1
|
Mostafaee H, Idoon F, Mohasel-Roodi M, Alipour F, Lotfi N, Sadeghi A. The effects of induced type I diabetes on developmental regulation of GDNF, NRTN, and NCAM proteins in the dentate gyrus of male rat offspring. J Chem Neuroanat 2024; 136:102391. [PMID: 38219812 DOI: 10.1016/j.jchemneu.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Maternal diabetes during pregnancy can affect the neurological development of offspring. Glial cell-derived neurotrophic factor (GDNF), neurturin (NRTN), and neural cell adhesion molecules (NCAM) are three important proteins for brain development. Therefore, this study aimed to investigate the impacts of the mentioned neurotrophic factors in the hippocampal dentate gyrus (DG) of rat offspring born to diabetic mothers. METHODS Wistar female rats were randomly allocated into diabetic (STZ-D) [(45 mg/kg BW, STZ (Streptozotocin), i.p)], diabetic + NPH insulin (STZ-INS) [(4-6 unit/kg/day SC)], and control groups. The animals in all groups were mated by non-diabetic male rats. Two weeks after birth, male pups from each group were sacrificed and then protein contents of GDNF, NRTN, and NCAM were evaluated using immunohistochemistry. RESULTS The study found that the expression of GDNF and NRTN in the hippocampus of diabetic rat offspring was significantly higher compared to the diabetic+ insulin and control groups, respectively (P < 0.01, P < 0.001). Additionally, the expression of NCAM was significantly higher in the diabetic group the diabetic+ insulin and control groups (P < 0.01, P < 0.001). CONCLUSIONS The results of the study revealed that diabetes during pregnancy significantly impacts the distribution pattern of GDNF, NRTN, and NCAM in the hippocampus of rat neonates.
Collapse
Affiliation(s)
- Hamideh Mostafaee
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran
| | - Faezeh Idoon
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran
| | - Mina Mohasel-Roodi
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasim Lotfi
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran
| | - Akram Sadeghi
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran; Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany.
| |
Collapse
|
2
|
Argeri R, Nishi EE, Kimura Lichtenecker DC, Gomes GN. Effects of maternal fructose intake on the offspring’s kidneys. Front Physiol 2022; 13:969048. [PMID: 36148312 PMCID: PMC9485812 DOI: 10.3389/fphys.2022.969048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Fructose overload is associated with cardiovascular and metabolic disorders. During pregnancy, these alterations may affect the maternal environment and predispose offspring to diseases. Aims: To evaluate the renal morphology and function of offspring of dams that received fructose overload during pregnancy and lactation. Methods: Female Wistar rats were divided into the control (C) and fructose (F) groups. C received food and water ad libitum, and F received food and d-fructose solution (20%) ad libitum. The d-fructose offer started 1 week before mating and continued during pregnancy and lactation. The progeny were designated as control (C) or fructose (F); after weaning, half of the F received water to drink (FW), and half received d-fructose (FF). Blood pressure (BP) and renal function were evaluated. The expression of sodium transporters (NHE3-exchanger, NKCC2 and NCC-cotransporters, and ENaC channels) and markers of renal dysfunction, including ED1 (macrophage), eNOS, 8OHdG (oxidative stress), renin, and ACE 1 and 2, were evaluated. CEUA-UNIFESP: 2757270117. The FF group presented with reduced glomerular filtration rate and urinary osmolarity, increased BP, proteinuria, glomerular hypertrophy, macrophage infiltration, and increased expression of transporters (NHE3, NCC, and ENaC), 8OHdG, renin, and ACE1. The FW group did not show increased BP and renal functional alterations; however, it presented glomerular hypertrophy, macrophage infiltration, and increased expression of the transporters (NHE3, NKCC2, NCC, and ENaC), renin, and ACE1. These data suggest that fructose overload during fetal development alters renal development, resulting in the increased expression of renin, ACE1, and sodium transporters, thus predisposing to hypertension and renal dysfunction.
Collapse
Affiliation(s)
- Rogério Argeri
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Erika Emy Nishi
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | | | - Guiomar Nascimento Gomes
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Guiomar Nascimento Gomes,
| |
Collapse
|
3
|
Argeri R, Thomazini F, Lichtenecker DCK, Thieme K, do Carmo Franco M, Gomes GN. Programmed Adult Kidney Disease: Importance of Fetal Environment. Front Physiol 2020; 11:586290. [PMID: 33101064 PMCID: PMC7546361 DOI: 10.3389/fphys.2020.586290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
The Barker hypothesis strongly supported the influence of fetal environment on the development of chronic diseases in later life. Multiple experimental and human studies have identified that the deleterious effect of fetal programming commonly leads to alterations in renal development. The interplay between environmental insults and fetal genome can induce epigenetic changes and lead to alterations in the expression of renal phenotype. In this review, we have explored the renal development and its functions, while focusing on the epigenetic findings and functional aspects of the renin-angiotensin system and its components.
