1
|
Ma G, Gao A, Chen J, Liu P, Sarda R, Gulliver J, Wang Y, Joiner C, Hu M, Kim EJ, Yeger H, Le HD, Chen X, Li WJ, Xu W. Modeling high-risk Wilms tumors enables the discovery of therapeutic vulnerability. Cell Rep Med 2024; 5:101770. [PMID: 39368485 PMCID: PMC11513831 DOI: 10.1016/j.xcrm.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Wilms tumor (WT) is the most common pediatric kidney cancer treated with standard chemotherapy. However, less-differentiated blastemal type of WT often relapses. To model the high-risk WT for therapeutic intervention, we introduce pluripotency factors into WiT49, a mixed-type WT cell line, to generate partially reprogrammed cells, namely WiT49-PRCs. When implanted into the kidney capsule in mice, WiT49-PRCs form kidney tumors and develop both liver and lung metastases, whereas WiT49 tumors do not metastasize. Histological characterization and gene expression signatures demonstrate that WiT49-PRCs recapitulate blastemal-predominant WTs. Moreover, drug screening in isogeneic WiT49 and WiT49-PRCs leads to the identification of epithelial- or blastemal-predominant WT-sensitive drugs, whose selectivity is validated in patient-derived xenografts (PDXs). Histone deacetylase (HDAC) inhibitors (e.g., panobinostat and romidepsin) are found universally effective across different WT and more potent than doxorubicin in PDXs. Taken together, WiT49-PRCs serve as a blastemal-predominant WT model for therapeutic intervention to treat patients with high-risk WT.
Collapse
Affiliation(s)
- Gui Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Ang Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Jiani Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Rakesh Sarda
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica Gulliver
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Carstyn Joiner
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Mingshan Hu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, SickKids, Toronto, ON M5G 0A4, Canada
| | - Hau D Le
- Department of Surgery, Division of Pediatric Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Wen-Jin C, Xiu-Wu P, Jian C, Da X, Jia-Xin C, Wei-Jie C, Lin-Hui W, Xin-Gang C. Study of cellular heterogeneity and differential dynamics of autophagy in human embryonic kidney development by single-cell RNA sequencing. Cancer Cell Int 2021; 21:460. [PMID: 34461918 PMCID: PMC8404318 DOI: 10.1186/s12935-021-02154-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Autophagy is believed to participate in embryonic development, but whether the expression of autophagy-associated genes undergoes changes during the development of human embryonic kidneys remains unknown. Methods In this work, we identified 36,151 human renal cells from embryonic kidneys of 9–18 gestational weeks in 16 major clusters by single-cell RNA sequencing (scRNA-seq), and detected 1350 autophagy-related genes in all fetal renal cells. The abundance of each cell cluster in Wilms tumor samples from scRNA-seq and GDC TARGET WT datasets was detected by CIBERSORTx. R package Monocle 3 was used to determine differentiation trajectories. Cyclone tool of R package scran was applied to calculate the cell cycle scores. R package SCENIC was used to investigate the transcriptional regulons. The FindMarkers tool from Seurat was used to calculate DEGs. GSVA was used to perform gene set enrichment analyses. CellphoneDB was utilized to analyze intercellular communication. Results It was found that cells in the 13th gestational week showed the lowest transcriptional level in each cluster in all stages. Nephron progenitors could be divided into four subgroups with diverse levels of autophagy corresponding to different SIX2 expressions. SSBpod (podocyte precursors) could differentiate into four types of podocytes (Pod), and autophagy-related regulation was involved in this process. Pseudotime analysis showed that interstitial progenitor cells (IPCs) potentially possessed two primitive directions of differentiation to interstitial cells with different expressions of autophagy. It was found that NPCs, pretubular aggregates and interstitial cell clusters had high abundance in Wilms tumor as compared with para-tumor samples with active intercellular communication. Conclusions All these findings suggest that autophagy may be involved in the development and cellular heterogeneity of early human fetal kidneys. In addition, part of Wilms tumor cancer cells possess the characteristics of some fetal renal cell clusters. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02154-w.
Collapse
Affiliation(s)
- Chen Wen-Jin
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Pan Xiu-Wu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China.,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chu Jian
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China.,Department of Urology, Gongli Hospital of Second Military Medical University, 219 Miaopu Road, Shanghai, 200135, China
| | - Xu Da
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Chen Jia-Xin
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Chen Wei-Jie
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Wang Lin-Hui
- Department of Urology, Changzheng Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Cui Xin-Gang
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China. .,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
He S, Yang L, Xiao Z, Tang K, Xu D. Identification of key carcinogenic genes in Wilms' tumor. Genes Genet Syst 2021; 96:141-149. [PMID: 34334530 DOI: 10.1266/ggs.21-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to probe carcinogenic genes and pathways associated with Wilms' tumor (WT) onset and malignancy progression. After screening, three datasets acquired from the Gene Expression Omnibus database were analyzed. Differentially expressed genes (DEGs) were identified and GO functional enrichment, KEGG pathway enrichment and protein-protein interaction (PPI) were analyzed. The DEGs with top fold change values or top protein interaction scores were used to analyze overall survival based on the TARGET WT dataset. Together, 866 up-regulated genes in GDS1791, 585 up-regulated genes in GDS2010, and 277 down-regulated genes in GDS4802 were found, from which 46 key DEGs were selected for further analysis. In the PPI network, hub positions included COL5A1, COL4A1, ARPP21, SPARCL1, CD86, LY96 and PPP1R12B. The top DEGs (ARPP21, SYNPO, PRRC2B, PPP1R12B, EFCAB2 and LY96) were selected for survival analysis, and they consistently showed a significantly positive correlation with poor survival. Together, five key carcinogenic genes (SYNPO, PRRC2B, PPP1R12B, EFCAB2 and LY96) were highly associated with WT onset and patient survival. These risk genes, interaction networks and enrichments should improve our understanding of the complex molecular mechanisms in WT development and help clinical applications.
