1
|
Lindström NO, Vanslambrouck JM. Patterning the nephron: Forming an axial polarity with distal and proximal specialization. Curr Top Dev Biol 2025; 163:83-103. [PMID: 40254351 DOI: 10.1016/bs.ctdb.2025.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Nephron formation and patterning are driven by complex cell biology. Progenitors migrate, transition into epithelia, and generate an axial epithelial polarity with distinct transcriptional signatures, regulating virtually all physiologies of the maturing kidney post birth. Here we review current insights into mammalian nephrogenesis and discuss how the nephron forms and patterns along its proximal-distal axis during embryonic and fetal development. Genetic pathways that are necessary for this process are discussed and integrated into the cell biology and morphogenetic programs underpinning nephrogenesis. Together, these views outline a developmental blueprint for replicating nephron formation in vitro.
Collapse
Affiliation(s)
- Nils Olof Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California.
| | - Jessica May Vanslambrouck
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
2
|
Bugacov H, Der B, Briantseva BM, Guo Q, Kim S, Lindström NO, McMahon AP. Dose-dependent responses to canonical Wnt transcriptional complexes in the regulation of mammalian nephron progenitors. Development 2024; 151:dev202279. [PMID: 39250420 PMCID: PMC11463962 DOI: 10.1242/dev.202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo and in vitro studies argue that concentration-dependent Wnt signaling regulates mammalian nephron progenitor cell (NPC) programs. Canonical Wnt signaling is regulated through the stabilization of β-catenin, a transcriptional co-activator when complexed with Lef/Tcf DNA-binding partners. Using the GSK3β inhibitor CHIR99021 (CHIR) to block GSK3β-dependent destruction of β-catenin, we examined dose-dependent responses to β-catenin in mouse NPCs, using mRNA transduction to modify gene expression. Low CHIR-dependent proliferation of NPCs was blocked on β-catenin removal, with evidence of NPCs arresting at the G2-M transition. While NPC identity was maintained following β-catenin removal, mRNA-seq identified low CHIR and β-catenin dependent genes. High CHIR activated nephrogenesis. Nephrogenic programming was dependent on Lef/Tcf factors and β-catenin transcriptional activity. Molecular and cellular features of early nephrogenesis were driven in the absence of CHIR by a mutated stabilized form of β-catenin. Chromatin association studies indicate low and high CHIR response genes are likely direct targets of canonical Wnt transcriptional complexes. Together, these studies provide evidence for concentration-dependent Wnt signaling in the regulation of NPCs and provide new insight into Wnt targets initiating mammalian nephrogenesis.
Collapse
Affiliation(s)
- Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 1082, Hungary
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Bohdana-Myroslava Briantseva
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Discovery Biomarkers, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O. Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Chung E, Deacon P, Hu YC, Lim HW, Park JS. Hedgehog signaling is required for the maintenance of mesenchymal nephron progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.12.553098. [PMID: 37645929 PMCID: PMC10461989 DOI: 10.1101/2023.08.12.553098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mesenchymal nephron progenitors (mNPs) give rise to all nephron tubules in the mammalian kidney. Since premature depletion of these cells leads to low nephron numbers, high blood pressure, and various renal diseases, it is critical that we understand how mNPs are maintained. While Fgf, Bmp, and Wnt signaling pathways are known to be required for the maintenance of these cells, it is unclear if any other signaling pathways also play roles. In this report, we explored the role of Hedgehog signaling in mNPs. We found that loss of either Shh in the collecting duct or Smo from the nephron lineage resulted in premature depletion of mNPs. Transcriptional profiling of mNPs with different Smo dosages suggested that Hedgehog signaling inhibited Notch signaling and upregulated the expression of Fox transcription factors such as Foxc1 and Foxp4. Consistent with these observations, we found that ectopic expression of Jag1 caused the premature depletion of mNPs as seen in the Smo mutant kidney. We also found that Foxc1 was capable of binding to mitotic condensed chromatin, a feature of a mitotic bookmarking factor. Our study demonstrates a previously unappreciated role of Hedgehog signaling in preventing premature depletion of mNPs by repressing Notch signaling and likely by activating the expression of Fox factors.
