1
|
Bertram JF, Cullen-McEwen LA, Andrade-Oliveira V, Câmara NOS. The intelligent podocyte: sensing and responding to a complex microenvironment. Nat Rev Nephrol 2025:10.1038/s41581-025-00965-y. [PMID: 40341763 DOI: 10.1038/s41581-025-00965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Podocytes are key components of the glomerular filtration barrier - a specialized structure that is responsible for the filtration of blood by the kidneys. They therefore exist in a unique microenvironment exposed to mechanical force and the myriad molecules that cross the filtration barrier. To survive and thrive, podocytes must continually sense and respond to their ever-changing microenvironment. Sensing is achieved by interactions with the surrounding extracellular matrix and neighbouring cells, through a variety of pathways, to sense changes in environmental factors such as nutrient levels including glucose and lipids, oxygen levels, pH and pressure. The response mechanisms similarly involve a range of processes, including signalling pathways and the actions of specific organelles that initiate and regulate appropriate responses, including alterations in cell metabolism, immune regulation and changes in podocyte structure and cognate functions. These functions ultimately affect glomerular and kidney health. Imbalances in these processes can lead to inflammation, podocyte loss and glomerular disease.
Collapse
Affiliation(s)
- John F Bertram
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Brisbane, Queensland, Australia
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vinicius Andrade-Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Sao Paulo, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
2
|
Takashima K, Hitosugi M, Uno A, Taniura N, Mukaisho KI, Maruo Y. Continuous increase in podocyte numbers in the first 36 months of life-insights from forensic autopsies in Japanese children. Pediatr Nephrol 2025; 40:1613-1624. [PMID: 39792255 DOI: 10.1007/s00467-024-06644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Podocyte depletion is a critical factor in glomerulosclerosis development. While podocyte numbers per glomerulus typically decline with age in adults, they are hypothesized to increase during childhood. However, studies on podocyte number progression in childhood have been limited. METHODS This retrospective analysis examined forensic autopsy cases of Japanese children without kidney disease, aged under 192 months, between April 2010 and March 2023. Podocytes were identified using immunostaining with an anti-transducin-like enhancer of split 4 antibody and p57. Podometric parameters were estimated using the correction factor method, allowing estimation from a single histologic section. RESULTS This study included 68 cases with a median age of 9 months (interquartile range [IQR], 4-78). All podometric parameters correlated with age. Children younger than 36 months displayed significantly fewer podocyte numbers per glomerulus (median, 517; IQR, 483-546) compared to those aged 36 months and older (median, 616; IQR, 595-649; p < 0.001). Regression analysis revealed a significant age-related increase in podocyte numbers per glomerulus in children under 36 months (slope, 3.76; p < 0.001; 95% confidence interval [CI], 2.34-5.19), but not in those aged 36 months and older (slope, 0.25; p = 0.16; 95% CI, - 0.10-0.61). Additionally, the change in the slope at 36 months was significant (p < 0.001; 95% CI, 1.02-2.49); however, this increase did not appear linked to podocyte division. CONCLUSIONS Podocyte numbers per glomerulus increased from birth until 36 months and then stabilized. These findings could facilitate the development of novel treatments for chronic kidney disease caused by glomerulosclerosis and contribute to pediatric kidney health research.
Collapse
Affiliation(s)
- Kohei Takashima
- Department of Legal Medicine, Shiga University of Medical Science, Shiga, 520-2192, Japan
- Department of Pediatrics, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Masahito Hitosugi
- Department of Legal Medicine, Shiga University of Medical Science, Shiga, 520-2192, Japan.
