1
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Abonyi A, Fornberg J, Rasconi S, Ptacnik R, Kainz MJ, Lafferty KD. The chytrid insurance hypothesis: integrating parasitic chytrids into a biodiversity-ecosystem functioning framework for phytoplankton-zooplankton population dynamics. Oecologia 2024; 204:279-288. [PMID: 38366067 PMCID: PMC10907492 DOI: 10.1007/s00442-024-05519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
In temperate lakes, eutrophication and warm temperatures can promote cyanobacteria blooms that reduce water quality and impair food-chain support. Although parasitic chytrids of phytoplankton might compete with zooplankton, they also indirectly support zooplankton populations through the "mycoloop", which helps move energy and essential dietary molecules from inedible phytoplankton to zooplankton. Here, we consider how the mycoloop might fit into the biodiversity-ecosystem functioning (BEF) framework. BEF considers how more diverse communities can benefit ecosystem functions like zooplankton production. Chytrids are themselves part of pelagic food webs and they directly contribute to zooplankton diets through spore production and by increasing host edibility. The additional way that chytrids might support BEF is if they engage in "kill-the-winner" dynamics. In contrast to grazers, which result in "eat-the-edible" dynamics, kill-the-winner dynamics can occur for host-specific infectious diseases that control the abundance of dominant (in this case inedible) hosts and thus limit the competitive exclusion of poorer (in this case edible) competitors. Thus, if phytoplankton diversity provides functions, and chytrids support algal diversity, chytrids could indirectly favour edible phytoplankton. All three mechanisms are linked to diversity and therefore provide some "insurance" for zooplankton production against the impacts of eutrophication and warming. In our perspective piece, we explore evidence for the chytrid insurance hypothesis, identify exceptions and knowledge gaps, and outline future research directions.
Collapse
Affiliation(s)
- András Abonyi
- WasserCluster Lunz-Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293, Lunz Am See, Austria.
- MTA-ÖK Lendület "Momentum" Fluvial Ecology Research Group, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Street 29, 1113, Budapest, Hungary.
| | - Johanna Fornberg
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Serena Rasconi
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-Les-Bains, France
| | - Robert Ptacnik
- WasserCluster Lunz-Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293, Lunz Am See, Austria
| | - Martin J Kainz
- WasserCluster Lunz-Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293, Lunz Am See, Austria
- Donau-Universität Krems, Dr. Karl Dorrek Straße 30, 3500, Krems, Austria
| | - Kevin D Lafferty
- U.S. Geological Survey, Western Ecological Research Center, at Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, 93106-6150, USA
| |
Collapse
|
3
|
An S, Yan Z, Song Y, Fu Q, Ge F, Wu Z, An W, Han W. Decoupling of N and P aggravated upward along food chains in an urban river ecosystem. CHEMOSPHERE 2023; 313:137555. [PMID: 36526137 DOI: 10.1016/j.chemosphere.2022.137555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic input of nutrient has profoundly influenced water quality and aquatic organisms, however, large and unbalanced nitrogen (N) and phosphorus (P) inputs (decoupling) can lead to a range of ecological health problems such as eutrophication. Whether and how the decoupling varies along the aquatic food chain remains poorly addressed. Here we chose an urban river ecosystem in the cosmopolis region of Beijing, with reclaimed water as the entire replenishment water source over 20 years, to demonstrate the decoupling pattern of N vs P across trophic levels. Results showed that organism C, N and P concentration increased, but N:P ratio decreased upward along the food chains, suggesting that this decoupling of N and P increased as trophic level ascends. Compared with natural freshwater ecosystem, the decoupling of N and P was aggravated in the reclaimed water river. Moreover, the homeostasis of N and P were higher at higher relative to lower trophic levels, and higher in macro-food chain relative to planktonic food chain. This study, for the first time, revealed the increasing decoupling of N vs P upward along the major food chains in an urban aquatic ecosystem, and could improve the understanding of nutrient cycling at the food chain level under human disturbance, and provide useful information for ecological restoration and eutrophication control of urban wetlands replenished with reclaimed water.