Collapse
Affiliation(s)
- Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Deacon
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
4
|
Brandenburg JT, Chen WC, Boua PR, Govender MA, Agongo G, Micklesfield LK, Sorgho H, Tollman S, Asiki G, Mashinya F, Hazelhurst S, Morris AP, Fabian J, Ramsay M. Genetic Association and Transferability for Urinary Albumin-Creatinine Ratio as a Marker of Kidney Disease in four Sub-Saharan African Populations and non-continental Individuals of African Ancestry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301398. [PMID: 38293229 PMCID: PMC10827237 DOI: 10.1101/2024.01.17.24301398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have predominantly focused on populations of European and Asian ancestry, limiting our understanding of genetic factors influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 8,970 participants living in different African regions and an additional 9,705 non-resident individuals of African ancestry from the UK Biobank and African American cohorts. METHODS Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION This study contributes novel insights into the genetic architecture of kidney disease in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations Additionally, there is a need to develop integrated scores using multi-omics data and risk factors specific to the African context to improve the accuracy of predicting disease outcomes. METHODS Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION This study contributes novel insights into the genetic architecture of kidney function in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations.
Collapse
|
5
|
Bugacov H, Der B, Kim S, Lindström NO, McMahon AP. Canonical Wnt transcriptional complexes are essential for induction of nephrogenesis but not maintenance or proliferation of nephron progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554044. [PMID: 37662369 PMCID: PMC10473675 DOI: 10.1101/2023.08.20.554044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Wnt regulated transcriptional programs are associated with both the maintenance of mammalian nephron progenitor cells (NPC) and their induction, initiating the process of nephrogenesis. How opposing transcriptional roles are regulated remain unclear. Using an in vitro model replicating in vivo events, we examined the requirement for canonical Wnt transcriptional complexes in NPC regulation. In canonical transcription, Lef/Tcf DNA binding proteins associate the transcriptional co-activator β-catenin. Wnt signaling is readily substituted by CHIR99021, a small molecule antagonist of glycogen synthase kinase-3β (GSK3β). GSK3β inhibition blocks Gskβ-dependent turnover of β-catenin, enabling formation of Lef/Tcf/β-catenin transcriptional complexes, and enhancer-mediated transcriptional activation. Removal of β-catenin activity from NPCs under cell expansion conditions (low CHIR) demonstrated a non-transcriptional role for β-catenin in the CHIR-dependent proliferation of NPCs. In contrast, CHIR-mediated induction of nephrogenesis, on switching from low to high CHIR, was dependent on Lef/Tcf and β-catenin transcriptional activity. These studies point to a non-transcriptional mechanism for β-catenin in regulation of NPCs, and potentially other stem progenitor cell types. Further, analysis of the β-catenin-directed transcriptional response provides new insight into induction of nephrogenesis. Summary Statement The study provides a mechanistic understanding of Wnt/ β-catenin activity in self-renewal and differentiation of mammalian nephron progenitors.
Collapse
|
6
|
Schnell J, Achieng M, Lindström NO. Principles of human and mouse nephron development. Nat Rev Nephrol 2022; 18:628-642. [PMID: 35869368 DOI: 10.1038/s41581-022-00598-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
The mechanisms underlying kidney development in mice and humans is an area of intense study. Insights into kidney organogenesis have the potential to guide our understanding of the origin of congenital anomalies and enable the assembly of genetic diagnostic tools. A number of studies have delineated signalling nodes that regulate positional identities and cell fates of nephron progenitor and precursor cells, whereas cross-species comparisons have markedly enhanced our understanding of conserved and divergent features of mammalian kidney organogenesis. Greater insights into the complex cellular movements that occur as the proximal-distal axis is established have challenged our understanding of nephron patterning and provided important clues to the elaborate developmental context in which human kidney diseases can arise. Studies of kidney development in vivo have also facilitated efforts to recapitulate nephrogenesis in kidney organoids in vitro, by providing a detailed blueprint of signalling events, cell movements and patterning mechanisms that are required for the formation of correctly patterned nephrons and maturation of physiologically functional apparatus that are responsible for maintaining human health.