Collapse
Affiliation(s)
- Rogério Argeri
- Department of Physiology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fernanda Thomazini
- Department of Physiology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Karina Thieme
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Maria do Carmo Franco
- Department of Physiology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Guiomar Nascimento Gomes
- Department of Physiology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Abbasi F, Baradaran R, Khoshdel-Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Kheradmand H, Haghir H. Distribution pattern of nicotinic acetylcholine receptors in developing cerebellum of rat neonates born of diabetic mothers. J Chem Neuroanat 2020; 108:101819. [PMID: 32522497 DOI: 10.1016/j.jchemneu.2020.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Faeze Abbasi
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Raheleh Baradaran
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Hoda Khoshdel-Sarkarizi
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, BirjandUniversity of Medical Sciences, Birjand, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Ojeda ML, Nogales F, Serrano A, Murillo ML, Carreras O. Selenoproteins and renal programming in metabolic syndrome-exposed rat offspring. Food Funct 2020; 11:3904-3915. [PMID: 32342074 DOI: 10.1039/d0fo00264j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal metabolic syndrome (MS) during gestation and lactation leads to several cardiometabolic changes related to selenium (Se) status and selenoprotein expression in offspring. However, little is known about kidney programming and antioxidant selenoprotein status in MS pups. To gain more knowledge on this subject, two experimental groups of dam rats were used: Control (Se: 0.1 ppm) and MS (fructose 65% and Se: 0.1 ppm). At the end of lactation, Se deposits in kidneys, selenoprotein expression (GPx1, GPx3, GPx4 and selenoprotein P), oxidative balance and AMP-activated protein kinase (AMPK) and activated transcriptional factor NF-κB expression were measured. Kidney functional parameters, albuminuria, creatinine clearance, aldosteronemia, and water and electrolyte balance, were also evaluated. One week later systolic blood pressure was measured. Lipid peroxidation takes place in the kidneys of MS pups and Se, selenoproteins and NF-κB expression increased, while AMPK activation decreased. MS pups have albuminuria and low creatinine clearance which implies glomerular renal impairment with protein loss. They also present hypernatremia and hyperaldosteronemia, together with a high renal Na+ reabsorption, leading to a hypertensive status, which was detected in these animals one week later. Since these alterations seem to be related, at least in part, to oxidative stress, the increase in Se and selenoproteins found in the kidneys of these pups seems to be beneficial, avoiding a higher lipid oxidation. However, in order to analyze the possible global beneficial role of Se in kidneys during MS exposure, more data are necessary to document the relationships between GPx4 and NF-κB, and SelP and AMPK in kidneys.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | | | | | | |
Collapse
|
6
|
Campos Lima T, Lemes JBP, Capop TFPA, de Lima LB, Monteiro da Cruz Lotufo C. Altered morphology and function of the peripheral nociceptive system in the offspring of diabetic rats. Int J Dev Neurosci 2020; 80:267-275. [PMID: 32144810 DOI: 10.1002/jdn.10023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine whether maternal diabetes induced by alloxan injection in the first gestational day of female Wistar rats interferes with the development of the nociceptive peripheral system of the offspring. Behavioral and histologic analysis was performed using the adult offspring of diabetic and control rats. It was found that the offspring of diabetic rats were more sensitive to thermal stimulation and showed an altered response to carrageenan-induced inflammatory hyperalgesia. The histological analysis showed an increased proportion of nociceptive neurons, while the population of non-nociceptive myelinated neurons was reduced. Therefore, exposition to hyperglycemia and/or hyperinsulinemia in uterus, caused by a diabetic mother, might result in altered nociceptive sensations in the offspring throughout life.
Collapse
Affiliation(s)
- Taís Campos Lima
- Área de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Júlia Borges Paes Lemes
- Área de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Lorena Borges de Lima
- Área de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
7
|
Luo H, Chen C, Guo L, Xu Z, Peng X, Wang X, Wang J, Wang N, Li C, Luo X, Wang H, Jose PA, Fu C, Huang Y, Shi W, Zeng C. Exposure to Maternal Diabetes Mellitus Causes Renal Dopamine D 1 Receptor Dysfunction and Hypertension in Adult Rat Offspring. Hypertension 2018; 72:962-970. [PMID: 30354705 PMCID: PMC6207228 DOI: 10.1161/hypertensionaha.118.10908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental studies suggest that maternal diabetes mellitus programs hypertension that is associated with impaired sodium excretion in the adult offspring. However, the underlying mechanisms are not clear. Because dopamine receptor function is involved in the pathogenesis of hypertension, we hypothesized that impaired renal dopamine D1 receptor function is also involved in the hypertension in offspring of maternal diabetes mellitus. Maternal diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (35 mg/kg) to pregnant Sprague-Dawley rats at day 0 of gestation. Compared with the offspring of mothers injected with citrate buffer (control mother offspring), the diabetic mother offspring (DMO) had increased systolic blood pressure and impaired D1 receptor-mediated diuresis and natriuresis, accompanied by increased renal PKC (protein kinase C) expression and activity, GRK-2 (G protein-coupled receptor kinase-2) expression, D1 receptor phosphorylation, D1 receptor/Gαs uncoupling, and loss of D1 receptor-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule cells from DMO. Inhibition of PKC reduced the increased GRK-2 expression and normalized D1 receptor function in primary cultures of renal proximal tubule cells from DMO. In addition, DMO, relative to control mother offspring, in vivo, had increased oxidative stress, indicated by decreased renal glutathione and increased renal malondialdehyde and urine 8-isoprostane. Normalization of oxidative stress with tempol also normalized the renal D1 receptor phosphorylation, D1 receptor-mediated diuresis and natriuresis, and blood pressure in DMO. Our present study indicates that maternal diabetes mellitus-programed hypertension in the offspring is caused by impaired renal D1 receptor function because of oxidative stress that is mediated by increased PKC-GRK-2 activity.
Collapse
Affiliation(s)
- Hao Luo
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Li Guo
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaoyu Peng
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Na Wang
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chuanwei Li
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaoli Luo
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunjiang Fu
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Weibin Shi
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Hami J, Vafaei-Nezhad S, Ivar G, Sadeghi A, Ghaemi K, Mostafavizadeh M, Hosseini M. Altered expression and localization of synaptophysin in developing cerebellar cortex of neonatal rats due to maternal diabetes mellitus. Metab Brain Dis 2016; 31:1369-1380. [PMID: 27389246 DOI: 10.1007/s11011-016-9864-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/28/2016] [Indexed: 12/30/2022]
Abstract
There is sufficient evidence that diabetes during pregnancy is associated with a higher risk of neurodevelopmental anomalies including learning deficits, behavioral problems and motor dysfunctions in the offspring. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles and is considered as a marker for synaptogenesis and synaptic density. This study aimed to examine the effects of maternal diabetes in pregnancy on the expression and localization of SYP in the developing rat cerebellum. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was euthanized at postnatal day (P) 0, 7, and 14. The results revealed a significant down-regulation in the mRNA expression of SYP in the offspring born to diabetic animals at both P7 and P14 (P < 0.05 each). One week after birth, there was a significant reduction in the localization of SYP expression in the external granular (EGL) and in the molecular (ML) layers of neonates born to diabetic animals (P < 0.05 each). We also found a marked decrease in the expression of SYP in all of the cerebellar cortical layers of STZ-D group pups at P14 (P < 0.05 each). Moreover, our results revealed no significant changes in either expression or localization of SYP in insulin-treated group pups when compared with the controls (P ≥ 0.05 each). The present study demonstrated that maternal diabetes has adverse effects on the synaptogenesis in the offspring's cerebellum. Furthermore, the rigid maternal blood glucose control in the most cases normalized these negative impacts.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Ghaffari St, Birjand, Iran
| | - Saeed Vafaei-Nezhad
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Ghaffari St, Birjand, Iran.