Collapse
Affiliation(s)
- Shenqun An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Song
- Beijing Drainage Group Co., Ltd, Beijing, 100124, China
| | - Qiang Fu
- Beijing Drainage Group Co., Ltd, Beijing, 100124, China
| | - Feiyang Ge
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zehao Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenxuan Han
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Vasantha Raman N, Gsell AS, Voulgarellis T, van den Brink NW, de Senerpont Domis LN. Moving beyond standard toxicological metrics: The effect of diclofenac on planktonic host-parasite interactions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106370. [PMID: 36516501 DOI: 10.1016/j.aquatox.2022.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals are increasingly released into surface waters and therefore ubiquitous in aquatic systems. While pharmaceuticals are known to influence species interactions, their effect on host-parasite interactions is still underexplored despite potential ecosystem-level consequences. Here, we ask whether diclofenac, a widely used non-steroid anti-inflammatory drug, affects the interaction between a phytoplankton host (Staurastrum sp.; green alga) and its obligate fungal parasite (Staurastromyces oculus; chytrid fungus). We hypothesized that the effect of increasing diclofenac concentration on the host-parasite system depends on parasite exposure. We assessed acute and chronic effects of a wide range of diclofenac concentrations (0-150 mg/L) on host and parasite performance using a replicated long gradient design in batch cultures. Overall system response summarizing parameters related to all biotic components in an experimental unit i.e., number of bacteria and phytoplankton host cells along with photosynthetic yield (a measure of algal cell fitness), depended on diclofenac concentration and presence/absence of parasite. While host standing biomass decreased at diclofenac concentrations >10 mg/L in non-parasite-exposed treatments, it increased at ≥10 mg/L in parasite-exposed treatments since losses due to infection declined. During acute phase (0-48 h), diclofenac concentrations <0.1 mg/L had no effect on host net-production neither in parasite-exposed nor non-parasite-exposed treatments, but parasite infection ceased at 10 mg/L. During chronic phase (0-216 h), host net-production declined only at concentrations >10 mg/L in non-parasite-exposed cultures, while it was overall close to zero in parasite-exposed cultures. Our results suggest that chytrid parasites are more sensitive to diclofenac than their host, allowing a window of opportunity for growth of phytoplankton hosts, despite exposure to a parasite. Our work provides a first understanding about effects of a pharmaceutical on a host-parasite interaction beyond those defined by standard toxicological metrics.
Collapse
Affiliation(s)
- Nandini Vasantha Raman
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, PB 6708, the Netherlands.
| | - Alena S Gsell
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, PB 6708, the Netherlands
| | - Themistoklis Voulgarellis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, PB 6708, the Netherlands
| | - Nico W van den Brink
- Division of Toxicology, Wageningen University & Research, Stippeneng 4, Wageningen, WE 6708, the Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, PB 6708, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Pervasive Systems Research Group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, the Netherlands; Department of Water Resources, Faculty of Geo-Information Science and Earth Observation, University of Twente, the Netherlands
| |
Collapse
|
5
|
Abonyi A, Rasconi S, Ptacnik R, Pilecky M, Kainz MJ. Chytrids enhance Daphnia fitness by selectively retained chytrid-synthesised stearidonic acid and conversion of short-chain to long-chain polyunsaturated fatty acids. FRESHWATER BIOLOGY 2023; 68:77-90. [PMID: 37064759 PMCID: PMC10099718 DOI: 10.1111/fwb.14010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/09/2023]
Abstract
Chytrid fungal parasites convert dietary energy and essential dietary molecules, such as long-chain (LC) polyunsaturated fatty acids (PUFA), from inedible algal/cyanobacteria hosts into edible zoospores. How the improved biochemical PUFA composition of chytrid-infected diet may extend to zooplankton, linking diet quality to consumer fitness, remains unexplored.Here, we assessed the trophic role of chytrids in supporting dietary energy and PUFA requirements of the crustacean zooplankton Daphnia, when feeding on the filamentous cyanobacterium Planktothrix.Only Daphnia feeding on chytrid-infected Planktothrix reproduced successfully and had significantly higher survival and growth rates compared with Daphnia feeding on the sole Planktothrix diet. While the presence of chytrids resulted in a two-fold increase of carbon ingested by Daphnia, carbon assimilation increased by a factor of four, clearly indicating enhanced carbon transfer efficiency with chytrid presence.Bulk carbon (δ 13C) and nitrogen (δ 15N) stable isotopes did not indicate any treatment-specific dietary effects on Daphnia, nor differences in trophic position among diet sources and the consumer. Compound-specific carbon isotopes of fatty acids (δ 13CFA), however, revealed that chytrids bioconverted short-chain to LC-PUFA, making it available for Daphnia. Chytrids synthesised the ω-3 PUFA stearidonic acid de novo, which was selectively retained by Daphnia. Values of δ 13CFA demonstrated that Daphnia also bioconverted short-chain to LC-PUFA.We provide isotopic evidence that chytrids improved the dietary provision of LC-PUFA for Daphnia and enhanced their fitness. We argue for the existence of a positive feedback loop between enhanced Daphnia growth and herbivory in response to chytrid-mediated improved diet quality. Chytrids upgrade carbon from the primary producer and facilitate energy and PUFA transfer to primary consumers, potentially also benefitting upper trophic levels of pelagic food webs.