Collapse
Affiliation(s)
- Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA
| | - Nils Olof Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Taglienti M, Graf D, Schumacher V, Kreidberg JA. Bmp7 drives proximal tubule expansion and determines nephron number in the developing kidney. Development 2022; 149:dev200773. [PMID: 35877077 PMCID: PMC9382899 DOI: 10.1242/dev.200773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 07/27/2023]
Abstract
The mammalian kidney is composed of thousands of nephrons that are formed through reiterative induction of a mesenchymal-to-epithelial transformation by a population of nephron progenitor cells. The number of nephrons in human kidneys ranges from several hundred thousand to nearly a million, and low nephron number has been implicated as a risk factor for kidney disease as an adult. Bmp7 is among a small number of growth factors required to support the proliferation and self-renewal of nephron progenitor cells, in a process that will largely determine the final nephron number. Once induced, each nephron begins as a simple tubule that undergoes extensive proliferation and segmental differentiation. Bmp7 is expressed both by nephron progenitor cells and the ureteric bud derivative branches that induce new nephrons. Here, we show that, in mice, Bmp7 expressed by progenitor cells has a major role in determining nephron number; nephron number is reduced to one tenth its normal value in its absence. Postnatally, Bmp7 also drives proliferation of the proximal tubule cells, and these ultimately constitute the largest segment of the nephron. Bmp7 appears to act through Smad 1,5,9(8), p38 and JNK MAP kinase. In the absence of Bmp7, nephrons undergo a hypertrophic process that involves p38. Following a global inactivation of Bmp7, we also see evidence for Bmp7-driven growth of the nephron postnatally. Thus, we identify a role for Bmp7 in supporting the progenitor population and driving expansion of nephrons to produce a mature kidney.
Collapse
Affiliation(s)
- Mary Taglienti
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Graf
- School of Dentistry and Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Valerie Schumacher
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Departments of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan A. Kreidberg
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
- Departments of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Tikka P, Mercker M, Skovorodkin I, Saarela U, Vainio S, Ronkainen VP, Sluka JP, Glazier JA, Marciniak-Czochra A, Schaefer F. Computational modelling of nephron progenitor cell movement and aggregation during kidney organogenesis. Math Biosci 2021; 344:108759. [PMID: 34883105 DOI: 10.1016/j.mbs.2021.108759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
During early kidney organogenesis, nephron progenitor (NP) cells move from the tip to the corner region of the ureteric bud (UB) branches in order to form the pretubular aggregate, the early structure giving rise to nephron formation. NP cells derive from metanephric mesenchymal cells and physically interact with them during the movement. Chemotaxis and cell-cell adhesion differences are believed to drive the cell patterning during this critical period of organogenesis. However, the effect of these forces to the cell patterns and their respective movements are known in limited details. We applied a Cellular Potts Model to explore how these forces and organizations contribute to directed cell movement and aggregation. Model parameters were estimated based on fitting to experimental data obtained in ex vivo kidney explant and dissociation-reaggregation organoid culture studies. Our simulations indicated that optimal enrichment and aggregation of NP cells in the UB corner niche requires chemoattractant secretion from both the UB epithelial cells and the NP cells themselves, as well as differences in cell-cell adhesion energies. Furthermore, NP cells were observed, both experimentally and by modelling, to move at higher speed in the UB corner as compared to the tip region where they originated. The existence of different cell speed domains along the UB was confirmed using self-organizing map analysis. In summary, we saw faster NP cell movements near aggregation. The applicability of Cellular Potts Model approach to simulate cell movement and patterning was found to be good during for this early nephrogenesis process. Further refinement of the model should allow us to recapitulate the effects of developmental changes of cell phenotypes and molecular crosstalk during further organ development.