| | - Ghasem Ivar
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Ghaffari St, Birjand, Iran
| | - Akram Sadeghi
- Department of Anatomy and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kazem Ghaemi
- Department of Neurosurgery, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mehran Hosseini
- Department of Public Health, Deputy of Research and Technology, Research Centre of Experimental Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Hokke S, Arias N, Armitage JA, Puelles VG, Fong K, Geraci S, Gretz N, Bertram JF, Cullen-McEwen LA. Maternal glucose intolerance reduces offspring nephron endowment and increases glomerular volume in adult offspring. Diabetes Metab Res Rev 2016; 32:816-826. [PMID: 27037899 DOI: 10.1002/dmrr.2805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Animal studies report a nephron deficit in offspring exposed to maternal diabetes, yet are limited to models of severe hyperglycaemia which do not reflect the typical clinical condition and which are associated with foetal growth restriction that may confound nephron endowment. We aimed to assess renal morphology and function in offspring of leptin receptor deficient mice (Leprdb /+) and hypothesized that exposure to impaired maternal glucose tolerance (IGT) would be detrimental to the developing kidney. METHODS Nephron endowment was assessed in offspring of C57BKS/J Leprdb /+ and +/+ mice at embryonic day (E)18 and postnatal day (PN)21 using design-based stereology. Transcutaneous measurement of renal function and total glomerular volume were assessed in 6-month-old offspring. Only +/+ offspring of Leprdb /+ dams were analysed. RESULTS Compared with +/+ dams, Leprdb /+ dams had a 20% and 35% decrease in glucose tolerance prior to pregnancy and at E17.5 respectively. Offspring of IGT Leprdb /+ dams had approximately 15% fewer nephrons at E18.5 and PN21 than offspring of +/+ dams. There was no difference in offspring bodyweight. Despite normal renal function, total glomerular volume was 13% greater in 6-month-old offspring of IGT Leprdb /+ dams than in +/+ offspring. CONCLUSIONS IGT throughout gestation resulted in a nephron deficit that was established early in renal development. Maternal IGT was associated with glomerular hypertrophy in adult offspring, likely a compensatory response to maintain normal renal function. Given the increasing prevalence of IGT, monitoring glucose from early in gestation may be important to prevent altered kidney morphology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stacey Hokke
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Nicole Arias
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - James A Armitage
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Victor G Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Karen Fong
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Stefania Geraci
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
10
|
Carvalho DS, Diniz MM, Haidar AA, Cavanal MDF, da Silva Alves E, Carpinelli AR, Gil FZ, Hirata AE. L-Arginine supplementation improves insulin sensitivity and beta cell function in the offspring of diabetic rats through AKT and PDX-1 activation. Eur J Pharmacol 2016; 791:780-787. [PMID: 27717730 DOI: 10.1016/j.ejphar.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/11/2023]
Abstract
Maternal hyperglycemia can result in defects in glucose metabolism and pancreatic β-cell function in offspring. The purpose of this study was to evaluate the impact of maternal diabetes mellitus on pancreatic islets, muscle and adipose tissue of the offspring, with or without oral l-Arginine supplementation. The induction of diabetes was performed using streptozotocin (60mg/kg). Animals were studied at 3 months of age and treatment (sucrose or l-Arginine) was administered from weaning. We observed that l-Arg improved insulin sensitivity in the offspring of diabetic mothers (DA), reflected by higher insulin-induced phosphorylation of Akt in muscle and adipose tissue. Insulin resistance is associated with increased oxidative stress and the NADPH oxidase enzyme plays an important role. Our results showed that the augmented interaction of p47PHOX with gp91PHOX subunits of the enzyme in skeletal muscle tissue in the offspring of diabetic rats (DV) was abolished after l-Arg treatment in DA rats. Maternal diabetes caused alterations in the islet functionality of the offspring leading to increased insulin secretion at both low (2.8mM) and high (16.7mM) concentrations of glucose. l-Arg reverses this effect, suggesting that it may be an important modulator in the insulin secretory process. In addition it is possible that l-Arg exerts its effects directly onto essential molecules for the maintenance and survival of pancreatic islets, decreasing protein expression of p47PHOX while increasing Akt phosphorylation and PDX-1 expression. The mechanism by which l-Arg exerts its beneficial effects may involve nitric oxide bioavailability since treatment restored NO levels in the pancreas.