| | - Akari Uno
- Department of Legal Medicine, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Naoko Taniura
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Ken-Ich Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga, 520-2192, Japan
| |
Collapse
|
3
|
Campbell MD, Sanchez-Contreras M, Sibley BD, Keiser P, Ruiz Sanchez C, Mann CN, Marcinek DJ, Najafian B, Sweetwyne MT. Mitochondrial respiratory capacity in kidney podocytes is high, age-dependent, and sexually dimorphic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625104. [PMID: 39651288 PMCID: PMC11623494 DOI: 10.1101/2024.11.24.625104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Whether and how podocytes depend on mitochondria across their long post-mitotic lifespan is yet unclear. With limited cell numbers and broad kidney distribution, isolation of podocyte mitochondria typically requires first isolating podocytes themselves. Disassociation of podocytes from their basement membrane, however, recapitulates an injured state that may stress mitochondria. To address this, we crossed floxed hemagglutinin (HA) -mitochondria tagged (MITO-Tag) mice with those expressing Cre in either podocytes (NPHS2) or distal tubule and collecting duct (CDH16), thus allowing for rapid, kidney cell-specific, isolation of mitochondria via immunoprecipitation. Mitochondrial respiration in fresh isolates from young (4-7 mo) and aged (22-26 mo) mice of both sexes demonstrated several previously unreported significant differences between podocyte and tubule mitochondria. First, although podocytes contain fewer mitochondria than do tubule cells, mitochondria isolated from podocytes averaged twice the respiratory capacity of tubule mitochondria when normalized to mitochondrial content by citrate synthase (CS) levels. Second, age-related decline in respiration was detected only in podocyte mitochondria and only in aged male mice. Finally, disassociating podocytes for cell culture initiates functional decline in mitochondria as those from cultured primary podocytes have half the respiratory capacity, but twice the hydrogen peroxide production of podocyte mitochondria isolated directly from fresh kidneys. Thus, podocytes maintain sexually dimorphic mitochondria with greater oxidative phosphorylation capacity than mitochondria-dependent tubules per organelle. Previous studies may not have detected these differences due to reliance on podocyte cell culture conditions, which results in artifactual suppression of mitochondrial function.
Collapse
|
4
|
Isaac JS, Troost JP, Wang Y, Garrity K, Kaskel F, Gbadegesin R, Reidy KJ. Association of Preterm Birth with Adverse Glomerular Disease Outcomes in Children and Adults. Clin J Am Soc Nephrol 2024; 19:1016-1024. [PMID: 38728081 PMCID: PMC11321729 DOI: 10.2215/cjn.0000000000000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Key Points Preterm birth was a risk factor for adverse outcomes in this heterogeneous cohort of children and adults with glomerular disease. In analyses adjusted for diagnosis and apolipoprotein L1 risk status, there was less remission and faster progression of kidney disease in those born preterm. A novel finding from this study is that adults born preterm were more likely to have an apolipoprotein L1 high-risk genotype. Background While some studies of children with nephrotic syndrome have demonstrated worse outcomes in those born preterm compared with term, little data exist on associations of preterm birth with outcomes in adult-onset glomerular disease. Cardiovascular outcomes in those born preterm with glomerular disease are unknown. Methods We performed a cross-sectional and longitudinal analysis of participants in the Cure Glomerulonephropathy cohort. Preterm (<37 weeks' gestation) was compared with term (≥37 weeks' gestation). A survival analysis and adjusted Cox proportional hazards model were used to examine a composite outcome of 40% decline in eGFR or progression to kidney failure. An adjusted logistic regression model was used to examine remission of proteinuria. Results There were 2205 term and 235 preterm participants. Apolipoprotein L1 (APOL1 ) risk alleles were more common in those born preterm. More pediatric than adult participants in Cure Glomerulonephropathy were born preterm: 12.8% versus 7.69% (P < 0.001). Adults born preterm compared with term had a higher prevalence of FSGS (35% versus 25%, P = 0.01) and APOL1 high-risk genotype (9.4% versus 4.2%, P = 0.01). Participants born preterm had a shorter time interval to a 40% eGFR decline/kidney failure after biopsy (P = 0.001). In adjusted analysis, preterm participants were 28% more likely to develop 40% eGFR decline/kidney failure (hazard ratio: 1.28 [1.07 to 1.54], P = 0.008) and 38% less likely to attain complete remission of proteinuria (odds ratio: 0.62 [0.45 to 0.87], P = 0.006). There was no significant difference in cardiovascular events. Conclusions Preterm birth was a risk factor for adverse outcomes in this heterogeneous cohort of children and adults with glomerular disease. Adults born preterm were more likely to have an APOL1 high-risk genotype and FSGS. In analyses adjusted for FSGS and APOL1 risk status, there was less remission and faster progression of kidney disease in those born preterm.