Collapse
Affiliation(s)
- Shaohua He
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | | | - Zhixiang Xiao
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | - Kunbin Tang
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | - Di Xu
- Department of Pediatric Surgery, Fujian Provincial Hospital
| |
Collapse
|
4
|
Zhao W, Li J, Li P, Guo F, Gao P, Zhang J, Yan Z, Wang L, Zhang D, Qin P, Zhao G, Wang J. Wilms tumor-suppressing peptide inhibits proliferation and induces apoptosis of Wilms tumor cells in vitro and in vivo. J Cancer Res Clin Oncol 2019; 145:2457-2468. [PMID: 31463718 DOI: 10.1007/s00432-019-03003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Our previous study identified a Wilms tumor-suppressing peptide (WTSP) that was upregulated in healthy children, but downregulated in children with Wilms tumor (WT). This study aimed to investigate the effect of WTSP on WT growth in vivo and in vitro. METHODS WTSP was synthesized by solid-phase synthesis of FOMC-protected amino acids. Cell growth curve, cytotoxicity, and apoptosis of WTSP-treated human WT cell line (SK-NEP-1) were determined by cell count, Cell Counting Kit-8 assay, and flow cytometry. The expression of key proteins of four WT-associated signaling pathways was determined by real-time PCR and western blotting. The WT xenograft mouse model was established by the armpit injection of SK-NEP-1 cells. The TUNEL assay was used to detect apoptosis in mouse tumor cells. RESULTS WTSP inhibited the proliferation of SK-NEP-1 cells in a dose- and time-dependent manner, and it arrested SK-NEP-1 cells in G2/M phase. WTSP-treated cells exhibited a low expression of PCNA and Bcl-2 and high expression of Bax. The expression of β-catenin was markedly changed after WTSP treatment. WTSP-treated mice had significantly smaller tumors than untreated mice. CONCLUSION Our findings indicated an anti-tumor effect of WTSP, which is correlated with Wnt/β-catenin pathway. This newly identified peptide may exert a therapeutic effect of WT in the future.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Juan Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fei Guo
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Pengfei Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Junjie Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Zechen Yan
- Department of Urinary Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Lei Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Pan Qin
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Guoqiang Zhao
- Department of Microbiology and Immunology, Basic Medical College, Zhengzhou University, No. 100 Kexuedadao Road, Zhongyuan District, Zhengzhou, 450001, Henan, China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Shukrun R, Golan H, Caspi R, Pode-Shakked N, Pleniceanu O, Vax E, Bar-Lev DD, Pri-Chen S, Jacob-Hirsch J, Schiby G, Harari-Steinberg O, Mark-Danieli M, Dekel B, Toren A. NCAM1/FGF module serves as a putative pleuropulmonary blastoma therapeutic target. Oncogenesis 2019; 8:48. [PMID: 31477684 PMCID: PMC6718423 DOI: 10.1038/s41389-019-0156-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
Pleuropulmonary blastoma (PPB) is a rare pediatric lung neoplasm that recapitulates developmental pathways of early embryonic lungs. As lung development proceeds with highly regulated mesenchymal-epithelial interactions, a DICER1 mutation in PPB generates a faulty lung differentiation program with resultant biphasic tumors composed of a primitive epithelial and mesenchymal stroma with early progenitor blastomatous cells. Deciphering of PPB progression has been hampered by the difficulty of culturing PPB cells, and specifically progenitor blastomatous cells. Here, we show that in contrast with in-vitro culture, establishment of PPB patient-derived xenograft (PDX) in NOD-SCID mice selects for highly proliferating progenitor blastoma overexpressing critical regulators of lung development and multiple imprinted genes. These stem-like tumors were sequentially interrogated by gene profiling to show a FGF module that is activated alongside Neural cell adhesion molecule 1 (NCAM1). Targeting the progenitor blastoma and these transitions with an anti-NCAM1 immunoconjugate (Lorvotuzumab mertansine) inhibited tumor growth and progression providing new paradigms for PPB therapeutics. Altogether, our novel in-vivo PPB xenograft model allowed us to enrich for highly proliferating stem-like cells and to identify FGFR and NCAM1 as two key players that can serve as therapeutic targets in this poorly understood and aggressive disease.
Collapse
Affiliation(s)
- Rachel Shukrun
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Hana Golan
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.,Pediatric Hematology Oncology Research Laboratory, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel
| | - Revital Caspi
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.,Dr. Pinchas Borenstein Talpiot Medical Leadership Program 2013, Sheba Medical Center, Tel Hashomer, 5262000, Ramat-Gan, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Einav Vax
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Dekel D Bar-Lev
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel
| | - Sara Pri-Chen
- The Maurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center, 5262000, Ramat-Gan, Israel
| | - Jasmine Jacob-Hirsch
- Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.,Cancer Research Center and the Wohl Institute of Translational Medicine, Sheba Medical Center, 5262000, Ramat-Gan, Israel
| | - Ginette Schiby
- Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.,Department of Pathology, Sheba Medical Center, 5262000, Ramat-Gan, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel
| | - Michal Mark-Danieli
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel. .,Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel. .,Division of Pediatric Nephrology, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel.
| | - Amos Toren
- Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.,Pediatric Hematology Oncology Research Laboratory, Safra Children's Hospital, Sheba Medical Center, 5262000, Ramat-Gan, Israel
| |
Collapse
|
6
|
Raved D, Tokatly-Latzer I, Anafi L, Harari-Steinberg O, Barshack I, Dekel B, Pode-Shakked N. Blastemal NCAM +ALDH1 + Wilms' tumor cancer stem cells correlate with disease progression and poor clinical outcome: A pilot study. Pathol Res Pract 2019; 215:152491. [PMID: 31202518 DOI: 10.1016/j.prp.2019.152491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/08/2019] [Accepted: 06/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cancer Stem Cells (CSCs) have been suggested as the culprit responsible for tumor resistance to treatment and disease recurrence. Wilms' tumor (WT) is a paradigm for studying the relation between development and tumorigenesis, showing three main histological elements: undifferentiated blastema, epithelia and stroma, mimicking human kidney development. NCAM + ALDH1+ cells were previously found to contain the cancer stem like-cell population in WT. Thus far, the correlation between histologic characterization of this cell population, clinicopathologic parameters and prognostic outcome has yet been investigated in WT. PROCEDURES Paraffin-imbedded primary WT specimens from twenty-four patients were immunostained for NCAM and ALDH1. Positivity and histologic compartment localization were determined by two independent observers, blinded to the clinical outcome. Clinicopathologic parameters and prognostic outcomes were determined based on the patients' medical records. The association of NCAM and ALDH1 co-localization with clinicopathologic characteristics was analyzed byχ2-test. Survival analysis was carried out by the log-rank test using Kaplan-Meier method. RESULTS Blastemal co-localization of NCAM and ALDH1 was observed in 33% of WTs. Metastases, ICE chemotherapy protocol, blastemal predominance following preoperative chemotherapy, recurrence and patient demise were found to significantly correlate with blastemal NCAM + ALDH1+ cell staining (p < 0.05). A significant inverse correlation between blastemal double positive cells, disease-free survival and overall survival was also observed. CONCLUSIONS WT blastemal NCAM + ALDH1+ CSCs significantly correlate with adverse clinicopathologic parameters and poorer prognosis. These results underscore the role of CSCs in disease progression. Additionally, this pilot study supports the addition of these markers for risk stratification of WTs.