Collapse
Affiliation(s)
| | - Marilia Melo Diniz
- Department of Physiology - Federal University of São Paulo, UNIFESP, Brazil
| | - André Abour Haidar
- Department of Physiology - Federal University of São Paulo, UNIFESP, Brazil
| | | | | | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, USP, Brazil
| | - Frida Zaladek Gil
- Department of Physiology - Federal University of São Paulo, UNIFESP, Brazil
| | | |
Collapse
|
11
|
Diabetes during pregnancy enhanced neuronal death in the hippocampus of rat offspring. Int J Dev Neurosci 2016; 51:28-35. [DOI: 10.1016/j.ijdevneu.2016.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
|
12
|
França-Silva N, Oliveira NDG, Balbi APC. Morphofunctional renal alterations in rats induced by intrauterine hyperglycemic environment. Arch Med Sci 2016; 12:243-51. [PMID: 27186167 PMCID: PMC4848350 DOI: 10.5114/aoms.2015.48220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/28/2014] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The renal development of rats begins in intrauterine life, finishing by 15 days after birth. Diabetes and other diseases during pregnancy can cause systemic changes in the offspring. We evaluated the structural and functional renal alterations of the offspring from diabetic mothers. MATERIAL AND METHODS Pregnant rats were separated and 1, 7, 30 and 90 days-old (DO) pups were divided into groups according to the treatment that the mothers received: G1: control, G2: untreated diabetic and G3: insulin-treated diabetic. The kidneys from offspring at 1, 7 and 30 DO were removed for immunohistochemical and histological studies. Furthermore, blood and urine samples were collected from animals at 30 DO to determine the glomerular filtration rate (GFR) by creatinine clearance, and the animals at 90 DO were subjected to blood pressure measurement by plethysmography. RESULTS Our results show an increase of PCNA(+) glomerular cells at 7 DO and a reduction in 30 DO animals as well as increased α-smooth muscle actin (α-SMA) tubulointerstitial expression at 1 and 7 DO in animals from G2, when compared with controls. The adult offspring from G2 showed reduced GFR and increased blood pressure. CONCLUSIONS Maternal diabetes may have induced programming of renal damage in offspring of hyperglycemic mothers, which may have contributed to the impairment of renal function.
Collapse
Affiliation(s)
- Nathane França-Silva
- Department of Physiological Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Ana Paula Coelho Balbi
- Department of Physiological Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
13
|
Martins JDO, Panício MI, Dantas MPS, Gomes GN. Effect of maternal diabetes on female offspring. ACTA ACUST UNITED AC 2015; 12:413-9. [PMID: 25628190 PMCID: PMC4879905 DOI: 10.1590/s1679-45082014ao3200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the effect of maternal diabetes on the blood pressure and kidney function of female offspring, as well as if such changes exacerbate during pregnancy. METHODS Diabetes mellitus was induced in female rats with the administration of streptozotocin in a single dose, one week before mating. During pregnancy, blood pressure was measured through plethysmography. On the 20th day of pregnancy, the animals were placed for 24 hours in metabolic cages to obtain urine samples. After the animals were removed from the cages, blood samples were withdrawn. One month after pregnancy, new blood and urine sample were collected. Kidney function was evaluated through proteinuria, plasma urea, plasma creatinine, creatinine excretion rate, urinary flow, and creatinine clearance. RESULTS The female offspring from diabetic mothers showed an increase in blood pressure, and a decrease in glomerular filtration rate in relation to the control group. CONCLUSION Hyperglycemia during pregnancy was capable of causing an increase in blood pressure and kidney dysfunction in the female offspring.
Collapse
|
14
|
Corrêa RRM, Pucci KRM, Rocha LP, Pereira Júnior CD, Helmo FR, Machado JR, Rocha LB, Rodrigues ARA, Glória MA, Guimarães CSO, Câmara NOS, Reis MA. Acute kidney injury and progression of renal failure after fetal programming in the offspring of diabetic rats. Pediatr Res 2015; 77:440-6. [PMID: 25521920 DOI: 10.1038/pr.2014.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/24/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Diseases of adulthood, such as diabetes and hypertension, may be related to changes during pregnancy, particularly in kidney. We hypothesized that acute kidney injury progresses more rapidly in cases of fetal programming. METHODS Diabetic dams' offspring were divided into: CC (controls, receiving vehicle); DC (diabetics, receiving vehicle); CA (controls receiving folic Acid solution, 250 mg/kg); and DA (diabetics receiving folic acid solution). Renal function tests, morphometry, gene, and protein expression of epithelial-mesenchymal transition (EMT) markers were analyzed by qPCR and immunohistochemistry, respectively. RESULTS Creatinine, urea, Bowman's space, and EMT markers were increased in CA and DA groups. TGF-β3, actin, and fibronectin expression was higher in CA and DA, with significant increase in DA compared to CA 2-mo offspring. There was higher expression level of TGF-β1, TGF-β3, fibronectin, and vimentin in the offspring of diabetic dams at 5 mo. Increases in TGF-β1 and TGF-β3 were more evident in the offspring of diabetic dams. CONCLUSION Fetal programming promotes remarkable changes in kidney morphology, and function in offspring and renal failure progression may be faster in younger offspring of diabetic dams subjected to an additional injury.
Collapse
Affiliation(s)
- Rosana R M Corrêa
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Karla R M Pucci
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Laura P Rocha
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Carlos D Pereira Júnior
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Fernanda R Helmo
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Juliana R Machado
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Lenaldo B Rocha
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Aldo R A Rodrigues
- Discipline of Physiology, Department of Biochemistry, Molecular Biology, Pharmacology, Physiology and Chemical, Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Maria A Glória
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Camila S O Guimarães
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| | - Niels O S Câmara
- 1] Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil [2] Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marlene A Reis
- General Pathology Discipline, Department of Genetics, Ecology and General Pathology. Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, Brazil
| |
Collapse
|
15
|
Pucci KRM, Pereira Júnior CD, Idaló PB, Moreira ACSP, Rocha LP, Rodrigues ARA, Reis LCD, Gomes RADS, Rocha LB, Guimarães CSDO, Reis MAD, Câmara NOS, Corrêa RRM. Morphological and functional aspects of acute kidney injury after fetal programing in the offspring of diabetic rats. J Matern Fetal Neonatal Med 2014; 28:403-8. [PMID: 24766077 DOI: 10.3109/14767058.2014.918097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the effects of folic acid (FA)-induced renal failure in young offspring of diabetic mothers. METHODS The offspring of streptozotocin-induced diabetic dams were divided into four groups: CC (controls receiving vehicle); DC (diabetics receiving vehicle); CA (controls receiving FA solution, 250 mg/kg) and DA (diabetics receiving FA solution, 250 mg/kg). Renal function tests and morphometry results were analyzed. RESULTS An increase in creatinine and urea levels was observed in CA and DA groups at two and five months. FA administration caused a significant reduction in the number of glomeruli in the offspring of diabetic dams. The diabetes group treated with FA had fewer glomeruli compared to controls at two and five months. FA caused an increase in the area of the urinary space both in controls and offspring of diabetic dams at two and five months. The number of glomeruli and area of the urinary space at two months were negatively correlated. CONCLUSIONS Fetal programing promotes remarkable changes in kidney morphology and function in offspring. We suggest that the morphological changes in the kidneys are more pronounced when fetal programing is associated with newly acquired diseases, e.g. renal failure induced by FA.