Collapse
Affiliation(s)
- Jaya S. Isaac
- Division of Pediatric Nephrology, Department of Pediatrics, Children's Hospital at Montefiore/Einstein, Bronx, New York
| | - Jonathan P. Troost
- Michigan Institute for Clinical Health Research, University of Michigan, Ann Arbor, Michigan
| | - Yujie Wang
- Medical Data Science Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Kelly Garrity
- Division of Pediatric Nephrology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California
| | - Frederick Kaskel
- Division of Pediatric Nephrology, Department of Pediatrics, Children's Hospital at Montefiore/Einstein, Bronx, New York
| | - Rasheed Gbadegesin
- Division of Pediatric Nephrology, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Kimberly J. Reidy
- Division of Pediatric Nephrology, Department of Pediatrics, Children's Hospital at Montefiore/Einstein, Bronx, New York
| |
Collapse
|
5
|
Fukuda A, Sato Y, Shibata H, Fujimoto S, Wiggins RC. Urinary podocyte markers of disease activity, therapeutic efficacy, and long-term outcomes in acute and chronic kidney diseases. Clin Exp Nephrol 2024; 28:496-504. [PMID: 38402504 PMCID: PMC11116200 DOI: 10.1007/s10157-024-02465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 02/26/2024]
Abstract
A critical degree of podocyte depletion causes glomerulosclerosis, and persistent podocyte loss in glomerular diseases drives the progression to end-stage kidney disease. The extent of podocyte injury at a point in time can be histologically assessed by measuring podocyte number, size, and density ("Biopsy podometrics"). However, repeated invasive renal biopsies are associated with increased risk and cost. A noninvasive method for assessing podocyte injury and depletion is required. Albuminuria and proteinuria do not always correlate with disease activity. Podocytes are located on the urinary space side of the glomerular basement membrane, and as they undergo stress or detach, their products can be identified in urine. This raises the possibility that urinary podocyte products can serve as clinically useful markers for monitoring glomerular disease activity and progression ("Urinary podometrics"). We previously reported that urinary sediment podocyte mRNA reflects disease activity in both animal models and human glomerular diseases. This includes diabetes and hypertension which together account for 60% of new-onset dialysis induction patients. Improving approaches to preventing progression is an urgent priority for the renal community. Sufficient evidence now exists to indicate that monitoring urinary podocyte markers could serve as a useful adjunctive strategy for determining the level of current disease activity and response to therapy in progressive glomerular diseases.
Collapse
Affiliation(s)
- Akihiro Fukuda
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu City, Oita, 879-5593, Japan.
| | - Yuji Sato
- Division of Nephrology, Department of Internal Medicine, National Health Insurance Takachiho Town Hospital, Takachiho, Miyazaki, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu City, Oita, 879-5593, Japan
| | - Shouichi Fujimoto
- Department of Medical Environment Innovation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Roger C Wiggins
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
de Zoysa N, Haruhara K, Nikolic-Paterson DJ, Kerr PG, Ling J, Gazzard SE, Puelles VG, Bertram JF, Cullen-McEwen LA. Podocyte number and glomerulosclerosis indices are associated with the response to therapy for primary focal segmental glomerulosclerosis. Front Med (Lausanne) 2024; 11:1343161. [PMID: 38510448 PMCID: PMC10951056 DOI: 10.3389/fmed.2024.1343161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Corticosteroid therapy, often in combination with inhibition of the renin-angiotensin system, is first-line therapy for primary focal and segmental glomerulosclerosis (FSGS) with nephrotic-range proteinuria. However, the response to treatment is variable, and therefore new approaches to indicate the response to therapy are required. Podocyte depletion is a hallmark of early FSGS, and here we investigated whether podocyte number, density and/or size in diagnostic biopsies and/or the degree of glomerulosclerosis could indicate the clinical response to first-line therapy. In this retrospective single center cohort study, 19 participants (13 responders, 6 non-responders) were included. Biopsies obtained at diagnosis were prepared for analysis of podocyte number, density and size using design-based stereology. Renal function and proteinuria were assessed 6 months after therapy commenced. Responders and non-responders had similar levels of proteinuria at the time of biopsy and similar kidney function. Patients who did not respond to treatment at 6 months had a significantly higher percentage of glomeruli with global sclerosis than responders (p < 0.05) and glomerulosclerotic index (p < 0.05). Podocyte number per glomerulus in responders was 279 (203-507; median, IQR), 50% greater than that of non-responders (186, 118-310; p < 0.05). These findings suggest that primary FSGS patients with higher podocyte number per glomerulus and less advanced glomerulosclerosis are more likely to respond to first-line therapy at 6 months. A podocyte number less than approximately 216 per glomerulus, a GSI greater than 1 and percentage global sclerosis greater than approximately 20% are associated with a lack of response to therapy. Larger, prospective studies are warranted to confirm whether these parameters may help inform therapeutic decision making at the time of diagnosis of primary FSGS.