Collapse
Affiliation(s)
- András Abonyi
- WasserCluster Lunz – Biological StationLunz am SeeAustria
- Centre for Ecological ResearchInstitute of Aquatic EcologyBudapestHungary
| | - Serena Rasconi
- WasserCluster Lunz – Biological StationLunz am SeeAustria
- Université Savoie Mont Blanc, INRAE, CARRTELThonon‐les‐BainsFrance
| | - Robert Ptacnik
- WasserCluster Lunz – Biological StationLunz am SeeAustria
| | - Matthias Pilecky
- WasserCluster Lunz – Biological StationLunz am SeeAustria
- Donau‐Universität KremsKremsAustria
| | - Martin J. Kainz
- WasserCluster Lunz – Biological StationLunz am SeeAustria
- Donau‐Universität KremsKremsAustria
| |
Collapse
|
6
|
Fernández-Valero AD, Reñé A, Timoneda N, Sampedro N, Garcés E. Dinoflagellate hosts determine the community structure of marine Chytridiomycota: Demonstration of their prominent interactions. Environ Microbiol 2022; 24:5951-5965. [PMID: 36057937 PMCID: PMC10087856 DOI: 10.1111/1462-2920.16182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
The interactions of parasitic fungi with their phytoplankton hosts in the marine environment are mostly unknown. In this study, we evaluated the diversity of Chytridiomycota in phytoplankton communities dominated by dinoflagellates at several coastal locations in the NW Mediterranean Sea and demonstrated the most prominent interactions of these parasites with their hosts. The protist community in seawater differed from that in sediment, with the latter characterized by a greater heterogeneity of putative hosts, such as dinoflagellates and diatoms, as well as a chytrid community more diverse in its composition and with a higher relative abundance. Chytrids accounted for 77 amplicon sequence variants, of which 70 were found exclusively among different blooming host species. The relative abundance of chytrids was highest in samples dominated by the dinoflagellate genera Ostreopsis and Alexandrium, clearly indicating the presence of specific chytrid communities. The establishment of parasitoid-host co-cultures of chytrids and dinoflagellates allowed the morphological identification and molecular characterization of three species of Chytridiomycota, including Dinomyces arenysensis, as one of the most abundant environmental sequences, and the discovery of two other species not yet described.
Collapse
Affiliation(s)
- Alan Denis Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Unravelling the trophic interaction between a parasitic barnacle ( Anelasma squalicola) and its host Southern lanternshark ( Etmopterus granulosus) using stable isotopes. Parasitology 2022; 149:1976-1984. [PMID: 36076261 PMCID: PMC10090636 DOI: 10.1017/s0031182022001299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The parasitic barnacle, Anelasma squalicola, is a rare and evolutionary fascinating organism. Unlike most other filter-feeding barnacles, A. squalicola has evolved the capability to uptake nutrient from its host, exclusively parasitizing deepwater sharks of the families Etmopteridae and Pentanchidae. The physiological mechanisms involved in the uptake of nutrients from its host are not yet known. Using stable isotopes and elemental compositions, we followed the fate of nitrogen, carbon and sulphur through various tissues of A. squalicola and its host, the Southern lanternshark Etmopterus granulosus, to better understand the trophic relationship between parasite and host. Like most marine parasites, A. squalicola is lipid-rich and clear differences were found in the stable isotope ratios between barnacle organs. It is evident that the deployment of a system of ‘rootlets’, which merge with host tissues, allows A. squalicola to draw nutrients from its host. Through this system, proteins are then rerouted to the exterior structural tissues of A. squalicola while lipids are used for maintenance and egg synthesis. The nutrient requirement of A. squalicola was found to change from protein-rich to lipid-rich between its early development stage and its definitive size.