Collapse
|
16
|
de Almeida Chaves Rodrigues AF, de Lima ILB, Bergamaschi CT, Campos RR, Hirata AE, Schoorlemmer GHM, Gomes GN. Increased renal sympathetic nerve activity leads to hypertension and renal dysfunction in offspring from diabetic mothers. Am J Physiol Renal Physiol 2013; 304:F189-97. [DOI: 10.1152/ajprenal.00241.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The exposure of the fetus to a hyperglycemic environment promotes the development of hypertension and renal dysfunction in the offspring at adult age. We evaluated the role of renal nerves in the hypertension and renal changes seen in offspring of diabetic rats. Diabetes was induced in female Wistar rats (streptozotocin, 60 mg/kg ip) before mating. Male offspring from control and diabetic dams were studied at an age of 3 mo. Systolic blood pressure measured by tail cuff was increased in offspring of diabetic dams (146 ± 1.6 mmHg, n = 19, compared with 117 ± 1.4 mmHg, n = 18, in controls). Renal function, baseline renal sympathetic nerve activity (rSNA), and arterial baroreceptor control of rSNA were analyzed in anesthetized animals. Glomerular filtration rate, fractional sodium excretion, and urine flow were significantly reduced in offspring of diabetic dams. Two weeks after renal denervation, blood pressure and renal function in offspring from diabetic dams were similar to control, suggesting that renal nerves contribute to sodium retention in offspring from diabetic dams. Moreover, basal rSNA was increased in offspring from diabetic dams, and baroreceptor control of rSNA was impaired, with blunted responses to infusion of nitroprusside and phenylephrine. Thus, data from this study indicate that in offspring from diabetic mothers, renal nerves have a clear role in the etiology of hypertension; however, other factors may also contribute to this condition.
Collapse
Affiliation(s)
| | - Ingrid Lauren Brites de Lima
- Disciplina de Fisiologia Renal e Termometabolismo, Departamento de Fisiologia, Universidade Federal de São Paulo, Brasil; and
| | - Cássia Toledo Bergamaschi
- Disciplina de Fisiologia Cardiovascular e Respiratória, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Ruy Ribeiro Campos
- Disciplina de Fisiologia Cardiovascular e Respiratória, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Aparecida Emiko Hirata
- Disciplina de Fisiologia Renal e Termometabolismo, Departamento de Fisiologia, Universidade Federal de São Paulo, Brasil; and
| | - Guus Hermanus Maria Schoorlemmer
- Disciplina de Fisiologia Cardiovascular e Respiratória, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Guiomar Nascimento Gomes
- Disciplina de Fisiologia Renal e Termometabolismo, Departamento de Fisiologia, Universidade Federal de São Paulo, Brasil; and
| |
Collapse
|
17
|
Ramírez R. Programación fetal de la hipertensión arterial del adulto: mecanismos celulares y moleculares. REVISTA COLOMBIANA DE CARDIOLOGÍA 2013. [DOI: 10.1016/s0120-5633(13)70021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Correa-Costa M, Landgraf MA, Cavanal MF, Semedo P, Vieira DA, De Marco DT, Hirata AE, Câmara NO, Gil FZ. Inflammatory milieu as an early marker of kidney injury in offspring rats from diabetic mothers. Eur J Pharmacol 2012; 689:233-40. [DOI: 10.1016/j.ejphar.2012.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/29/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022]
|
19
|
|
20
|
Ramírez-Vélez R. [In utero fetal programming and its impact on health in adulthood]. ACTA ACUST UNITED AC 2012; 59:383-93. [PMID: 22483564 DOI: 10.1016/j.endonu.2012.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 12/13/2022]
Abstract
Adverse events during intrauterine life may program organ growth and favor disease later in life. This is the usually called 'Barker's hypothesis'. Increasing evidence suggests that conditions like vascular disease, hypertension, metabolic syndrome, and type 2 diabetes mellitus are programmed during the early stages of fetal development and become manifest in late stages of life, when there is an added impact of lifestyle and other conventional acquired environmental risk factors that interact with genetic factors. The aim of this review was to provide additional, updated evidence to support the association between intrauterine fetal health and increased prevalence of chronic non-communicable diseases in adulthood. Various potential cellular and molecular mechanisms proposed to be related to the above hypothesis are discussed, including endothelial function, oxidative stress, insulin resistance, and mitochondrial function.