Collapse
Affiliation(s)
- Pauli Tikka
- Division of Pediatric Nephrology. Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany.
| | - Moritz Mercker
- Institute of Applied Mathematics (IAM) and Interdisciplinary Center of Scientific Computing (IWR), Mathematikon, Heidelberg University, Germany
| | - Ilya Skovorodkin
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Veli-Pekka Ronkainen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - James P Sluka
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, Indiana, USA
| | - James A Glazier
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, Indiana, USA
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics (IAM) and Interdisciplinary Center of Scientific Computing (IWR), Mathematikon, Heidelberg University, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology. Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| |
Collapse
|
9
|
Kim AD, Lake BB, Chen S, Wu Y, Guo J, Parvez RK, Tran T, Thornton ME, Grubbs B, McMahon JA, Zhang K, McMahon AP. Cellular Recruitment by Podocyte-Derived Pro-migratory Factors in Assembly of the Human Renal Filter. iScience 2019; 20:402-414. [PMID: 31622881 PMCID: PMC6817668 DOI: 10.1016/j.isci.2019.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Analysis of kidney disease-causing genes and pathology resulting from systemic diseases highlight the importance of the kidney's filtering system, the renal corpuscles. To elucidate the developmental processes that establish the renal corpuscle, we performed single-nucleus droplet-based sequencing of the human fetal kidney. This enabled the identification of nephron, interstitial, and vascular cell types that together generate the renal corpuscles. Trajectory analysis identified transient developmental gene expression, predicting precursors or mature podocytes express FBLN2, BMP4, or NTN4, in conjunction with recruitment, differentiation, and modeling of vascular and mesangial cell types into a functional filter. In vitro studies provide evidence that these factors exhibit angiogenic or mesangial recruiting and inductive properties consistent with a key organizing role for podocyte precursors in kidney development. Together these studies define a spatiotemporal developmental program for the primary filtration unit of the human kidney and provide novel insights into cell interactions regulating co-assembly of constituent cell types.
Collapse
Affiliation(s)
- Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Blue B Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Song Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Tsujimura T, Idei M, Yoshikawa M, Takase O, Hishikawa K. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases. World J Stem Cells 2016; 8:288-296. [PMID: 27679685 PMCID: PMC5031890 DOI: 10.4252/wjsc.v8.i9.288] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023] Open
Abstract
The gene encoding bone morphogenetic protein-7 (BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of BMP7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.
Collapse
|
11
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
12
|
Manson SR, Austin PF, Guo Q, Moore KH. BMP-7 Signaling and its Critical Roles in Kidney Development, the Responses to Renal Injury, and Chronic Kidney Disease. VITAMINS AND HORMONES 2016; 99:91-144. [PMID: 26279374 DOI: 10.1016/bs.vh.2015.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is a significant health problem that most commonly results from congenital abnormalities in children and chronic renal injury in adults. The therapeutic potential of BMP-7 was first recognized nearly two decades ago with studies demonstrating its requirement for kidney development and ability to inhibit the pathogenesis of renal injury in models of CKD. Since this time, our understanding of CKD has advanced considerably and treatment strategies have evolved with the identification of many additional signaling pathways, cell types, and pathologic processes that contribute to disease progression. The purpose of this review is to revisit the seminal studies that initially established the importance of BMP-7, highlight recent advances in BMP-7 research, and then integrate this knowledge with current research paradigms. We will provide an overview of the evolutionarily conserved roles of BMP proteins and the features that allow BMP signaling pathways to function as critical signaling nodes for controlling biological processes, including those related to CKD. We will discuss the multifaceted functions of BMP-7 during kidney development and the potential for alterations in BMP-7 signaling to result in congenital abnormalities and pediatric kidney disease. We will summarize the renal protective effects of recombinant BMP-7 in experimental models of CKD and then propose a model to describe the potential physiological role of endogenous BMP-7 in the innate repair mechanisms of the kidneys that respond to renal injury. Finally, we will highlight emerging clinical approaches for applying our knowledge of BMP-7 toward improving the treatment of patients with CKD.
Collapse
Affiliation(s)
- Scott R Manson
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA.
| | - Paul F Austin
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Qiusha Guo
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Katelynn H Moore
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Lindström NO, Lawrence ML, Burn SF, Johansson JA, Bakker ERM, Ridgway RA, Chang CH, Karolak MJ, Oxburgh L, Headon DJ, Sansom OJ, Smits R, Davies JA, Hohenstein P. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. eLife 2015; 3:e04000. [PMID: 25647637 PMCID: PMC4337611 DOI: 10.7554/elife.04000] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.