Collapse
Affiliation(s)
- Natasha de Zoysa
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - David J. Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia
- Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Peter G. Kerr
- Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia
- Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Jonathan Ling
- Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia
- Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Sarah E. Gazzard
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Melbourne, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Brisbane, QLD, Australia
| | - Luise A. Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
7
|
Shankland SJ, Rule AD, Kutz JN, Pippin JW, Wessely O. Podocyte Senescence and Aging. KIDNEY360 2023; 4:1784-1793. [PMID: 37950369 PMCID: PMC10758523 DOI: 10.34067/kid.0000000000000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
As the population in many industrial countries is aging, the risk, incidence, and prevalence of CKD increases. In the kidney, advancing age results in a progressive decrease in nephron number and an increase in glomerulosclerosis. In this review, we focus on the effect of aging on glomerular podocytes, the post-mitotic epithelial cells critical for the normal integrity and function of the glomerular filtration barrier. The podocytes undergo senescence and transition to a senescence-associated secretory phenotype typified by the production and secretion of inflammatory cytokines that can influence neighboring glomerular cells by paracrine signaling. In addition to senescence, the aging podocyte phenotype is characterized by ultrastructural and functional changes; hypertrophy; cellular, oxidative, and endoplasmic reticulum stress; reduced autophagy; and increased expression of aging genes. This results in a reduced podocyte health span and a shortened life span. Importantly, these changes in the pathways/processes characteristic of healthy podocyte aging are also often similar to pathways in the disease-induced injured podocyte. Finally, the better understanding of podocyte aging and senescence opens therapeutic options to slow the rate of podocyte aging and promote kidney health.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Andrew D. Rule
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
8
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
9
|
Hingorani S, Gibson KL, Xie Y, Wang Y, Eddy S, Hartman J, Sampson M, Cassol C, Thomas D, Gipson DS, Trachtman H, Srivastava T, Reidy K. The association of low birthweight and prematurity on outcomes in children and adults with nephrotic syndrome-a NEPTUNE cohort study. Pediatr Nephrol 2023; 38:3297-3308. [PMID: 37140708 PMCID: PMC11186376 DOI: 10.1007/s00467-023-05876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND In single-center studies, both preterm birth and low birth weight (LBW) are associated with worse outcomes in childhood nephrotic syndrome. Using the Nephrotic Syndrome Study Network (NEPTUNE) observational cohort, we tested the hypothesis that in patients with nephrotic syndrome, hypertension, proteinuria status, and disease progression would be more prevalent and more severe in subjects with LBW and prematurity singly or in combination (LBW/prematurity). METHODS Three hundred fifty-nine adults and children with focal segmental glomerulosclerosis (FSGS) or minimal change disease (MCD) and available birth history were included. Estimated glomerular filtration rate (eGFR) decline and remission status were primary outcomes, and secondary outcomes were kidney histopathology, kidney gene expression, and urinary biomarkers. Logistic regression was used to identify associations with LBW/prematurity and these outcomes. RESULTS We did not find an association between LBW/prematurity and remission of proteinuria. However, LBW/prematurity was associated with greater decline in eGFR. This decline in eGFR was partially explained by the association of LBW/prematurity with APOL1 high-risk alleles, but the association remained after adjustment. There were no differences in kidney histopathology or gene expression in the LBW/prematurity group compared to normal birth weight/term birth. CONCLUSION LBW and premature babies who develop nephrotic syndrome have a more rapid decline in kidney function. We did not identify clinical or laboratory features that distinguished the groups. Additional studies in larger groups are needed to fully ascertain the effects of (LBW) and prematurity alone or in combination on kidney function in the setting of nephrotic syndrome.