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Programa de Medicina, Ciencias Básicas, Fisiología, Universidad ICESI, Santiago de Cali, Valle del Cauca, Colombia.
| |
Collapse
|
21
|
Abstract
Epidemiologic studies now strongly support the hypothesis, proposed over two decades ago, that developmental programming of the kidney impacts an individual's risk for hypertension and renal disease in later life. Low birth weight is the strongest current clinical surrogate marker for an adverse intrauterine environment and, based on animal and human studies, is associated with a low nephron number. Other clinical correlates of low nephron number include female gender, short adult stature, small kidney size, and prematurity. Low nephron number in Caucasian and Australian Aboriginal subjects has been shown to be associated with higher blood pressures, and, conversely, hypertension is less prevalent in individuals with higher nephron numbers. In addition to nephron number, other programmed factors associated with the increased risk of hypertension include salt sensitivity, altered expression of renal sodium transporters, altered vascular reactivity, and sympathetic nervous system overactivity. Glomerular volume is universally found to vary inversely with nephron number, suggesting a degree of compensatory hypertrophy and hyperfunction in the setting of a low nephron number. This adaptation may become overwhelmed in the setting of superimposed renal insults, e.g. diabetes mellitus or rapid catch-up growth, leading to the vicious cycle of on-going hyperfiltration, proteinuria, nephron loss and progressive renal functional decline. Many millions of babies are born with low birth weight every year, and hypertension and renal disease prevalences are increasing around the globe. At present, little can be done clinically to augment nephron number; therefore adequate prenatal care and careful postnatal nutrition are crucial to optimize an individual's nephron number during development and potentially to stem the tide of the growing cardiovascular and renal disease epidemics worldwide.
Collapse
Affiliation(s)
- Valerie A. Luyckx
- Associate Professor, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
- To whom correspondence should be addressed. E-mail:
| | - Khuloud Shukha
- Internal Medicine Resident, Mount Auburn Hospital, Cambridge, MA, USA; and
| | - Barry M. Brenner
- Samuel A. Levine Distinguished Professor of Medicine Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Gomes GN, Gil FZ. Prenatally programmed hypertension: role of maternal diabetes. Braz J Med Biol Res 2011; 44:899-904. [PMID: 21876875 DOI: 10.1590/s0100-879x2011007500109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 08/05/2011] [Indexed: 01/08/2023] Open
Abstract
Epidemiological and experimental studies have led to the hypothesis of the fetal origin of adult diseases, suggesting that some adult diseases might be determined before birth by altered fetal development. Maternal diabetes subjects the fetus to an adverse environment that has been demonstrated to result in metabolic, cardiovascular and renal impairment in the offspring. The growing amount of obesity in young females in developed and some developing countries should contribute to increasing the incidence of diabetes among pregnant women. In this review, we discuss how renal and extrarenal mechanisms participate in the genesis of hypertension induced by a diabetic status during fetal development.
Collapse
Affiliation(s)
- G N Gomes
- Disciplina Fisiologia Renal e Termometabologia, Departamento de Fisiologia, Universidade Federal de São Paulo, Brasil.
| | | |
Collapse
|
23
|
Simeoni U, Ligi I, Buffat C, Boubred F. Adverse consequences of accelerated neonatal growth: cardiovascular and renal issues. Pediatr Nephrol 2011; 26:493-508. [PMID: 20938692 DOI: 10.1007/s00467-010-1648-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/12/2010] [Accepted: 07/26/2010] [Indexed: 12/13/2022]
Abstract
Epidemiological and experimental studies show that the risk of cardiovascular and metabolic diseases at adulthood is inversely related to the weight at birth. Although with less evidence, low birth weight has been suggested to increase the risk of chronic kidney disease (CKD). It is well established that the developmental programming of arterial hypertension and of renal disease involves in particular renal factors, especially nephron endowment, which is reduced in low birth weight and maternal diabetes situations. Experimental studies, especially in rodents, have demonstrated the long-term influence of postnatal nutrition and/or postnatal growth on cardiovascular, metabolic and renal functions, while human data are scarce on this issue. Vascular and renal diseases appear to have a "multihits" origin, with reduced nephron number the initial hit and rapid postnatal growth the second hit. This review addresses the current understanding of the role of the kidney, both as a mechanism and as a target, in the developmental origins of adult disease theory, with a particular focus on the long-term effects of postnatal growth and nutrition.
Collapse
Affiliation(s)
- Umberto Simeoni
- Division of Neonatology, Hôpital la Conception, Assistance Publique-Hôpitaux de Marseille, 147 Boulevard Baille, 13385, Marseille, France.
| | | | | | | |
Collapse
|
24
|
Thomal JT, Palma BD, Ponzio BF, Franco MDCP, Zaladek-Gil F, Fortes ZB, Tufik S, Gomes GN. Sleep restriction during pregnancy: hypertension and renal abnormalities in young offspring rats. Sleep 2010; 33:1357-62. [PMID: 21061858 DOI: 10.1093/sleep/33.10.1357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
STUDY OBJECTIVES Because the maternal environment can affect several physiological functions of the newborn, the aim of the present study was to examine the impact of sleep restriction during pregnancy on renal morphology and function in young offspring. DESIGN Female 3-month-old Wistar rats were divided in 2 experimental groups: C (control) and SR (sleep restriction between the 14th and 20th day of pregnancy). Pregnancy was confirmed by vaginal smear. SR females were subjected to sleep restriction by the multiple platform technique for 20 h daily. After birth, only male litters (6 for each mother) were selected and designated OC (offspring from C) and OSR (offspring from SR). At 2 months of age, blood pressure (BP) was measured by tail plethysmography; at 3 months the renal plasma flow (RPF), glomerular filtration rate (GFR), glomerular area, and number of glomeruli per mm3 were evaluated. MEASUREMENTS AND RESULTS Offspring from SR had higher systolic blood pressure than OC. In this group (OSR), we also observed significant increase in RPF and GFR, enlarged glomeruli diameter, and reduced number of glomeruli per mm3 of renal tissue. CONCLUSIONS Our data suggest that sleep restriction during pregnancy is able to modify renal development, resulting in morphologic and functional alterations in young offspring.
