapse
Affiliation(s)
- Joseph D DiBattista
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.
| | - Tanika C Shalders
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, NSW 2450, Australia
| | - Sally Reader
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.
| | - Amanda Hay
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.
| | - Kerryn Parkinson
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.
| | - Robert J Williams
- New South Wales Department of Primary Industries - Fisheries, Australia
| | - Jemina Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia.
| | - Mark McGrouther
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.
| |
Collapse
|
4
|
Abecia JE, Luiz OJ, Crook DA, Banks SC, Wedd D, King AJ. Sex and male breeding state predict intraspecific trait variation in mouth-brooding fishes. JOURNAL OF FISH BIOLOGY 2022; 101:550-559. [PMID: 35638470 PMCID: PMC9544576 DOI: 10.1111/jfb.15122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Sex-specific reproductive roles contribute to sexual dimorphic morphological trait variations. In uniparental mouth-brooding fishes, the mouth performs a reproductive function in addition to its key roles in feeding and respiration, resulting in the potential for sex-specific functional performance trade-offs. Trait differences related to parental care may occur when the individual matures or be restricted to periods when the parent is mouth-brooding. This study explored sexual dimorphism and morphological trait adaptations related to feeding, breeding, respiration and locomotion performance in two paternal mouth-brooding freshwater fishes (Glossamia aprion and Neoarius graeffei). Eight morphological traits were evaluated for sexual dimorphism (non-brooder males vs. females) and male breeding state differences (brooders vs. non-brooders). Male breeding state was a significant predictor of trait variation in both species. Brooders differed in buccal volume and in several feeding and locomotory traits compared to non-brooder males. Non-brooder males had bigger buccal volumes and relative eye diameters (G. aprion) and larger relative gape sizes (N. graeffei) compared to females, a potential response to both mouth-brooding and feeding requirements. Although there were clear trait differences between brooder and non-brooder males, further research is required to confirm whether individuals return to their former morphology once mouth-brooding has ceased or if trait differences are maintained post-brooding. This study highlights the importance of considering the potential impacts of intraspecific trait variation on the performance of critical life functions, such as feeding, respiration and locomotion across the life history.
Collapse
Affiliation(s)
- Janine E. Abecia
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityCasuarinaNorthern TerritoryAustralia
| | - Osmar J. Luiz
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityCasuarinaNorthern TerritoryAustralia
| | - David A. Crook
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityCasuarinaNorthern TerritoryAustralia
- Centre for Freshwater EcosystemsLa Trobe UniversityAlburyVictoriaAustralia
| | - Sam C. Banks
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityCasuarinaNorthern TerritoryAustralia
| | - Dion Wedd
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityCasuarinaNorthern TerritoryAustralia
| | - Alison J. King
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityCasuarinaNorthern TerritoryAustralia
- Centre for Freshwater EcosystemsLa Trobe UniversityAlburyVictoriaAustralia
| |
Collapse
|
5
|
Butler ECV, Harries SJ, McAllister KA, Windsor JO, Logan M, Crook DA, Roberts BH, Grubert MA, Saunders TM. Influence of life history variation and habitat on mercury bioaccumulation in a high-order predatory fish in tropical Australia. ENVIRONMENTAL RESEARCH 2022; 212:113152. [PMID: 35341754 DOI: 10.1016/j.envres.2022.113152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Mercury distribution and bioaccumulation in aquatic ecosystems of tropical Australia is poorly characterised. Barramundi (Lates calcarifer), a widespread high-order predator in both fresh and coastal marine waters of the region, fulfils requirements for a bio-indicator of mercury contamination. In a study of the Mary River system of the Northern Territory, total mercury in the muscle tissue of 300 specimens gathered over four years (2013-2017, across both wet and dry seasons) was determined by direct combustion-atomic absorption spectrometry. Source of nutrition and trophic position of barramundi in the food web was also estimated via carbon and nitrogen isotopes (δ13C and δ15N), respectively, in tissue by stable isotope mass spectrometry, and determination of strontium isotopes (87Sr/86Sr) in otoliths by laser ablation-ICPMS differentiated between freshwater and saltwater residence. Results showed that fish moving into freshwater floodplain wetlands concentrated mercury in muscle tissue at approximately twice the level of those that remained in saline habitats. Resolving life histories through otolith analyses demonstrated diversity in mercury bioaccumulation for individual fish of the same migratory contingent on the floodplains. Although trophic level (δ15N), capture location, source of nutrition (δ13C), and age or size partly predicted mercury concentrations in barramundi, our results suggest that individual variability in diets, migration patterns and potentially metabolism are also influential. Using a migratory fish as a bio-indicator, and tracking its life history and use of resources, proved valuable as a tool to discern hot spots in a coastal waterway for a contaminant, such as mercury.
Collapse
Affiliation(s)
- Edward C V Butler
- Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, Northern Territory, Australia.