Collapse
Affiliation(s)
- Sangeeta Hingorani
- University of Washington, Seattle Children's Hospital, Seattle, WA, USA.
| | | | - Yuping Xie
- Department of Pediatrics/Nephrology Bronx, Children's Hospital at Montefiore/Einstein, The Bronx, NY, USA
| | - Yujie Wang
- Department of Pediatrics, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Sean Eddy
- Department of Pediatrics, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - John Hartman
- Department of Pediatrics, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Sampson
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | | | | | - Debbie S Gipson
- Department of Pediatrics, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Howard Trachtman
- Department of Pediatrics, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Tarak Srivastava
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Kimberly Reidy
- Department of Pediatrics/Nephrology Bronx, Children's Hospital at Montefiore/Einstein, The Bronx, NY, USA
| |
Collapse
|
10
|
Zhang L, Chen Z, Gao Q, Liu G, Zheng J, Ding F. Preterm birth leads to a decreased number of differentiated podocytes and accelerated podocyte differentiation. Front Cell Dev Biol 2023; 11:1142929. [PMID: 36936687 PMCID: PMC10018169 DOI: 10.3389/fcell.2023.1142929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Preterm birth was previously identified as a high-risk factor for the long-term development of chronic kidney disease. However, the detailed pattern of podocyte (PD) changes caused by preterm birth and the potential mechanism underlying this process have not been well clarified. In present study, a rat model of preterm birth was established by delivery of pups 2 days early and podometric methods were applied to identify the changes in PDs number caused by preterm birth. In addition, single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatic analysis were performed in the preterm rat kidney to explore the possible mechanism caused by preterm birth. As results, when the kidney completely finished nephrogenesis at the age of 3 weeks, a reduction in the total number of differentiated PDs in kidney sections was detected. In addition, 20 distinct clusters and 12 different cell types were identified after scRNA-seq in preterm rats (postnatal day 2) and full-term rats (postnatal day 0). The numbers of PDs and most types of inherent kidney cells were decreased in the preterm birth model. In addition, 177 genes were upregulated while 82 genes were downregulated in the PDs of full-term rats compared with those of preterm rats. Further functional GO analysis revealed that ribosome-related genes were enriched in PDs from full-term rats, and kidney development-related genes were enriched in PDs from preterm rats. Moreover, known PD-specific and PD precursor genes were highly expressed in PDs from preterm rats, and pseudotemporal analysis showed that PDs were present earlier in preterm rats than in full-term rats. In conclusion, the present study showed that preterm birth could cause a reduction in the number of differentiated PDs and accelerate the differentiation of PDs.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Zhihui Chen
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Qi Gao
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Ge Liu
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Fangrui Ding
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| |
Collapse
|
11
|
Şener Akçora D, Erdoğan D, Take Kaplanoğlu G, Göktaş GE, Şeker U, Elmas Ç. Electron microscopic investigation of benzo(a)pyrene-induced alterations in the rat kidney tissue and the protective effects of curcumin. Ultrastruct Pathol 2022; 46:519-530. [DOI: 10.1080/01913123.2022.2152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dila Şener Akçora
- Department of Histology and Embryology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Deniz Erdoğan
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Turkey
| | | | - Gül Eser Göktaş
- Department of Histology and Embryology, Faculty of Medicine, Lokman Hekim University, Turkey
| | - Uğur Şeker
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Sanlıurfa, Turkey
| | - Çiğdem Elmas
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Turkey
| |
Collapse
|
12
|
Shankland SJ, Wessely O. Zoning in on podocytes. Kidney Int 2022; 102:966-968. [PMID: 36272754 DOI: 10.1016/j.kint.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Podocytes undergo defined morphologic changes during development, homeostasis, and aging, and on injury. Quantitative podometric assessments of podocyte endowment provide a powerful tool to interrogate glomerular health. Expanding this approach to a regional assessment demonstrates that the podocytes from cortical, subcortical, and juxtamedullary glomeruli are not only morphologically heterogeneous per se, but respond differently to stressors, such as age and hypertension. This suggests that zonal glomerular changes harbor critical information to understand glomerulopathies.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - Oliver Wessely
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
13
|