Collapse
|
25
|
Chen YW, Chenier I, Chang SY, Tran S, Ingelfinger JR, Zhang SL. High glucose promotes nascent nephron apoptosis via NF-kappaB and p53 pathways. Am J Physiol Renal Physiol 2010; 300:F147-56. [PMID: 20962117 DOI: 10.1152/ajprenal.00361.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A hyperglycemic environment in utero reduces kidney size and nephron number due to nascent nephron apoptosis. However, the underlying mechanisms are incompletely understood. The present study investigated whether the nascent nephron apoptosis promoted by high glucose is mediated via the transcription factor NF-κB and p53 signaling pathways. Neonatal mouse kidneys from the offspring of nondiabetic, diabetic, and insulin-treated diabetic dams were used for in vivo studies, and MK4 cells, an embryonic metanephric mesenchymal (MM) cell line, were used for in vitro studies. Neonatal kidneys of the offspring of diabetic mothers exhibited an increased number of apoptotic cells and reactive oxygen species (ROS) generation, enhanced NF-κB activation, and nuclear translocation of its subunits (p50 and p65 subunits) as well as phosphorylation (Ser 15) of p53 compared with kidneys of offspring of nondiabetic mothers. Insulin treatment of diabetic dams normalized these parameters in the offspring. In vitro, high-glucose (25 mM) induced ROS generation and significantly increased MK4 cell apoptosis and caspase-3 activity via activation of NF-κB pathway, with p53 phosphorylation and nuclear translocation compared with normal glucose (5 mM). These changes in a high-glucose milieu were prevented by transient transfection of small interfering RNAs for dominant negative IκBα or IKK or p53. Our data demonstrate that high glucose-induced nascent nephron apoptosis is mediated, at least in part, via ROS generation and the activation of NF-κB and p53 pathways.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CRCHUM, Hôpital Hôtel-Dieu, Pavillon Masson, 3850 Saint-Urbain St., Montreal, Quebec, Canada H2W 1T7
| | | | | | | | | | | |
Collapse
|
26
|
Chen YW, Chenier I, Tran S, Scotcher M, Chang SY, Zhang SL. Maternal diabetes programs hypertension and kidney injury in offspring. Pediatr Nephrol 2010; 25:1319-29. [PMID: 20422227 DOI: 10.1007/s00467-010-1506-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/01/2010] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
We investigated whether maternal diabetes programs the offspring to develop hypertension and kidney injury in adulthood and examined potential underlying mechanisms. In a murine model we studied the offspring of three groups of dams (non-diabetic, diabetic, and diabetic treated with insulin). Mean systolic blood pressure in the offspring was monitored from 8 to 20 weeks. Body and kidney weights in the offspring of diabetic mothers were significantly lower than in offspring of non-diabetic mothers. Offspring of diabetic mothers developed hypertension, microalbuminuria, and glucose intolerance. Increased accumulation of extracellular matrix proteins in the glomeruli and marked upregulation of angiotensinogen, angiotensin II type 1 receptor, angiotensin-converting enzyme, transforming growth factor beta-1 (TGF-beta1), and plasminogen activator inhibitor-1 (PAI-1) gene expression were evident in the renal cortex of hypertensive offspring of diabetic mothers. By contrast, angiotensin-converting enzyme-2 (ACE2) gene expression was lower in the hypertensive offspring of diabetic mothers than in that of non-diabetic mothers. These changes were prevented in the offspring of insulin-treated diabetic mothers. These data indicate that maternal diabetes induces perinatal programming of hypertension, renal injury, and glucose intolerance in the offspring and suggest a central role for the activation of the intrarenal renin-angiotensin system and TGF-beta1 gene expression in this process.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Department of Medicine, Université de Montréal and Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôtel-Dieu, 8-227, Pavillon Masson, 3850 Saint Urbain Street, Montreal, QC, H2W 1T7, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Abundant evidence supports the association between low birth weight (LBW) and renal dysfunction in humans. Anatomic measurements of infants, children, and adults show significant inverse correlation between LBW and nephron number. Nephron numbers are also lower in individuals with hypertension compared with normotension among white and Australian Aboriginal populations. The relationship between nephron number and hypertension among black individuals is still unclear, although the high incidence of LBW predicts low nephron number in this population as well. LBW, a surrogate for low nephron number, also associates with increasing BP from childhood to adulthood and increasing risk for chronic kidney disease in later life. Because nephron numbers can be counted only postmortem, surrogate markers such as birth weight, prematurity, adult height, reduced renal size, and glomerulomegaly are potentially useful for risk stratification, for example, during living-donor assessment. Because early postnatal growth also affects subsequent risk for higher BP or reduced renal function, postnatal nutrition, a potentially modifiable factor, in addition to intrauterine effects, has significant influence on long-term cardiovascular and renal health.
Collapse
Affiliation(s)
- Valerie A Luyckx
- Department of Medicine, HMRC 260, University of Alberta, Edmonton, Canada, T6G 2S2.
| | | |
Collapse
|
28
|
Abstract
Type 1 diabetes complicates around 1 in 200 to 300 pregnancies in the United Kingdom. Historically maternal type 1 diabetes carried very high risks for mother and child. Introduction of insulin led to an immediate, marked decline in the previously very high rates of maternal mortality; in contrast an improvement in perinatal outcomes occurred more slowly but was nevertheless dramatic. This is strikingly demonstrated by the temporal decline in perinatal mortality in offspring of mothers with type 1 diabetes which was virtually universal before use of insulin in the 1920's, likely remained in excess of 20% even in the 1960's and fell to under 4% by the 1990's. The reasons for this more gradual improvement in perinatal outcomes cannot be defined with precision but will have been influenced by improved glycaemic management with use of intensive, multiple dose insulin treatment and home glucose monitoring; improvements in obstetric and neonatal management, and better management of complications of diabetes before and during pregnancy. In 1989 the St Vincent declaration proposed that pregnancy outcomes in women with type 1 diabetes should approximate those of the non-diabetic population. While the long term improvements in fetal outcomes have been dramatic, contemporary surveys confirm a persistent doubling or more of rates of congenital anomaly and a three to four fold increase in perinatal mortality in the UK and other European countries which will require further clinical innovation to overcome.