Collapse
Affiliation(s)
- Nils O Lindström
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Melanie L Lawrence
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally F Burn
- Department of Genetics and Development, Columbia University, New York, United States
| | - Jeanette A Johansson
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Elvira RM Bakker
- Laboratory of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Rachel A Ridgway
- Department of Invasion and Metastasis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - C-Hong Chang
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Michele J Karolak
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | - Denis J Headon
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Owen J Sansom
- Beatston Institute for Cancer Research, Glasgow, United Kingdom
| | - Ron Smits
- Laboratory of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Jamie A Davies
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Hohenstein
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Abstract
The development of the mammalian kidney has been studied at the genetic, biochemical, and cell biological level for more than 40 years. As such, detailed mechanisms governing early patterning, cell lineages, and inductive interactions have been well described. How genes interact to specify the renal epithelial cells of the nephrons and how this specification is relevant to maintaining normal renal function is discussed. Implicit in the development of the kidney are epigenetic mechanisms that mark renal cell types and connect certain developmental regulatory factors to chromatin modifications that control gene expression patterns and cellular physiology. In adults, such regulatory factors and their epigenetic pathways may function in regeneration and may be disturbed in disease processes.
Collapse
|
15
|
Bone morphogenetic protein signaling in nephron progenitor cells. Pediatr Nephrol 2014; 29:531-6. [PMID: 23954916 PMCID: PMC3944211 DOI: 10.1007/s00467-013-2589-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 02/01/2023]
Abstract
Bone morphogenetic protein (BMP) signaling plays an essential role in many aspects of kidney development, and is a major determinant of outcome in kidney injury. BMP treatment is also an essential component of protocols for differentiation of nephron progenitors from pluripotent stem cells. This review discusses the role of BMP signaling to nephron progenitor cells in each of these contexts.
Collapse
|
16
|
Hilliard SA, Yao X, El-Dahr SS. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol 2014; 387:1-14. [PMID: 24440154 DOI: 10.1016/j.ydbio.2014.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 11/26/2022]
Abstract
The balance between nephron progenitor cell (NPC) renewal, survival and differentiation ultimately determines nephron endowment and thus susceptibile to chronic kidney disease and hypertension. Embryos lacking the p53-E3 ubiquitin ligase, Murine double minute 2 (Mdm2), die secondary to p53-mediated apoptosis and growth arrest, demonstrating the absolute requirement of Mdm2 in embryogenesis. Although Mdm2 is required in the maintenance of hematopoietic stem cells, its role in renewal and differentiation of stem/progenitor cells during kidney organogenesis is not well defined. Here we examine the role of the Mdm2-p53 pathway in NPC renewal and fate in mice. The Six2-GFP::Cre(tg/+) mediated inactivation of Mdm2 in the NPC (NPC(Mdm)2(-/-)) results in perinatal lethality. NPC(Mdm)2(-/-) neonates have hypo-dysplastic kidneys, patchy depletion of the nephrogenic zone and pockets of superficially placed, ectopic, well-differentiated proximal tubules. NPC(Mdm2-/-) metanephroi exhibit thinning of the progenitor GFP(+)/Six2(+) population and a marked reduction or loss of progenitor markers Amphiphysin, Cited1, Sall1 and Pax2. This is accompanied by aberrant accumulation of phospho-γH2AX and p53, and elevated apoptosis together with reduced cell proliferation. E13.5-E15.5 NPC(Mdm2-/-) kidneys show reduced expression of Eya1, Pax2 and Bmp7 while the few surviving nephron precursors maintain expression of Wnt4, Lhx1, Pax2, and Pax8. Lineage fate analysis and section immunofluorescence revealed that NPC(Mdm2-/-) kidneys have severely reduced renal parenchyma embedded in an expanded stroma. Six2-GFP::Cre(tg/+); Mdm2(f/f) mice bred into a p53 null background ensures survival of the GFP-positive, self-renewing progenitor mesenchyme and therefore restores normal renal development and postnatal survival of mice. In conclusion, the Mdm2-p53 pathway is essential to the maintenance of the nephron progenitor niche.