Collapse
Affiliation(s)
- Dani Raved
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel-Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Itay Tokatly-Latzer
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liat Anafi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Barshack
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel-Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer, Israel; Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Genes, Development & Environment (GDE) University Institute for Pediatric Research, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel-Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer, Israel; The Dr. Pinchas Borenstein, Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel; Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Genes, Development & Environment (GDE) University Institute for Pediatric Research, Israel.
| |
Collapse
|
7
|
Chen W, Zhuang J, Gong L, Dai Y, Diao H. Investigating the dysfunctional pathogenesis of Wilms' tumor through a multidimensional integration strategy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:136. [PMID: 31157257 DOI: 10.21037/atm.2019.03.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Wilms' tumor (WT) is a common kidney tumor in early childhood which is characterized by multiple congenital anomalies and syndromes. With the continuous improvement of medical standards, the cure rate and survival period of WT have increased. However, its molecular mechanism is still elusive. Methods A comprehensive multidimensional integration strategy was used to comprehensively analyze the mechanisms of WT. Results By integrating the potential pathogenic genes of kidney cancer and performing co-expression analysis on the disease-related genes, 23 functional modules were obtained. All the genes were differentially expressed in WT, and were mainly involved in many biological processes and signaling pathways, such as Wnt/β-catenin, mTOR/ERK and calcineurin. Additionally, based on the relationship between transcriptional and post-transcriptional regulatory systems, in functional modules, transcription factors (TFs) including STAT3, HDAC1 and SP1 as well as non-coding RNAs (ncRNAs) such as miR-335-5p, miR-21-5p and TUG1 were identified. Finally, potential drugs for these multifactor regulated dysfunctional modules which may have certain pharmacological or toxicological effects on WT such as cisplatin, sorafenib, and zinc were predicted. Conclusions A multidimensional dysfunction mechanism, involving disease-related genes, TFs and ncRNAs was revealed in the pathogenesis of WT. Functional modules were used to predict potential drugs which can be used in personalized therapy and drug delivery. This study explored the pathogenesis of WT from a new perspective, and provides new candidate targets and therapeutic drugs for improving the cure rate of WT.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jia Zhuang
- Department of Urinary Surgery, Puning People's Hospital Affiliated to Southern Medical University, Jieyang 515300, China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
8
|
Liu Y, Gao X, Wang S, Yuan X, pang Y, Chen J, Wang J. Cancer Stem Cells are Regulated by STAT3 Signalling in Wilms Tumour. J Cancer 2018; 9:1486-1499. [PMID: 29721059 PMCID: PMC5929094 DOI: 10.7150/jca.23277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/13/2018] [Indexed: 01/07/2023] Open
Abstract
The survival rates associated with Wilms tumour (WT) remain dismal despite advancements in detection and treatment strategies. Cancer stem cells (CSCs) are correlated with the initiation, recurrence and metastasis of tumours, but its impact on Wilms cancer stem cell (WCSC) maintenance remains unclear. In this study, CD133+ cells were successfully isolated from a single-cell suspension of the G401 Wilms tumour cell line using magnetic activated cell sorting (MACS). Signal transducers and activators of transcription 3 (STAT3) has been implicated in tumorigenesis, but its contribution to the metastatic progression of WCSCs has not been investigated. Here, we show that STAT3 is overexpressed in WCSCs. Activation of STAT3 in WCSCs initiated a forward feedback loop that was responsible for mediating the aggressive malignant character of Wilms tumour cells in vitro and in vivo. Treatment of CD133+ cells with stattic, a STAT3 inhibitor, also inhibited tumour formation and progression in xenograft animal models in vivo. Collectively, these studies revealed a critical role of STAT3 signalling in WCSC proliferation and motility and a role for CD133 in cancer stem-like cell function, providing evidence for CD133 as a potential therapeutic target in Wilms tumour.
Collapse
Affiliation(s)
- Yanmei Liu
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Xuexiang Gao
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Shuo Wang
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Xuemin Yuan
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Yunqing pang
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Jian Chen
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, PR China,✉ Corresponding authors: Jing Wang, Department of Periodontology, School of Stomatology, Lanzhou University, 199 Donggang Western Road, Lanzhou Gansu 730000, China. Phone: 0931-8915051, Fax: 0931-8915051, E-mail: and Jian Chen, Department of Pediatric Surgery, The First Hospital of Lanzhou University, 1 Donggang Western Road, Lanzhou Gansu 730000, China. E-mail address:
| | - Jing Wang
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China,✉ Corresponding authors: Jing Wang, Department of Periodontology, School of Stomatology, Lanzhou University, 199 Donggang Western Road, Lanzhou Gansu 730000, China. Phone: 0931-8915051, Fax: 0931-8915051, E-mail: and Jian Chen, Department of Pediatric Surgery, The First Hospital of Lanzhou University, 1 Donggang Western Road, Lanzhou Gansu 730000, China. E-mail address:
| |
Collapse
|
9
|
Hontecillas-Prieto L, García-Domínguez DJ, García-Mejías R, Ramírez-Villar GL, Sáez C, de Álava E. HMGA2 overexpression predicts relapse susceptibility of blastemal Wilms tumor patients. Oncotarget 2017; 8:115290-115303. [PMID: 29383160 PMCID: PMC5777772 DOI: 10.18632/oncotarget.23256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