Collapse
|
29
|
Rocco L, Gil FZ, da Fonseca Pletiskaitz TM, de Fátima Cavanal M, Gomes GN. Effect of sodium overload on renal function of offspring from diabetic mothers. Pediatr Nephrol 2008; 23:2053-60. [PMID: 18574600 DOI: 10.1007/s00467-008-0884-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 12/24/2022]
Abstract
The aim if this study was to evaluate the effect of sodium overload on blood pressure and renal function in the offspring of diabetic rat mothers. Diabetes was induced with a single dose of streptozotocin before mating. Experimental groups were control (C), offspring from diabetic mother (D), control with sodium chloride (NaCl) overload (CS), and offspring from diabetic mother submitted to NaCl overload (DS). After weaning, all groups received food ad libitum; groups C and D had water ad libitum, and CS and DS received NaCl 0.15 M as drinking water. Renal morphology and function were evaluated in 3-month-old rats. Glomerular area, macrophage infiltration, interlobular artery wall thickness, and renal vascular resistance were significantly increased in CS, D, and DS compared with C. Renal plasma flow (RPF) and glomerular filtration rate (GFR) were decreased in CS and D compared with C. In DS, GFR and fractional filtration were increased, suggesting a state of hyperfiltration. Hypertension was observed in groups D, CS, and DS from 2 months on and was more severe in DS. Our data suggest that diabetes during intrauterine development and salt overload beginning at an early age can cause hypertension and renal injury. When these conditions were associated, morphological and functional changes were much more intense, suggesting acceleration in the process of kidney injury.
Collapse
Affiliation(s)
- Luigi Rocco
- Department of Physiology, Federal University of São Paulo, São Paulo - S.P., Brazil
| | | | | | | | | |
Collapse
|
30
|
Nehiri T, Duong Van Huyen JP, Viltard M, Fassot C, Heudes D, Freund N, Deschênes G, Houillier P, Bruneval P, Lelièvre-Pégorier M. Exposure to maternal diabetes induces salt-sensitive hypertension and impairs renal function in adult rat offspring. Diabetes 2008; 57:2167-75. [PMID: 18443204 PMCID: PMC2494671 DOI: 10.2337/db07-0780] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Epidemiological and experimental studies have led to the hypothesis of fetal origin of adult diseases, suggesting that some adult diseases might be determined before birth by altered fetal development. We have previously demonstrated in the rat that in utero exposure to maternal diabetes impairs renal development leading to a reduction in nephron number. Little is known on the long-term consequences of in utero exposure to maternal diabetes. The aim of the study was to assess, in the rat, long-term effects of in utero exposure to maternal diabetes on blood pressure and renal function in adulthood. RESEARCH DESIGN AND METHODS Diabetes was induced in Sprague-Dawley pregnant rats by streptozotocin on day 0 of gestation. Systolic blood pressure, plasma renin activity, and renal function were measured in the offspring from 1 to 18 months of age. High-salt diet experiments were performed at the prehypertensive stage, and the abundance of tubular sodium transporters was evaluated by Western blot analysis. Kidney tissues were processed for histopathology and glomerular computer-assisted histomorphometry. RESULTS AND CONCLUSIONS We demonstrated that in utero exposure to maternal diabetes induces a salt-sensitive hypertension in the offspring associated with a decrease in renal function in adulthood. High-salt diet experiments show an alteration of renal sodium handling that may be explained by a fetal reprogramming of tubular functions in association or as a result of the inborn nephron deficit induced by in utero exposure to maternal diabetes.
Collapse
Affiliation(s)
- Touria Nehiri
- Institut National de la Santé et de la Recherche Médicale, Unite Mixte de Recherche S872, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Matteucci E, Giampietro O. Proposal open for discussion: defining agreed diagnostic procedures in experimental diabetes research. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:163-172. [PMID: 17961942 DOI: 10.1016/j.jep.2007.08.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 05/25/2023]
Abstract
BACKGROUND Animal experimentation has a long tradition in diabetes research and has provided invaluable benefits with regard to insulin discovery and treatment assessment. METHODS The review focuses on chemical-induced diabetes in rats and surveys the protocols of diabetes induction, diabetes diagnosis, and glucose tolerance evaluation in a selection of recent research. RESULTS This brief review of techniques in experimental diabetes highlights that there is no uniformity, whereas standardisation of procedures is desirable so that comparability will exist among experiments carried out in different settings. CONCLUSIONS On this basis, questions are put and standards are proposed. It would be a platform to promote the exchange of ideas through expert consultation about practical issues related to animal research and a basis on which standards can be set according to user requirements and animal respect.
Collapse
|
32
|
Cavanal MDF, Gomes GN, Forti AL, Rocha SO, Franco MDCP, Fortes ZB, Gil FZ. The influence of L-arginine on blood pressure, vascular nitric oxide and renal morphometry in the offspring from diabetic mothers. Pediatr Res 2007; 62:145-50. [PMID: 17597655 DOI: 10.1203/pdr.0b013e318098722e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study was designed to evaluate the effects of L-arginine (L-arg) supplementation on blood pressure, vascular nitric oxide content, and renal morphometry in the adult offspring from diabetic mothers. Diabetes mellitus was induced in female rats with a single dose of streptozotocin (50 mg/kg), before mating. The offspring was divided into four groups: group C (controls); group DO (diabetic offspring); group CA (controls receiving 2% L-arg solution dissolved in 2% sucrose in the drinking water) and group DA (DO receiving the L-arg solution). Oral supplementation began after weaning and continued until the end of the experiments. In DO, hypertension was observed, from 3 mo on. In DA, pressure levels were not different from C and CA. In 6-mo-old animals, basal NO production (assessed by DAF-2) was significantly depressed in DO in comparison to controls. The NO production was significantly increased after stimulation with Ach or BK in all groups, the increase being greater in control than in DO rats. L-arg was able to improve the NO production and to prevent the glomerular hypertrophy in the DO. Our data suggest that the bioavailability of NO is reduced in the DO, because L-arg corrected both the hypertension and glomerular hypertrophy.
Collapse
Affiliation(s)
- Maria de Fatima Cavanal
- Department of Physiology, Federal University of São Paulo - Unifesp/EPM, CEP 04023-900, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|