Collapse
|
8
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Busi SB, Bourquin M, Fodelianakis S, Michoud G, Kohler TJ, Peter H, Pramateftaki P, Styllas M, Tolosano M, De Staercke V, Schön M, de Nies L, Marasco R, Daffonchio D, Ezzat L, Wilmes P, Battin TJ. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat Commun 2022; 13:2168. [PMID: 35444202 PMCID: PMC9021309 DOI: 10.1038/s41467-022-29914-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
In glacier-fed streams, ecological windows of opportunity allow complex microbial biofilms to develop and transiently form the basis of the food web, thereby controlling key ecosystem processes. Using metagenome-assembled genomes, we unravel strategies that allow biofilms to seize this opportunity in an ecosystem otherwise characterized by harsh environmental conditions. We observe a diverse microbiome spanning the entire tree of life including a rich virome. Various co-existing energy acquisition pathways point to diverse niches and the exploitation of available resources, likely fostering the establishment of complex biofilms during windows of opportunity. The wide occurrence of rhodopsins, besides chlorophyll, highlights the role of solar energy capture in these biofilms while internal carbon and nutrient cycling between photoautotrophs and heterotrophs may help overcome constraints imposed by oligotrophy in these habitats. Mechanisms potentially protecting bacteria against low temperatures and high UV-radiation are also revealed and the selective pressure of this environment is further highlighted by a phylogenomic analysis differentiating important components of the glacier-fed stream microbiome from other ecosystems. Our findings reveal key genomic underpinnings of adaptive traits contributing to the success of complex biofilms to exploit environmental opportunities in glacier-fed streams, which are now rapidly changing owing to global warming.
Collapse
Affiliation(s)
- Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Massimo Bourquin
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stilianos Fodelianakis
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tyler J Kohler
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michail Styllas
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Tolosano
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent De Staercke
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martina Schön
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura de Nies
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Leïla Ezzat
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paul Wilmes
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Tom J Battin
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Ilicic D, Grossart HP. Basal Parasitic Fungi in Marine Food Webs-A Mystery Yet to Unravel. J Fungi (Basel) 2022; 8:114. [PMID: 35205868 PMCID: PMC8874645 DOI: 10.3390/jof8020114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Collapse
Affiliation(s)
- Doris Ilicic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
11
|
Sabadel AJM, MacLeod CD. Stable isotopes unravel the feeding mode-trophic position relationship in trematode parasites. J Anim Ecol 2021; 91:484-495. [PMID: 34860441 DOI: 10.1111/1365-2656.13644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Stable isotopes have been sporadically used over the last two decades to characterise host-parasite trophic relationships. The main reason for this scarcity is the lack of an obvious pattern in the ratio of nitrogen stable isotope values (δ15 N) of parasites in comparison to their host tissues, which would be key to understand any host-parasite system dynamics. To circumvent this, we focused on a single snail host, Zeacumantus subcarinatus, and three of its trematode parasites. We used stable isotopes to investigate each host-trematode trophic relationship and shed light on the mechanisms utilised by the parasite to reroute its hosts' biomass. All our trematodes were found to be 15 N-enriched compared to their host, with their δ15 N values strongly related to their feeding behaviours: passive versus active. It was possible to 'rank' these parasite species and assess their 'relative' trophic position using δ15 N values. We also demonstrated that including a broader range of samples (e.g. host food and faeces, multiple parasite life stages) helped understand the metabolic mechanisms used by the various participants, and that using carbon stable isotope values and C:N ratios allowed to identify an important lipid requirement of these trematode parasites. Finally, we show how critical it is to not ignore parasitic infections as they can have a great influence on their host's trophic position. We have shown that by focussing on a single host species and a single taxonomic group of parasites, we can remove a certain amount of variation recorded by broader isotope studies. We hope that these data will ultimately improve our ability to place parasites in food webs, and thus improve our understanding of the connections and interactions that dictate food web dynamics.