Haruhara K, Kanzaki G, Sasaki T, Hatanaka S, Okabayashi Y, Puelles VG, Harper IS, Shimizu A, Cullen-McEwen LA, Tsuboi N, Yokoo T, Bertram JF. Associations between nephron number and podometrics in human kidneys. Kidney Int 2022; 102:1127-1135. [PMID: 36175177 DOI: 10.1016/j.kint.2022.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Podocyte loss and resultant nephron loss are common processes in the development of glomerulosclerosis and chronic kidney disease. While the cortical distribution of glomerulosclerosis is known to be non-uniform, the relationship between the numbers of non-sclerotic glomeruli (NSG), podometrics and zonal differences in podometrics remain incompletely understood. To help define this, we studied autopsy kidneys from 50 adults with median age 68 years and median eGFR 73.5 mL/min/1.73m2 without apparent glomerular disease in a cross-sectional analysis. The number of NSG per kidney was estimated using the physical dissector/fractionator combination, while podometrics were estimated using model-based stereology. The number of NSG per kidney was directly correlated with podocyte number per tuft and podocyte density. Each additional 100,000 NSG per kidney was associated with 26 more podocytes per glomerulus and 16 podocytes per 106 μm3 increase in podocyte density. These associations were independent of clinical factors and cortical zone. While podocyte number per glomerulus was similar in the three zones, superficial glomeruli were the smallest and had the highest podocyte density but smallest podocytes. Increasing age and hypertension were associated with lower podocyte number, with age mostly affecting superficial glomeruli, and hypertension mostly affecting juxtamedullary glomeruli. Thus, in this first study to report a direct correlation between the number of NSG and podometrics, we suggest that podocyte number is decreasing in NSG of individuals losing nephrons. However, another possible interpretation may be that more nephrons might protect against further podocyte loss.
Collapse
Affiliation(s)
- Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Saeko Hatanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ian S Harper
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Melbourne, Australia.
| |
Collapse
|
14
|
Cara-Fuentes G, Andres-Hernando A, Bauer C, Banks M, Garcia GE, Cicerchi C, Kuwabara M, Shimada M, Johnson RJ, Lanaspa MA. Pulmonary surfactants and the respiratory-renal connection in steroid-sensitive nephrotic syndrome of childhood. iScience 2022; 25:104694. [PMID: 35847557 PMCID: PMC9284382 DOI: 10.1016/j.isci.2022.104694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023] Open
Abstract
Steroid-sensitive nephrotic syndrome (SSNS) in childhood is usually due to minimal change disease (MCD). Unlike many glomerular conditions, SSNS/MCD is commonly precipitated by respiratory infections. Of interest, pulmonary inflammation releases surfactants in circulation which are soluble agonists of SIRPα, a podocyte receptor that regulates integrin signaling. Here, we characterized this pulmonary-renal connection in MCD and performed studies to determine its importance. Children with SSNS/MCD in relapse but not remission had elevated plasma surfactants and urinary SIRPα. Sera from relapsing subjects triggered podocyte SIRPα signaling via tyrosine phosphatase SHP-2 and nephrin dephosphorylation, a marker of podocyte activation. Further, addition of surfactants to MCD sera from patients in remission replicated these findings. Similarly, nasal instillation of toll-like receptor 3 and 4 agonists in mice resulted in elevated serum surfactants and their binding to glomeruli triggering proteinuria. Together, our data document a critical pulmonary-podocyte signaling pathway involving surfactants and SIRPα signaling in SSNS/MCD.
Collapse
Affiliation(s)
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, USA
| | - Colin Bauer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Mindy Banks
- Rocky Mountain Pediatric Kidney Center, Denver, CO, USA
| | - Gabriela E. Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Christina Cicerchi
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Michiko Shimada
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Miguel A. Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, USA,Corresponding author
| |
Collapse
|
15
|
van der Wolde J, Haruhara K, Puelles VG, Nikolic-Paterson D, Bertram JF, Cullen-McEwen LA. The ability of remaining glomerular podocytes to adapt to the loss of their neighbours decreases with age. Cell Tissue Res 2022; 388:439-451. [PMID: 35290515 PMCID: PMC9035415 DOI: 10.1007/s00441-022-03611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Progressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodCreiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin. Control mice received intraperitoneal vehicle. Podometrics, proteinuria and glomerular pathology were assessed, together with podocyte expression of p-rp-S6, a phosphorylation target that represents activity of the mammalian target of rapamycin (mTOR). Podocyte number per glomerulus did not change in control mice in the 18-month time period examined. However, control mice at 18 months had the largest podocytes and the lowest podocyte density. Podocyte depletion at 1, 6 and 12 months resulted in mild albuminuria but no glomerulosclerosis, whereas similar levels of podocyte depletion at 18 months resulted in both albuminuria and glomerulosclerosis. Following podocyte depletion at 6 and 12 months, the number of p-rp-S6 positive podocytes increased significantly, and this was associated with an adaptive increase in podocyte volume. However, at 18 months of age, remaining podocytes were unable to further elevate mTOR expression or undergo hypertrophic adaptation in response to mild podocyte depletion, resulting in marked glomerular pathology. These findings demonstrate the importance of mTORC1-mediated podocyte hypertrophy in both physiological (ageing) and adaptive settings, highlighting a functional limit to podocyte hypertrophy reached under physiological conditions.