Wilms tumor (WT) is an embryonal malignant neoplasm of the kidney that accounts for 6-7% of all childhood cancers. WT seems to derive from multipotent embryonic renal stem cells that have failed to differentiate properly. Since mechanisms underlying WT tumorigenesis remain largely unknown, the aim of this study was to explore the expression of embryonic stem cell (ESC) markers in samples of WT patients after chemotherapy treatment SIOP protocol, as the gene expression patterns of ESC are like those of most cancer cells. We found that expression of ESC markers is heterogeneous, and depends on histological WT components. Interestingly, among ESC markers, HMGA2 was expressed significantly stronger in the blastemal component than in the stromal and the normal kidney. Moreover, two subsets of patients of WT blastemal type were identified, depending on the expression levels of HMGA2. High HMGA2 expression levels were significantly associated with a higher proliferation rate (p=0.0345) and worse patient prognosis (p=0.0289). The expression of HMGA2 was a stage-independent factor of clinical outcome in blastemal WT patients. Our multivariate analyses demonstrated the association between LIN28B-LET7A-HMGA2 expression, and the positive correlation between HMGA2 and SLUG expression (p=0.0358) in blastemal WT components. In addition, patients with a poor prognosis and high HMGA2 expression presented high levels of MDR3 (multidrug resistance transporter). Our findings suggest that HMGA2 plays a prominent role in the pathogenesis of a subset of blastemal WT, strongly associated with relapse and resistance to chemotherapy.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Institute of Biomedicine of Seville (IBiS), Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBERONC, Seville, Spain
| | - Daniel J García-Domínguez
- Institute of Biomedicine of Seville (IBiS), Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBERONC, Seville, Spain
| | - Rosa García-Mejías
- Institute of Biomedicine of Seville (IBiS), Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBERONC, Seville, Spain
| | - Gema L Ramírez-Villar
- Pediatric Oncology Unit, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Carmen Sáez
- Institute of Biomedicine of Seville (IBiS), Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBERONC, Seville, Spain
| | - Enrique de Álava
- Institute of Biomedicine of Seville (IBiS), Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBERONC, Seville, Spain
| |
Collapse
|
10
|
Induced Pluripotent Stem Cells Reduce Progression of Experimental Chronic Kidney Disease but Develop Wilms' Tumors. Stem Cells Int 2017; 2017:7428316. [PMID: 28845162 PMCID: PMC5560097 DOI: 10.1155/2017/7428316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/11/2017] [Accepted: 05/15/2017] [Indexed: 01/06/2023] Open
Abstract
The therapeutic effect of induced pluripotent stem cells (iPSs) on the progression of chronic kidney disease (CKD) has not yet been demonstrated. In this study, we sought to assess whether treatment with iPSs retards progression of CKD when compared with bone marrow mesenchymal stem cells (BMSCs). Untreated 5/6 nephrectomized rats were compared with CKD animals receiving BMSCs or iPSs. Renal function, histology, immunohistochemistry, and gene expression were studied. Implanted iPSs were tracked by the SRY gene expression analysis. Both treatments minimized elevation in serum creatinine, significantly improved clearance, and slowed down progression of disease. The proteinuria was reduced only in the iPS group. Both treatments reduced glomerulosclerosis, iPSs decreased macrophage infiltration, and TGF-β was reduced in kidneys from the BMSC group. Both types of treatments increased VEGF gene expression, TGF-β was upregulated only in the iPS group, and IL-10 had low expression in both groups. The SRY gene was found in 5/8 rats treated with iPSs. These 5 animals presented tumors with histology and cells highly staining positive for PCNA and Wilms' tumor protein antibody characteristics of Wilms' tumor. These results suggest that iPSs may be efficient to retard progression of CKD but carry the risk of Wilms' tumor development.
Collapse
|
11
|
Markovsky E, Vax E, Ben-Shushan D, Eldar-Boock A, Shukrun R, Yeini E, Barshack I, Caspi R, Harari-Steinberg O, Pode-Shakked N, Dekel B, Satchi-Fainaro R. Wilms Tumor NCAM-Expressing Cancer Stem Cells as Potential Therapeutic Target for Polymeric Nanomedicine. Mol Cancer Ther 2017; 16:2462-2472. [DOI: 10.1158/1535-7163.mct-17-0184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 11/16/2022]
|
12
|
Apelt N, Hubertus J, Mayr D, Graf N, Furtwängler R, Von Schweinitz D, Kappler R. Association of FOXM1 expression with tumor histology and prognosis in Wilms tumor: Potential for a new prognostic marker. Oncol Lett 2016; 12:2854-2859. [PMID: 27698870 DOI: 10.3892/ol.2016.4958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
Wilms tumor (WT) is the most common pediatric renal malignancy. A recent ontogenic model suggests that undifferentiated tumor state, and hence poor prognosis, in WT is determined by stabilization of β-catenin in the nucleus. Forkhead box M1 (FOXM1) is a downstream component of the Wnt pathway and promotes nuclear localization of β-catenin. As elevation of FOXM1 gene expression is prognostic in various types of malignancy, we hypothesized that high FOXM1 expression in WT is associated with undifferentiated histology and thus poor prognosis. In the current study, the expression of FOXM1 mRNA was determined in 46 WT specimens and 11 renal tissue controls from patients undergoing tumor nephrectomy, and these data were assessed with regard to clinicopathological parameters. The results demonstrated an upregulation of FOXM1 in WT by 10-fold compared to normal tissue. Expression differed significantly between controls and tumors of intermediate- and high-risk histopathology (P<0.001, Kruskal-Wallis), and distinguished normal tissue from tumors of good and adverse clinical outcome (P<0.001, Kruskal-Wallis). Notably, FOXM1 expression was significantly lower (P=0.009) in patients that received preoperative doxorubicin. These results suggest that FOXM1 may serve as a companion diagnostic factor for doxorubicin-based therapies in WT.