Collapse
Affiliation(s)
- Sylvia A Hilliard
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiao Yao
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samir S El-Dahr
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
17
|
Minuth WW, Denk L. The interstitial interface within the renal stem/progenitor cell niche exhibits an unique microheterogeneous composition. Int J Mol Sci 2013; 14:13657-69. [PMID: 23812083 PMCID: PMC3742209 DOI: 10.3390/ijms140713657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022] Open
Abstract
Repair of parenchyma by stem/progenitor cells is seen as a possible alternative to cure acute and chronic renal failure in future. To learn about this therapeutic purpose, the formation of nephrons during organ growth is under focus of present research. This process is triggered by numerous morphogenetic interactions between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Recent data demonstrate that an astonishingly wide interstitial interface separates both types of stem/progenitor cells probably controlling coordinated cell-to-cell communication. Since conventional fixation by glutaraldehyde (GA) does not declare in transmission electron microscopy the spatial separation, improved contrasting procedures were applied. As a consequence, the embryonic cortex of neonatal rabbit kidneys was fixed in solutions containing glutaraldehyde in combination with cupromeronic blue, ruthenium red or tannic acid. To obtain a comparable view to the renal stem/progenitor cell niche, the specimens had to be orientated along the cortico-medullary axis of lining collecting ducts. Analysis of tissue samples fixed with GA, in combination with cupromeronic blue, demonstrates demasked extracellular matrix. Numerous braces of proteoglycans cover, as well, the basal lamina of epithelial stem/progenitor cells as projections of mesenchymal stem/progenitor cells crossing the interstitial interface. Fixation with GA containing ruthenium red or tannic acid illustrates strands of extracellular matrix that originate from the basal lamina of epithelial stem/progenitor cells and line through the interstitial interface. Thus, for the first time, improved contrasting techniques make it possible to analyze in detail a microheterogeneous composition of the interstitial interface within the renal stem/progenitor cell niche.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg, Regensburg D-93053, Germany.
| | | |
Collapse
|
18
|
Ahn SY, Kim Y, Kim ST, Swat W, Miner JH. Scaffolding proteins DLG1 and CASK cooperate to maintain the nephron progenitor population during kidney development. J Am Soc Nephrol 2013; 24:1127-38. [PMID: 23661808 DOI: 10.1681/asn.2012111074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DLG1 (discs-large homolog 1) and CASK (calcium/calmodulin-dependent serine protein kinase) interact at membrane-cytoskeleton interfaces and function as scaffolding proteins that link signaling molecules, receptors, and other scaffolding proteins at intercellular and synaptic junctions. Dlg1-null mice exhibit hydronephrosis, hydroureter, and occasionally hypoplastic kidneys, whereas Cask-null mice do not. To investigate whether DLG1 and CASK cooperate in the developing urogenital system, we generated mice deficient in both DLG1 and CASK either 1) globally, 2) in metanephric mesenchyme, or 3) in nephron progenitors. With each approach, Dlg1;Cask double-knockout (DKO) kidneys were severely hypoplastic and dysplastic and demonstrated rapid, premature depletion of nephron progenitors/stem cells. Several cellular and molecular defects were observed in the DKO kidneys, including reduced proliferation and increased apoptosis of cells in the nephrogenic zone and a progressive decrease in the number of cells expressing SIX2, a transcription factor essential for maintaining nephron progenitors. Fgf8 expression was reduced in early-stage DKO metanephric mesenchyme, accompanied by reduced levels of components of the Ras pathway, which is activated by fibroblast growth factor (FGF) signaling. Moreover, Dlg1(+/-);Cask(-/-) (het/null) kidneys were moderately hypoplastic and demonstrated impaired aggregation of SIX2-positive cells around the ureteric bud tips. Nephron progenitor-specific het/null mice survived with small kidneys but developed glomerulocystic kidney disease and renal failure. Taken together, these results suggest that DLG1 and CASK play critical cooperative roles in maintaining the nephron progenitor population, potentially via a mechanism involving effects on FGF signaling.