Collapse
Affiliation(s)
- James van der Wolde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Nikolic-Paterson
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
16
|
Shankland SJ, Wang Y, Shaw AS, Vaughan JC, Pippin JW, Wessely O. Podocyte Aging: Why and How Getting Old Matters. J Am Soc Nephrol 2021; 32:2697-2713. [PMID: 34716239 PMCID: PMC8806106 DOI: 10.1681/asn.2021050614] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, Washington
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Yuliang Wang
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Andrey S. Shaw
- Department of Research Biology, Genentech, South San Francisco, California
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Lerner Research Institute, Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
17
|
Increasing urinary podocyte mRNA excretion and progressive podocyte loss in kidney contribute to the high risk of long-term renal disease caused by preterm birth. Sci Rep 2021; 11:20650. [PMID: 34667204 PMCID: PMC8526835 DOI: 10.1038/s41598-021-00130-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Podocyte abnormalities are common mechanism driving the progression of glomerular diseases, which account for most chronic kidney diseases (CKDs). However, the role of podocyte in the mechanism of high-risk long-term CKD caused by prematurity has not been well clarified. In present study, urine samples of 86 preterm infants and 32 full-term infants were collected, and podocyte-specific podocin mRNA levels in urine pellet were applied to indicate urinary podocyte mRNA excretion. In addition, in a preterm animal rat model, preterm rats were identified by delivery 2 days early. From the age of 3 weeks-12 months, urine samples were collected to examine podocyte mRNA excretion by measuring podocyte-specific podocin mRNA levels. Kidney samples at the age of 3 weeks, 2 months, and 12 months were collected from 8, 5 and 6 preterm rats and 9, 6 and 8 full-term rats, respectively, to examine podocyte density and podocyte area by measuring the podocyte specific nuclear marker WT-1 and the podocyte specific marker synaptopodin. As results, a more than threefold increase of urinary podocyte-specific podocin mRNA excretion rate was found in preterm infants compared with full-term infants. In addition, there was negative correlation between gestational age at birth and urinary podocin mRNA excretion. In preterm rats, a reduction in the total number of differentiated podocytes in glomeruli and an increased podocyte podocin mRNA excretion rate in urine were detected at the end of kidney differentiation. Moreover, long-term follow-up data in preterm rats showed there was an increased the risk of renal disease indicated by persistent podocyte mRNA loss, proteinuria, and enlarged glomeruli. In conclusion, increasing podocyte mRNA excretion in urine and podocyte loss in kidney led by prematurity drive the progression of long-term abnormal kidney function and could potentially explain the high risk of long-term CKD in preterm infants.
Collapse
|
18
|
Hoogenboom LA, Wolfs TGAM, Hütten MC, Peutz-Kootstra CJ, Schreuder MF. Prematurity, perinatal inflammatory stress, and the predisposition to develop chronic kidney disease beyond oligonephropathy. Pediatr Nephrol 2021; 36:1673-1681. [PMID: 32880745 PMCID: PMC8172498 DOI: 10.1007/s00467-020-04712-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Prematurity and perinatal stress, such as intrauterine growth restriction (IUGR) and chorioamnionitis, are pathological processes creating an impaired intrauterine environment. These intrauterine factors are associated with the development of proteinuria, hypertension, and chronic kidney disease (CKD) later in life. Initially, this was thought to be secondary to oligonephropathy, subsequent glomerular hypertrophy, and hyperfiltration, leading to glomerulosclerosis, a further decrease in nephron number, and finally CKD. Nowadays, there is increasing evidence that prematurity and perinatal stress affect not only nephron endowment but also the maturation of podocytes and vasculogenesis. IUGR is associated with podocyte damage and an aggravated course of nephrotic syndrome. Moreover, preterm birth and IUGR are known to cause upregulation of the postnatal renin-angiotensin system, resulting in hypertension. Chorioamnionitis causes damage to the glomeruli, thereby predisposing to the development of glomerulosclerosis. This review aims to summarize current knowledge on the influence of prematurity, IUGR, and chorioamnionitis on the development of different glomerular structures. After summarizing human and experimental data on low nephron number in general, a specific focus on the current understanding of podocyte and glomerular capillary formation in relation to prematurity and different causes of perinatal stress is presented.