Collapse
Affiliation(s)
- Nadja Apelt
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, 80337 Bavaria, Germany
| | - Jochen Hubertus
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, 80337 Bavaria, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig Maximilian University of Munich, Munich, 80337 Bavaria, Germany
| | - Norbert Graf
- Department of Pediatric Oncology and Hematology, University of Saarland, Homburg, 66421 Saarland, Germany
| | - Rhoikos Furtwängler
- Department of Pediatric Oncology and Hematology, University of Saarland, Homburg, 66421 Saarland, Germany
| | - Dietrich Von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, 80337 Bavaria, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, 80337 Bavaria, Germany
| |
Collapse
|
13
|
Little MH, Kairath P. Regenerative medicine in kidney disease. Kidney Int 2016; 90:289-299. [DOI: 10.1016/j.kint.2016.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022]
|
14
|
Fiorino A, Manenti G, Gamba B, Bucci G, De Cecco L, Sardella M, Buscemi G, Ciceri S, Radice MT, Radice P, Perotti D. Retina-derived POU domain factor 1 coordinates expression of genes relevant to renal and neuronal development. Int J Biochem Cell Biol 2016; 78:162-172. [PMID: 27425396 DOI: 10.1016/j.biocel.2016.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 03/18/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022]
Abstract
Retina-derived POU domain Factor 1 (RPF-1), a member of POU transcription factor family, is encoded by POU6F2 gene, addressed by interstitial deletions at chromosome 7p14 in Wilms tumor (WT). Its expression has been detected in developing kidney and nervous system, suggesting an early role for this gene in regulating development of these organs. To investigate into its functions and determine its role in transcriptional regulation, we generated an inducible stable transfectant from HEK293 cells. RPF-1 showed nuclear localization, elevated stability, and transactivation of promoters featuring POU consensus sites, and led to reduced cell proliferation and in vivo tumor growth. By addressing the whole transcriptome regulated by its induction, we could detect a gross alteration of gene expression that is consistent with promoter occupancy predicted by genome-wide Chip-chip analysis. Comparison of bound regulatory regions with differentially expressed genes allowed identification of 217 candidate targets. Enrichment of divergent octamers in predicted regulatory regions revealed promiscuous binding to bipartite POUS and POUH consensus half-sites with intervening spacers. Gel-shift competition assay confirmed the specificity of RPF-1 binding to consensus motifs, and demonstrated that the Ser-rich region upstream of the POU domain is indispensable to achieve DNA-binding. Promoter-reporter activity addressing a few target genes indicated a dependence by RPF-1 on transcriptional response. In agreement with its expression in developing kidney and nervous system, the induced transcriptome appears to indicate a function for this protein in early renal differentiation and neuronal cell fate, providing a resource for understanding its role in the processes thereby regulated.
Collapse
Affiliation(s)
- Antonio Fiorino
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy.
| | - Giacomo Manenti
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Beatrice Gamba
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Gabriele Bucci
- Cogentech, Consortium for Genomic Technologies, IFOM-IEO Campus, Italy
| | - Loris De Cecco
- Functional Genomic Core Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Michele Sardella
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | | | - Sara Ciceri
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Maria T Radice
- Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Paolo Radice
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Daniela Perotti
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| |
Collapse
|
15
|
Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells. Sci Rep 2016; 6:23562. [PMID: 27020553 PMCID: PMC4810363 DOI: 10.1038/srep23562] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/08/2016] [Indexed: 01/16/2023] Open
Abstract
When assembling a nephron during development a multipotent stem cell pool becomes
restricted as differentiation ensues. A faulty differentiation arrest in this
process leads to transformation and initiation of a Wilms’ tumor.
Mapping these transitions with respective surface markers affords accessibility to
specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark
human renal progenitor populations. Herein, using cell sorting, RNA sequencing,
in vitro studies with serum-free media and in vivo
xenotransplantation we demonstrate a sequential map that links human kidney
development and tumorigenesis; In nephrogenesis,
NCAM1+CD133− marks
SIX2+ multipotent renal stem cells transiting to
NCAM1+CD133+ differentiating segment-specific
SIX2− epithelial progenitors and
NCAM1−CD133+ differentiated nephron
cells. In tumorigenesis, NCAM1+CD133−
marks SIX2+ blastema that includes the ALDH1+ WT
cancer stem/initiating cells, while NCAM1+CD133+ and
NCAM1−CD133+ specifying early and late
epithelial differentiation, are severely restricted in tumor initiation capacity and
tumor self-renewal. Thus, negative selection for CD133 is required for defining
NCAM1+ nephron stem cells in normal and malignant
nephrogenesis.
Collapse
|
16
|
Wijerathne BTB, Meier RJ, Salgado SS, Agampodi SB. Dermatoglyphics in kidney diseases: a review. SPRINGERPLUS 2016; 5:290. [PMID: 27066327 PMCID: PMC4781820 DOI: 10.1186/s40064-016-1783-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/12/2016] [Indexed: 01/25/2023]
Abstract
Kidney diseases are becoming a major cause of global burden with high mortality and morbidity. The origins of most kidney diseases are known, but for some the exact aetiology is not yet understood. Dermatoglyphics is the scientific study of epidermal ridge patterns and it has been used as a non-invasive diagnostic tool to detect or predict different medical conditions that have foetal origin. However, there have been a limited number of studies that have evaluated a dermatoglyphic relationship in different kidney diseases. The aim of this review was to systematically identify, review and appraise available literature that evaluated an association of different dermatoglyphic variables with kidney diseases. This review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. The PubMed® (Medline), POPLINE, Cochrane Library and Trip Database and grey literature sources such as OpenGrey, Google Scholar, and Google were searched to earliest date to 17 April 2014. Of the 36 relevant publications, 15 were included in the review. Of these studies, there are five case reports, seven case series and three comparative studies. Possible association of dermatoglyphics with Wilms tumor (WT) had been evaluated in two comparative studies and one case series that found fewer whorls and a lower mean total ridge count (TRC). Another study evaluated adult polycystic kidney disease (APCD) type III that revealed lower TRC means in all cases. All other case series and case reports describe dermatoglyphics in various kidney disease such as acro-renal-ocular syndrome, potter syndrome, kabuki makeup syndrome, neurofaciodigitorenal syndrome, syndactyly type V, ring chromosome 13 syndrome, trisomy 13 syndrome and sirenomelia. It is evident that whorl pattern frequency and TRC have been used widely to investigate the uncertainty related to the origin of several kidney diseases such as WT and APCD type III. However, small sample sizes, possibly methodological issues, and discrepancy in the make up between cases and control groups limits interpretation of any significant findings. Future studies with proper protocol, adequate cases, and control groups may provide stronger evidence to resolve uncertainty related to the aetiology of kidney diseases.