| | - Simon J Harries
- Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, Northern Territory, Australia
| | - Kirsty A McAllister
- Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, Northern Territory, Australia
| | - Jonathan O Windsor
- Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, Northern Territory, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David A Crook
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia; Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Brien H Roberts
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Mark A Grubert
- Fisheries Division, Department of Industry, Tourism and Trade, Berrimah, Northern Territory, Australia
| | - Thor M Saunders
- Fisheries Division, Department of Industry, Tourism and Trade, Berrimah, Northern Territory, Australia
| |
Collapse
|
6
|
Carlig E, Christiansen JS, Di Blasi D, Ferrando S, Pisano E, Vacchi M, O’Driscoll RL, Ghigliotti L. Midtrophic fish feeding modes at the poles: an ecomorphological comparison of polar cod (Boreogadus saida) and Antarctic silverfish (Pleuragramma antarctica). Polar Biol 2021. [DOI: 10.1007/s00300-021-02900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractThe polar cod (Boreogadus saida) and the Antarctic silverfish (Pleuragramma antarctica) are pelagic fish endemic to the Arctic and Antarctica sea, respectively. Both species are abundant and play a central role as midtrophic wasp-waist species in polar ecosystems. Due to their biological and ecological characteristics (small size, complex life histories, relatively short generation cycles, movement capability, planktivorous diet, and importance as prey), the polar cod and the Antarctic silverfish are potentially good sentinels of ecosystem change. Changes in polar zooplankton communities are well documented. How changes impact ecosystems as a whole largely depend on the degree of diet specialization and feeding flexibility of midtrophic species. Here, we provide the ecomorphological characterization of polar cod and Antarctic silverfish feeding performances. A comparative functional ecology approach, based on the analysis of morpho-anatomical traits, including calculation of suction index and mechanical advantage in jaw closing, was applied to profile the feeding modes and flexibility of the two species. Ecomorphological evidence supports differences in food acquisition: the polar cod appears able to alternate particulate ram-suction feeding to a pump filter feeding, and the Antarctic silverfish results be both a particulate ram and a tow-net filter feeder. Both species exhibit opportunistic feeding strategies and appear able to switch feeding mode according to the abundance and size of the available prey, which is a clue of potential resilience to a changing environment.
Collapse
|
7
|
Roberts BH, Morrongiello JR, Morgan DL, King AJ, Saunders TM, Crook DA. Faster juvenile growth promotes earlier sex change in a protandrous hermaphrodite (barramundi Lates calcarifer). Sci Rep 2021; 11:2276. [PMID: 33500452 PMCID: PMC7838401 DOI: 10.1038/s41598-021-81727-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 11/08/2022] Open
Abstract
The relationship between growth and sexual maturation is central to understanding the dynamics of animal populations which exhibit indeterminate growth. In sequential hermaphrodites, which undergo post-maturation sex change, the size and age at which sex change occurs directly affects reproductive output and hence population productivity. However, these traits are often labile, and may be strongly influenced by heterogenous growth and mortality rates. We analysed otolith microstructure of a protandrous (i.e., male-to-female) fish (barramundi Lates calcarifer) to examine growth in relation to individual variation in the timing of sex change. Growth trajectories of individuals with contrasting life histories were examined to elucidate the direction and extent to which growth rate influences the size and age individuals change sex. Then, the relationships between growth rate, maturation schedules and asymptotic maximum size were explored to identify potential trade-offs between age at female maturity and growth potential. Rapid growth was strongly associated with decreased age at sex change, but this was not accompanied by a decrease in size at sex change. Individuals that were caught as large females grew faster than those caught as males, suggesting that fast-growing individuals ultimately obtain higher fitness and therefore make a disproportionate contribution to population fecundity. These results indicate that individual-level variation in maturation schedules is not reflective of trade-offs between growth and reproduction. Rather, we suggest that conditions experienced during the juvenile phase are likely to be a key determinant of post-maturation fitness. These findings highlight the vulnerability of sex-changing species to future environmental change and harvest.
Collapse
Affiliation(s)
- Brien H Roberts
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia.
| | - John R Morrongiello
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - David L Morgan
- Freshwater Fish Group & Fish Health Unit, Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Australia
| | - Alison J King
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
- Centre for Freshwater Ecosystems, School of Life Sciences, La Trobe University, Albury-Wodonga, VIC, Australia
| | - Thor M Saunders
- Department of Primary Industries and Fisheries, Fisheries Research, Berrimah, NT, Australia
| | - David A Crook
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
- Centre for Freshwater Ecosystems, School of Life Sciences, La Trobe University, Albury-Wodonga, VIC, Australia
| |
Collapse
|
8
|
Hope SF, Kennamer RA, Grimaudo AT, Hallagan JJ, Hopkins WA. Incubation Temperature Affects Duckling Body Size and Food Consumption Despite No Effect on Associated Feeding Behaviors. Integr Org Biol 2020; 2:obaa003. [PMID: 33791547 PMCID: PMC7671149 DOI: 10.1093/iob/obaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental conditions can have consequences for offspring fitness. For example, small changes (<1°C) in average avian incubation temperature have large effects on important post-hatch offspring phenotypes, including growth rate, thermoregulation, and behavior. Furthermore, average incubation temperatures differ among eggs within the same nest, to the extent (i.e., >1°C) that differences in offspring phenotypes within broods should result. A potential consequence of within-nest incubation temperature variation is inequality in behaviors that could cause differences in resource acquisition within broods. To investigate this, we incubated wood duck (Aix sponsa) eggs at one of two ecologically-relevant incubation temperatures (35°C or 36°C), formed mixed-incubation temperature broods after ducklings hatched, and conducted trials to measure duckling behaviors associated with acquisition of heat (one trial) or food (three trials). Contrary to our predictions, we found no effect of incubation temperature on duckling behaviors (e.g., time spent occupying heat source, frequency of feeding bouts). However, we found evidence that ducklings incubated at the higher temperature consumed more food during the 1-h feeding trials, and grew faster in body mass and structural size (culmen and tarsus) throughout the study, than those incubated at the lower temperature. Apparent food consumption during the trials was positively related to culmen length, suggesting that differences in food consumption may be driven by structural size. This could result in positive feedback, which would amplify size differences between offspring incubated at different temperatures. Thus, our study identifies incubation temperature as a mechanism by which fitness-related phenotypic differences can be generated and even amplified within avian broods.
Collapse
Affiliation(s)
- S F Hope
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - R A Kennamer
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - A T Grimaudo
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - J J Hallagan
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - W A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|