Collapse
Affiliation(s)
- Sun-Young Ahn
- Department of Pediatrics, Washington University School of Medicine, 8126 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
19
|
Minuth WW, Denk L. Illustration of extensive extracellular matrix at the epithelial-mesenchymal interface within the renal stem/progenitor cell niche. BMC Clin Pathol 2012; 12:16. [PMID: 23009620 PMCID: PMC3511299 DOI: 10.1186/1472-6890-12-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED BACKGROUND Stem/progenitor cells are promising candidates to treat diseased renal parenchyma. However, implanted stem/progenitor cells are exposed to a harmful atmosphere of degenerating parenchyma. To minimize hampering effects after an implantation investigations are in progress to administer these cells within an artificial polyester interstitum supporting survival. Learning from nature the renal stem/progenitor cell niche appears as a valuable model. At this site epithelial stem/progenitor cells within the collecting duct ampulla face mesenchymal stem/progenitor cells. Both cell types do not have close contact but are separated by a wide interstitium. METHODS To analyze extracellular matrix in this particular interstitium, special contrasting for transmission electron microscopy was performed. Kidneys of neonatal rabbits were fixed in solutions containing glutaraldehyde (GA) or in combination with cupromeronic blue, ruthenium red and tannic acid. RESULTS GA revealed a basal lamina at the ampulla and a bright but inconspicuously looking interstitial space. In contrast, GA containing cupromeronic blue exhibits numerous proteoglycan braces lining from the ampulla towards the interstitial space. GA containing ruthenium red or tannic acid demonstrates clouds of extracellular matrix protruding from the basal lamina of the ampulla to the surface of mesenchymal stem/progenitor cells. CONCLUSIONS The actual data show that the interstitium between epithelial and mesenchymal stem/progenitor cells contains much more and up to date unknown extracellular matrix than earlier observed by classical GA fixation.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D - 93053, Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D - 93053, Regensburg, Germany
| |
Collapse
|
20
|
LGR4 is required for the cell survival of the peripheral mesenchyme at the embryonic stages of nephrogenesis. Biosci Biotechnol Biochem 2012; 76:888-91. [PMID: 22738954 DOI: 10.1271/bbb.110834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In mice, homozygous Lgr4 inactivation results in hypoplastic kidneys. To understand better the role of LGR4 in kidney development, we performed an analysis of kidneys in Lgr4-/- embryos. We stained Lgr4-/- kidneys with anti-WT1 and anti-Cleaved Caspase3 antibodies at E16.5, and observed that the structures of the cap mesenchyme were disrupted and that apoptosis increased. In addition, the expression of PAX2, an anti-apoptotic factor in kidney development, was also significantly decreased at E16.5. We found that the LGR4 defect caused an increase in apoptosis in the peripheral mesenchyme during kidney development.
Collapse
|
21
|
Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 2012; 4:a008300. [PMID: 22550230 PMCID: PMC3331696 DOI: 10.1101/cshperspect.a008300] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian kidney is a vital organ with considerable cellular complexity and functional diversity. Kidney development is notable for requiring distinct but coincident tubulogenic processes involving reciprocal inductive signals between mesenchymal and epithelial progenitor compartments. Key molecular pathways mediating these interactions have been identified. Further, advances in the analysis of gene expression and gene activity, coupled with a detailed knowledge of cell origins, are enhancing our understanding of kidney morphogenesis and unraveling the normal processes of postnatal repair and identifying disease-causing mechanisms. This article focuses on recent insights into central regulatory processes governing organ assembly and renal disease, and predicts future directions for the field.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia.