Collapse
Affiliation(s)
| | - Colin D MacLeod
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Beaty Biodiversity Museum, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Abstract
Parasites are important components of biodiversity and contributors to ecosystem functioning, but are often neglected in ecological studies. Most studies examine model parasite systems or single taxa, thus our understanding of community composition is lacking. Here, the seasonal and annual dynamics of parasites was quantified using a 5-year metabarcoding time-series of freshwater plankton, collected weekly. We first identified parasites in the dataset using literature searches of the taxonomic match and using sequence metadata from the National Center for Biotechnology Information (NCBI) nucleotide database. In total, 441 amplicon sequence variants (belonging to 18 phyla/clades) were classified as parasites. The four phyla/clades with the highest relative read abundance and richness were Chytridiomycota, Dinoflagellata, Oomycota and Perkinsozoa. Relative read abundance of total parasite taxa, Dinoflagellata and Perkinsozoa significantly varied with season and was highest in summer. Parasite richness varied significantly with season and year, and was generally lowest in spring. Each season had distinct parasite communities, and the difference between summer and winter communities was most pronounced. Combining DNA metabarcoding with searches of the literature and NCBI metadata allowed us to characterize parasite diversity and community dynamics and revealed the extent to which parasites contribute to the diversity of freshwater plankton communities.
Collapse
|
13
|
McKindles KM, Manes MA, McKay RM, Davis TW, Bullerjahn GS. Environmental factors affecting chytrid (Chytridiomycota) infection rates on Planktothrix agardhii. JOURNAL OF PLANKTON RESEARCH 2021; 43:658-672. [PMID: 34588922 PMCID: PMC8461644 DOI: 10.1093/plankt/fbab058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
Planktothrix agardhii dominates the cyanobacterial harmful algal bloom biomass in Sandusky Bay, Lake Erie (USA) from May until September. This filamentous cyanobacterium known parasites including the chytrid fungal species Rhizophydium sp. C02, which was previously isolated from this region. The purpose of our work has been to establish how parasitic interactions affect Planktothrix population dynamics during a bloom event. Samples analyzed from the 2015 to 2019 bloom seasons using quantitative PCR investigate the spatial and temporal prevalence of chytrid infections. Abiotic factors examined in lab include manipulating temperature (17-31°C), conductivity (0.226-1.225 mS/cm) and turbulence. Planktothrix-specific chytrids are present throughout the bloom period and are occasionally at high enough densities to exert parasitic pressure on their hosts. Temperatures above 27.1°C in lab can inhibit chytrid infection, indicating the presence of a possible upper thermal refuge for the host. Data suggest that chytrids can survive conductivity spikes in lab at levels three-fold above Sandusky Bay waters if given sufficient time (7-12 days), whereas increased turbulence in lab severely inhibits chytrid infections, perhaps due to disruption of chemical signaling. Overall, these data provide insights into the environmental conditions that inhibit chytrid infections during Planktothrix-dominated blooms in temperate waters.
Collapse
Affiliation(s)
- Katelyn M McKindles
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Makayla A Manes
- Department of Biological Sciences, The Ohio State University, Columbus, OH, USA
| | - R Michael McKay
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
- Great Lakes Center for Fresh Waters and Human Health, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | |
Collapse
|
14
|
Riekenberg PM, Joling T, IJsseldijk LL, Waser AM, van der Meer MTJ, Thieltges DW. Stable nitrogen isotope analysis of amino acids as a new tool to clarify complex parasite–host interactions within food webs. OIKOS 2021. [DOI: 10.1111/oik.08450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip M. Riekenberg
- Dept of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Inst. for Sea Research Texel the Netherlands
| | - Tijs Joling
- Dept of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Inst. for Sea Research Texel the Netherlands
- Dept of Coastal Systems, NIOZ Royal Netherlands Inst. for Sea Research Texel the Netherlands
| | - Lonneke L. IJsseldijk
- Division of Pathology, Dept of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht Univ. Utrecht the Netherlands
| | - Andreas M. Waser
- Dept of Coastal Systems, NIOZ Royal Netherlands Inst. for Sea Research Texel the Netherlands
- Alfred Wegener Inst., Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt Sylt Germany
| | - Marcel T. J. van der Meer
- Dept of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Inst. for Sea Research Texel the Netherlands
| | - David W. Thieltges
- Dept of Coastal Systems, NIOZ Royal Netherlands Inst. for Sea Research Texel the Netherlands
| |
Collapse
|
15
|