Collapse
Affiliation(s)
- Buddhika T B Wijerathne
- Department of Forensic Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, 50008 Sri Lanka
| | - Robert J Meier
- Department of Anthropology, Indiana University, Bloomington, IN USA
| | - Sujatha S Salgado
- Department of Anatomy, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Suneth B Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| |
Collapse
|
17
|
Kanyamuhunga A, Tuyisenge L, Stefan DC. Treating childhood cancer in Rwanda: the nephroblastoma example. Pan Afr Med J 2015; 21:326. [PMID: 26600901 PMCID: PMC4646289 DOI: 10.11604/pamj.2015.21.326.5912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/19/2015] [Indexed: 12/03/2022] Open
Abstract
Introduction Wilms tumor (WT) or nephroblastoma is the commonest childhood cancer in Rwanda. Nephroblastoma is regarded as one of the successes of pediatric oncology with long-term survival approaching 90%. The Objectives to evaluate the feasibilityof treating childhood cancer using the nephroblastoma example and to calculate its cost of treatment in Rwanda. Methods Prospective study over a 2 year period: 01 Jan 2010- 31 December 2011. A questionnaire was completed by all participants in the study and the following variables were collected at Kigali University Teaching Hospital: age at diagnosis, gender, transport cost, cost of investigations, staging, treatment and outcome, cost of hospitalization, type of medical, surgical, radiological interventions and their costs, number of admissions per patient and factors related to non compliance to treatment. All patients had a confirmed diagnosis on histopathology examination. The cost for treatment was calculated for early and late stage and was expressed in USA dollars. Analysis was done with SPSS 16.0. Results There were 25 patients diagnosed and treated for WT during the study period. Almost half of the patients 14/25 (56%) had advanced disease, seven children (28%) had stage IV, seven children stage III, six patients (24%) with stage II, while the remaining five (20%) had stage I with high risk tumor. The direct cost of management ranged from1,831.2 USD for early disease to 2,418.7 USD for advanced disease. The cost of transport, investigations and drugs were recorded as main contributing factors to the feasibility and cost of the treatment in 80% of the responses, followed by late presentation (56%) and poor compliance to treatment. Conclusion Most challenges are related to unaffordable treatment and late presentation. The management of WT is feasible in Rwandan setting but efforts should be made in order to improve awareness of childhood cancer, early diagnosis and access to care. The government of Rwanda is committed to improve cancer care in the country and organized the first pediatric international oncology conference in Kigali, in March 2012 to develop National protocols for the top five most common cancers in children.
Collapse
Affiliation(s)
- Aimable Kanyamuhunga
- Department of Pediatrics and Child Health, Kigali University Teaching Hospital, Rwanda ; Department of Pediatrics and Child Health, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Lisine Tuyisenge
- Department of Pediatrics and Child Health, Kigali University Teaching Hospital, Rwanda
| | - Daniela Cristina Stefan
- Department of Pediatrics and Child Health, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa ; South African Medical Research Council, Parrow, Cape Town, South Africa
| |
Collapse
|
18
|
Abstract
Wilms' tumor, or nephroblastoma, is the most common pediatric renal cancer. The tumors morphologically resemble embryonic kidneys with a disrupted architecture and are associated with undifferentiated metanephric precursors. Here, we discuss genetic and epigenetic findings in Wilms' tumor in the context of renal development. Many of the genes implicated in Wilms' tumorigenesis are involved in the control of nephron progenitors or the microRNA (miRNA) processing pathway. Whereas the first group of genes has been extensively studied in normal development, the second finding suggests important roles for miRNAs in general-and specific miRNAs in particular-in normal kidney development that still await further analysis. The recent identification of Wilms' tumor cancer stem cells could provide a framework to integrate these pathways and translate them into new or improved therapeutic interventions.
Collapse
Affiliation(s)
- Peter Hohenstein
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom;
| | - Kathy Pritchard-Jones
- UCL Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Jocelyn Charlton
- UCL Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| |
Collapse
|
19
|
Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG. Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr 2015; 4:20-32. [PMID: 26835356 PMCID: PMC4729069 DOI: 10.3978/j.issn.2224-4336.2015.01.04] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To support high proliferation, the majority of cancer cells undergo fundamental metabolic changes such as increasing their glucose uptake and shifting to glycolysis for ATP production at the expense of far more efficient mitochondrial energy production by oxidative phosphorylation (OXPHOS), which at first glance is a paradox. This phenomenon is known as the Warburg effect. However, enhanced glycolysis is necessary to provide building blocks for anabolic growth. Apart from the generation of ATP, intermediates of glycolysis serve as precursors for a variety of biosynthetic pathways essential for cell proliferation. In the last 10-15 years the field of tumor metabolism has experienced an enormous boom in interest. It is now well established that tumor suppressor genes and oncogenes often play a central role in the regulation of cellular metabolism. Therefore, they significantly contribute to the manifestation of the Warburg effect. While much attention has focused on adult solid tumors, so far there has been comparatively little effort directed at elucidation of the mechanism responsible for the Warburg effect in childhood cancers. In this review we focus on metabolic pathways in neuroblastoma (NB) and Wilms tumor (WT), the two most frequent solid tumors in children. Both tumor types show alterations of the OXPHOS system and glycolytic features. Chromosomal alterations and activation of oncogenes like MYC or inactivation of tumor suppressor genes like TP53 can in part explain the changes of energy metabolism in these cancers. The strict dependence of cancer cells on glucose metabolism is a fairly common feature among otherwise biologically diverse types of cancer. Therefore, inhibition of glycolysis or starvation of cancer cells through glucose deprivation via a high-fat low-carbohydrate diet may be a promising avenue for future adjuvant therapeutic strategies.
Collapse
|
20
|
Pierce J, Murphy AJ, Panzer A, de Caestecker C, Ayers GD, Neblett D, Saito-Diaz K, de Caestecker M, Lovvorn HN. SIX2 Effects on Wilms Tumor Biology. Transl Oncol 2014; 7:800-11. [PMID: 25500091 PMCID: PMC4311027 DOI: 10.1016/j.tranon.2014.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/17/2014] [Indexed: 11/25/2022] Open
Abstract
Wilms tumor (WT) blastema retains gene expression profiles characteristic of the multipotent nephron progenitor pool, or cap mesenchyme (CM), in the developing kidney. As a result, WT blastema and the CM are believed to represent contextual analogues of one another. Sine oculis homeobox 2 (SIX2) is a transcription factor expressed specifically in the CM, provides a critical mechanism for CM self-renewal, and remains persistently active in WT blastema, although its purpose in this childhood malignancy remains unclear. We hypothesized that SIX2, analogous to its function in development, confers a survival pathway to blastema, the putative WT stem cell. To test its functional significance in WT biology, wild-type SIX2 was overexpressed in the human WT cell line, WiT49. After validating this model, SIX2 effects on anchorage-independent growth, proliferation, invasiveness, canonical WNT pathway signaling, and gene expression of specific WNT pathway participants were evaluated. Relative to controls, WiT49 cells overexpressing SIX2 showed significantly enhanced anchorage-independent growth and early-passage proliferation representing surrogates of cell survival. Interestingly, overexpression of SIX2 generally repressed TCF/LEF-dependent canonical WNT signaling, which activates and coordinates both differentiation and stem pathways, but significantly heightened canonical WNT signaling through the survivin promoter, a mechanism that exclusively maintains the stem state. In summary, when overexpressed in a human WT cell line, SIX2 enhances cell survival and appears to shift the balance in WNT/β-catenin signaling away from a differentiation path and toward a stem cell survival path.