| | | |
Collapse
|
22
|
Bone morphogenetic protein-2 will be a novel biochemical marker in urinary tract infections and stone formation. Clin Biochem 2012; 45:766-9. [PMID: 22542719 DOI: 10.1016/j.clinbiochem.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To investigate the role of bone morphogenetic protein-2 (BMP-2) in patients with urinary tract infection (UTI) and renal stone in relation to Tamm-Horsfall protein (THP) and osteopontin (OPN). DESIGN AND METHODS ELISA kits were used to determine these markers in serum and urinary samples of 20 patients with UTI, 15 with renal stone and 10 controls. RESULTS BMP-2 significantly increased in serum of patients who had UTI (P=0.05) and renal stone (P=0.01). In the case of UTI, serum BMP-2 at cutoff 44 pg/mL had sensitivity and specificity (92%, 80%), while cystatin C at cutoff 525 ng/mL showed sensitivity and specificity (85%, 91%). THP is a good predictor of renal diseases (P<0.001) by regression analysis. It is also the most sensitive urinary marker for UTI with sensitivity and specificity (94%, 75%) at cutoff 305 ng/mL. CONCLUSION Combination of serum BMP-2 and cystatin C are more sensitive and accurate for early diagnosis of renal infection and damage.
Collapse
|
23
|
Lopez-Rios J. Sensing BMP pathway activity by immune detection of phosphorylated R-Smad proteins in mouse embryonic kidney. Methods Mol Biol 2012; 886:267-73. [PMID: 22639269 DOI: 10.1007/978-1-61779-851-1_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
At the onset of mammalian kidney development, the ureteric bud invades the surrounding metanephric mesenchyme, and genetic studies in the mouse have shown that BMP pathway activity has to be antagonized in the vicinity of the epithelium, a task performed by the secreted BMP antagonist Grem1. Here, we describe a short protocol that allows for detection of the pattern of BMP canonical signal transduction by using antibodies that specifically recognize the phosphorylated forms of R-Smad proteins (Smad1, Smad5, and Smad8), which provides a way to monitor overall pathway activity in the mammalian embryonic kidney.
Collapse
Affiliation(s)
- Javier Lopez-Rios
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Chi L, Saarela U, Railo A, Prunskaite-Hyyryläinen R, Skovorodkin I, Anthony S, Katsu K, Liu Y, Shan J, Salgueiro AM, Belo JA, Davies J, Yokouchi Y, Vainio SJ. A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development. PLoS One 2011; 6:e27676. [PMID: 22114682 PMCID: PMC3219680 DOI: 10.1371/journal.pone.0027676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/21/2011] [Indexed: 01/02/2023] Open
Abstract
The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.
Collapse
Affiliation(s)
- Lijun Chi
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti Railo
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilya Skovorodkin
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shelagh Anthony
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Liu
- Texas A&M Health Science Center, Center for Development and Diseases, Institute of Biosciences and Technology, Houston, Texas, United States of America
| | - Jingdong Shan
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ana Marisa Salgueiro
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - José António Belo
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - Jamie Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuji Yokouchi
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
25
|
Peculiarities of the extracellular matrix in the interstitium of the renal stem/progenitor cell niche. Histochem Cell Biol 2011; 136:321-34. [PMID: 21822715 DOI: 10.1007/s00418-011-0851-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2011] [Indexed: 02/07/2023]
Abstract
The development of the nephron is piloted by interactions between epithelial and surrounding mesenchymal stem/progenitor cells. Data show that an astonishingly wide interstitial space separates both kinds of stem/progenitor cells. A simple contrasting procedure was applied to visualize features that keep renal epithelial and mesenchymal stem/progenitor cells in distance. The kidney of neonatal rabbits was fixed in solutions containing glutaraldehyde (GA) in combination with alcian blue, lanthanum, ruthenium red, or tannic acid. To obtain a comparable view to the renal stem/progenitor cell niche, the tissue was exactly orientated along the axis of collecting ducts. Fixation with GA or in combination with alcian blue or lanthanum revealed an inconspicuous interstitial space. In contrast, fixation with GA containing ruthenium red exhibits strands of extracellular matrix lining from epithelial stem/progenitor cells through the interstitium up to the surface of mesenchymal stem/progenitor cells. Fixation with GA containing tannic acid shows that the basal lamina of epithelial stem/progenitor cells, the adjacent interstitial space and also the surface of mesenchymal stem/progenitor cells are connected over a net of extracellular matrix. The applied technique appears to be a suitable method to illuminate the interstitium in stem/progenitor cell niches of specialized tissues, the microenvironment of tumors and extension of degeneration.
Collapse
|