Klawonn I, Van den Wyngaert S, Parada AE, Arandia-Gorostidi N, Whitehouse MJ, Grossart HP, Dekas AE. Characterizing the "fungal shunt": Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc Natl Acad Sci U S A 2021; 118:e2102225118. [PMID: 34074785 PMCID: PMC8201943 DOI: 10.1073/pnas.2102225118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial interactions in aquatic environments profoundly affect global biogeochemical cycles, but the role of microparasites has been largely overlooked. Using a model pathosystem, we studied hitherto cryptic interactions between microparasitic fungi (chytrid Rhizophydiales), their diatom host Asterionella, and cell-associated and free-living bacteria. We analyzed the effect of fungal infections on microbial abundances, bacterial taxonomy, cell-to-cell carbon transfer, and cell-specific nitrate-based growth using microscopy (e.g., fluorescence in situ hybridization), 16S rRNA gene amplicon sequencing, and secondary ion mass spectrometry. Bacterial abundances were 2 to 4 times higher on individual fungal-infected diatoms compared to healthy diatoms, particularly involving Burkholderiales. Furthermore, taxonomic compositions of both diatom-associated and free-living bacteria were significantly different between noninfected and fungal-infected cocultures. The fungal microparasite, including diatom-associated sporangia and free-swimming zoospores, derived ∼100% of their carbon content from the diatom. By comparison, transfer efficiencies of photosynthetic carbon were lower to diatom-associated bacteria (67 to 98%), with a high cell-to-cell variability, and even lower to free-living bacteria (32%). Likewise, nitrate-based growth for the diatom and fungi was synchronized and faster than for diatom-associated and free-living bacteria. In a natural lacustrine system, where infection prevalence reached 54%, we calculated that 20% of the total diatom-derived photosynthetic carbon was shunted to the parasitic fungi, which can be grazed by zooplankton, thereby accelerating carbon transfer to higher trophic levels and bypassing the microbial loop. The herein termed "fungal shunt" can thus significantly modify the fate of photosynthetic carbon and the nature of phytoplankton-bacteria interactions, with implications for diverse pelagic food webs and global biogeochemical cycles.
Collapse
Affiliation(s)
- Isabell Klawonn
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
| | - Silke Van den Wyngaert
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, CA 94305
| | | | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
| |
Collapse
|
16
|
Isolation and Characterization of Rhizophydiales sp. (Chytridiomycota), Obligate Parasite of Planktothrix agardhii in a Laurentian Great Lakes Embayment. Appl Environ Microbiol 2021; 87:AEM.02308-20. [PMID: 33310722 PMCID: PMC7851699 DOI: 10.1128/aem.02308-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Planktothrix agardhii dominates the cyanobacterial harmful algal bloom community in Sandusky Bay, Lake Erie (USA) from May through September. This filamentous cyanobacterium is host to a known obligate parasite; the chytrid Rhizophydium sp. During the 2018 bloom season, by utilizing dilution and single filament isolation techniques, 7 chytrid and 12 P. agardhii strains were isolated from Sandusky Bay. These 7 chytrids and a selection of P. agardhii hosts were then characterized with respect to infection rates. Infections by the isolated chytrids were specific to Planktothrix planktonic species and were not found on other filamentous cyanobacterial taxa present in the bay (Aphanizomenon sp. and Cuspidothrix sp.). Even among the potential P. agardhii host strains, individual chytrid isolates had different degrees of infectivity and showed preference for different host isolates, suggesting possible ecological partitioning even within the same sample population. Examining mechanisms of chytrid pathogenesis, the zoospores displayed a swarming pattern to attack and fracture the host filament and create new infection sites at the trichome termini. Infections by these parasitic chytrids also led to a release of intracellular microcystin toxins from the hosts. Additionally, infections were dependent on media type, highlighting the importance of media choice on experimental outcomes. Media in which chytrid swarming was observed closely matched the ionic strength of the natural environment. Understanding pathogenesis by fungal parasites will assist future efforts aimed at determining environmental factors favoring loss mechanisms for Planktothrix agardhii-dominated blooms.IMPORTANCE Whereas many studies have focused on the factors contributing to the establishment and persistence of cyanobacterial harmful algal blooms (cHABs), few studies have examined bloom pathogenesis. Chytrid fungi infect cyanobacteria and stimulate food web interactions through manipulation of previously hard to digest filaments and the release of nutrients to support heterotrophic microbes. Specifically, chytrids infective on filamentous Planktothrix agardhii exhibit a species-specific infection that fragments trichomes into shorter units that can be consumed more easily by grazers. Chytrid zoospores also serve as a high-quality food source for the lower food web. Understanding host-pathogen relationships and mechanisms of pathogenesis on cyanobacteria will be necessary to effectively model the ecology of cHABs.
Collapse
|