Collapse
Affiliation(s)
- Janene Pierce
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew J Murphy
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Panzer
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christian de Caestecker
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Neblett
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kenyi Saito-Diaz
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark de Caestecker
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harold N Lovvorn
- Department of Pediatric Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
21
|
Dziedzic K, Pleniceanu O, Dekel B. Kidney stem cells in development, regeneration and cancer. Semin Cell Dev Biol 2014; 36:57-65. [PMID: 25128731 DOI: 10.1016/j.semcdb.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
Abstract
The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors.
Collapse
Affiliation(s)
- Klaudyna Dziedzic
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
22
|
Shukrun R, Pode-Shakked N, Pleniceanu O, Omer D, Vax E, Peer E, Pri-Chen S, Jacob J, Hu Q, Harari-Steinberg O, Huff V, Dekel B. Wilms' tumor blastemal stem cells dedifferentiate to propagate the tumor bulk. Stem Cell Reports 2014; 3:24-33. [PMID: 25068119 PMCID: PMC4110791 DOI: 10.1016/j.stemcr.2014.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022] Open
Abstract
An open question remains in cancer stem cell (CSC) biology whether CSCs are by definition at the top of the differentiation hierarchy of the tumor. Wilms’ tumor (WT), composed of blastema and differentiated renal elements resembling the nephrogenic zone of the developing kidney, is a valuable model for studying this question because early kidney differentiation is well characterized. WT neural cell adhesion molecule 1-positive (NCAM1+) aldehyde dehydrogenase 1-positive (ALDH1+) CSCs have been recently isolated and shown to harbor early renal progenitor traits. Herein, by generating pure blastema WT xenografts, composed solely of cells expressing the renal developmental markers SIX2 and NCAM1, we surprisingly show that sorted ALDH1+ WT CSCs do not correspond to earliest renal stem cells. Rather, gene expression and proteomic comparative analyses disclose a cell type skewed more toward epithelial differentiation than the bulk of the blastema. Thus, WT CSCs are likely to dedifferentiate to propagate WT blastema. The Wilms’ tumor (WT) blastema can be exclusively propagated in mice Gene and protein analyses place the WT CSC at a specific developmental stage WT CSCs do not correspond to the earliest renal stem cells WT CSCs are likely to dedifferentiate to propagate WT blastema
Collapse
Affiliation(s)
- Rachel Shukrun
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
- Dr. Pinchas Borenstein Talpiot Medical Leadership Program 2013, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Einav Vax
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eyal Peer
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sara Pri-Chen
- The Maurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Jasmine Jacob
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
| | - Qianghua Hu
- Department of Genetics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
| | - Vicki Huff
- Department of Genetics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Ramat-Gan, Tel Hashomer 5262000, Israel
- The Maurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Division of Pediatric Nephrology, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| |
Collapse
|
23
|
Targeted therapy aimed at cancer stem cells: Wilms' tumor as an example. Pediatr Nephrol 2014; 29:815-23; quiz 821. [PMID: 23760992 DOI: 10.1007/s00467-013-2501-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
Wilms' tumor (WT), a common renal pediatric solid tumor, serves as a model for a malignancy formed by renal precursor cells that have failed to differentiate properly. Here we review recent evidence showing that the tumors' heterogeneous cell population contains a small fraction of cancer stem cells (CSC) identified by two markers: Neural Cell Adhesion Molecule 1 (NCAM1) expression and Aldehyde dehydrogenase 1 (ALDH1) enzymatic activity. In vivo studies show these CSCs to both self-renew and differentiate to give rise to all tumor components. Similar to other malignancies, the identification of a specific CSC fraction has allowed the examination of a novel targeted therapy, aimed at eradicating the CSC population. The loss of CSCs abolishes the tumor's ability to sustain and propagate, hence, causing tumor degradation with minimal damage to normal tissue.
Collapse
|
24
|
Becherucci F, Lazzeri E, Lasagni L, Romagnani P. Renal progenitors and childhood: from development to disorders. Pediatr Nephrol 2014; 29:711-9. [PMID: 24389601 DOI: 10.1007/s00467-013-2686-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/17/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Nephropathies arise from conditions that alter nephron development or trigger nephron damage during neonatal, juvenile, and adult stages of life. Much evidence suggests that a key role in maintaining kidney integrity, homeostasis, and regenerative capacity is played by a population of progenitor cells resident in the organ. Although the primary goals in the field of renal progenitor cells are understanding their ability to regenerate nephrons and to restore damaged kidney function, the discovery of these cells could also be used to elucidate the molecular and pathophysiological basis of kidney diseases. As a result, once the identification of a subset of progenitor cells capable of kidney regeneration has been obtained, the increasing knowledge about their characteristics and about the mechanisms of renal development had pointed out the possibility of understanding the molecular basis of kidney diseases, so that, nowadays, some renal disorders could also be related to renal progenitor dysfunction. In this review, we summarize the evidence on the existence of renal progenitors in fetal and adult kidneys and discuss their role in physiology as well as in the pathogenesis of renal disorders with a particular focus on childhood age.
Collapse
Affiliation(s)
- Francesca Becherucci
- Pediatric Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | | | | | | |
Collapse
|
25
|
Yoshizawa K, Kinoshita Y, Emoto Y, Kimura A, Uehara N, Yuri T, Shikata N, Tsubura A. N -Methyl- N -nitrosourea-induced Renal Tumors in Rats: Immunohistochemical Comparison to Human Wilms Tumors. J Toxicol Pathol 2013; 26:141-8. [PMID: 23914056 PMCID: PMC3695336 DOI: 10.1293/tox.26.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/11/2013] [Indexed: 12/27/2022] Open
Abstract
N-Methyl-N-nitrosourea (MNU)-induced renal tumors in rats and Wilms tumors in humans were compared. Renal mesenchymal tumors (RMTs) and nephroblastomas (blastemal and epithelial components) in female Lewis rats treated with a single intraperitoneal injection of 50 mg/kg MNU at birth and Wilms tumors (blastemal, epithelial and mesenchymal components) in humans were analyzed for the expression of pancytokeratin (CK), vimentin, p63, α-smooth muscle actin (SMA), desmin, S-100, CD57, CD117/c-kit, Wilms tumor 1 protein (WT1) and β-catenin. The mesenchymal components of rat RMTs and human Wilms tumors expressed vimentin, SMA and β-catenin. The blastemal components of rat nephroblastomas and human Wilms tumors expressed vimentin, CD117/c-kit and β-catenin. The epithelial components of rat nephroblastomas and human Wilms tumors expressed vimentin and β-catenin. WT1 was expressed in different cellular components of rat tumors as compared with human Wilms tumors; the expression was seen in mesenchymal tumors and blastemal components of nephroblastomas in rats and epithelial components in human Wilms tumors. CK, p63 and CD57 were not expressed in rat RMTs or nephroblastomas, while CK and WT1 were expressed in epithelial components and CD57 was expressed in blastemal and epithelial components of human Wilms tumors. Rat and human tumors were universally negative for the expression of desmin and S-100. The immunohistochemical characteristics of rat renal tumors and human Wilms tumors may provide valuable information on the differences in renal oncogenesis and biology between the two species.
Collapse
Affiliation(s)
- Katsuhiko Yoshizawa
- Department of Pathology II, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Peter Hohenstein
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK.
| |
Collapse
|
27
|
Ludgate JL, Le Mée G, Fukuzawa R, Rodger EJ, Weeks RJ, Reeve AE, Morison IM. Global demethylation in loss of imprinting subtype of Wilms tumor. Genes Chromosomes Cancer 2012; 52:174-84. [PMID: 23074036 DOI: 10.1002/gcc.22017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 12/31/2022] Open
Abstract
Epigenetic abnormalities at the IGF2/H19 locus play a key role in the onset of Wilms tumor. These tumors can be classified into three molecular subtypes depending on the events occurring at this locus: loss of imprinting (LOI), loss of heterozygosity (LOH), or retention of imprinting (ROI). As IGF2 LOI is a consequence of aberrant methylation, we hypothesized that this subtype of Wilms tumors might display global abnormalities of methylation. We therefore analyzed the methylation status of satellite DNA, as a surrogate for global methylation in 50 Wilms tumor patients. Satellite methylation was quantified by a methylation-sensitive quantitative PCR. We confirmed hypomethylation of both satellite α (Sat α) and satellite 2 (Sat 2) DNA in Wilms tumor samples compared with normal kidney. In addition, we found that LOI tumors, unlike ROI or LOH ones, showed concordant hypomethylation of both Sat α and Sat 2 DNA. This would suggest that the LOI subtype of Wilms tumor, which unlike other subtypes results from an epimutation, has a global deregulation of methylation mechanisms.
Collapse
Affiliation(s)
- Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
28
|
Hansson ML, Behmer S, Ceder R, Mohammadi S, Preta G, Grafström RC, Fadeel B, Wallberg AE. MAML1 acts cooperatively with EGR1 to activate EGR1-regulated promoters: implications for nephrogenesis and the development of renal cancer. PLoS One 2012; 7:e46001. [PMID: 23029358 PMCID: PMC3459946 DOI: 10.1371/journal.pone.0046001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022] Open
Abstract
Mastermind-like 1 (MAML1) is a transcriptional coregulator of activators in various signaling pathways, such as Notch, p53, myocyte enhancer factor 2C (MEF2C) and beta-catenin. In earlier studies, we demonstrated that MAML1 enhanced p300 acetyltransferase activity, which increased the acetylation of Notch by p300. In this study, we show that MAML1 strongly induced acetylation of the transcription factor early growth response-1 (EGR1) by p300, and increased EGR1 protein expression in embryonic kidney cells. EGR1 mRNA transcripts were also upregulated in the presence of MAML1. We show that MAML1 physically interacted with, and acted cooperatively with EGR1 to increase transcriptional activity of the EGR1 and p300 promoters, which both contain EGR1 binding sites. Bioinformatics assessment revealed a correlation between p300, EGR1 and MAML1 copy number and mRNA alterations in renal clear cell carcinoma and p300, EGR1 and MAML1 gene alterations were associated with increased overall survival. Our findings suggest MAML1 may be a component of the transcriptional networks which regulate EGR1 target genes during nephrogenesis and could also have implications for the development of renal cell carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Annika E. Wallberg
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
29
|
Nephron-sparing partial nephrectomy for bilateral Wilms' tumor. J Pediatr Surg 2012; 47:1234-8. [PMID: 22703799 DOI: 10.1016/j.jpedsurg.2012.03.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 11/22/2022]
Abstract
PURPOSE Partial nephrectomy is increasingly used in children with bilateral Wilms' tumor (BWT) or contralateral recurrence. Nephron-sparing surgery seeks to achieve complete tumor removal while preserving functional renal parenchyma. Previous series have documented high rates of complications, recurrence, and mortality. METHODS Twelve patients (4 boys and 8 girls aged 9-42 months) with BWT or contralateral recurrence were treated at our institution with unilateral or bilateral partial nephrectomy. Preoperative imaging, operative notes, and pathology reports were reviewed. Outcomes analyzed included complications, recurrence, readmission rate, postoperative glomerular filtration rate (GFR), and survival. RESULTS All patients underwent successful nephron-sparing resection using standard techniques, with only 2 patients requiring unilateral nephrectomy. Median length of stay was 3 days. There were no major complications or urine leaks. Two patients were lost to follow-up. The remaining 10 were followed up for a median of 36 months (range, 3-79 months). There have been no recurrences or unplanned readmissions. Mean GFR is 107.7 (± 32.8) mL/min per 1.73 m(2), with no patient having a GFR below the lower limit of normal for age. CONCLUSION Nephron-sparing resection is a safe and effective approach for children with BWT or contralateral recurrence and should be part of the multimodality therapeutic approach to this disease.
Collapse
|
30
|
Bussolati B, Dekel B, Azzarone B, Camussi G. Human renal cancer stem cells. Cancer Lett 2012; 338:141-6. [PMID: 22587951 DOI: 10.1016/j.canlet.2012.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs), isolated in renal carcinomas, exhibit tumor-initiating capabilities and pluripotency. No specific CSC markers have been identified so far; therefore, their characterization is mainly based on functional studies. As they are resistant to chemo and radio therapy, renal CSCs may have a relevant role in tumor establishment, progression, and recurrence. CSCs were also shown to contribute to intra-tumor vasculogenesis through an endothelial differentiation and to favor the generation of the pre-metastatic niche through the release of exosomes/microvesicles.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Internal Medicine, Research Center for Experimental Medicine and Molecular Biotechnology Center, University of Torino, Italy
| | | | | | | |
Collapse
|