Collapse
Affiliation(s)
- Lieke A. Hoogenboom
- grid.412966.e0000 0004 0480 1382Department of Pediatrics, Maastricht University Medical Centre+, Maastricht, The Netherlands ,grid.461578.9Department of Pediatric Nephrology, Radboudumc Amalia Children’s Hospital, Nijmegen, The Netherlands
| | - Tim G. A. M. Wolfs
- grid.412966.e0000 0004 0480 1382Department of Pediatrics, Maastricht University Medical Centre+, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Department of Biomedical Engineering (BMT), Maastricht University, Maastricht, The Netherlands
| | - Matthias C. Hütten
- grid.5012.60000 0001 0481 6099Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands ,grid.412966.e0000 0004 0480 1382Department of Neonatology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Carine J. Peutz-Kootstra
- grid.412966.e0000 0004 0480 1382Department of Pathology, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michiel F. Schreuder
- grid.461578.9Department of Pediatric Nephrology, Radboudumc Amalia Children’s Hospital, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Bgatova N, Taskaeva I. Ultrastructure of the kidney filtration barrier in conditions of distant tumor growth and lithium treatment. Ultrastruct Pathol 2020; 44:412-421. [DOI: 10.1080/01913123.2020.1850962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
Naik AS, Le D, Aqeel J, Wang SQ, Chowdhury M, Walters LM, Cibrik DM, Samaniego M, Wiggins RC. Podocyte stress and detachment measured in urine are related to mean arterial pressure in healthy humans. Kidney Int 2020; 98:699-707. [PMID: 32739208 PMCID: PMC10440835 DOI: 10.1016/j.kint.2020.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Hypertension-associated progressive glomerulosclerosis is a significant driver of both de novo and all-cause chronic kidney disease leading to end-stage kidney failure. The progression of glomerular disease proceeds via continuing depletion of podocytes from the glomeruli into the ultrafiltrate. To non-invasively assess injury patterns associated with mean arterial pressure (MAP), we conducted an observational study of 87 healthy normotensive individuals who were cleared for living kidney donation. Urine pellet podocin and aquaporin2 mRNAs normalized to the urine creatinine concentration (UPod:Creat ratio and UAqp2:Creat ratio) were used as markers of podocyte detachment and tubular injury, respectively. The ratio of two podocyte mRNA markers, podocin to nephrin (UPod:Neph) as well as the ratio of podocin to the tubular marker aquaporin2 (UPod:Aqp2) estimated the relative rates of podocyte stress and glomerular vs. tubular injury. The MAP was positively correlated with the UPod:Neph and UPod:Aqp2, thereby confirming the relationship of MAP with podocyte stress and the preferential targeting of the glomerulus by higher MAP. In multivariable linear regression analysis, both UPod:Neph and UPod:Creat, but not UAqp2:Creat or proteinuria, were both significantly related to a range of normal MAP (70 to 110 mm Hg). Systolic, as opposed to diastolic or pulse pressure was associated with UPod:Creat. Thus, higher podocyte stress and detachment into the urine are associated with MAP even in a relatively "normal" range of MAP. Hence, urine pellet mRNA monitoring can potentially identify progression risk before the onset of overt hypertension, proteinuria or chronic kidney disease.
Collapse
Affiliation(s)
- Abhijit S Naik
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan, USA.
| | - Dustin Le
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Jawad Aqeel
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Su Q Wang
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Mahboob Chowdhury
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Walters
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Diane M Cibrik
- Nephrology Division, University of Kansas, Kansas City, Missouri, USA
| | | | - Roger C Wiggins
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
21
|
Early Detection of Active Glomerular Lesions in Dogs and Cats Using Podocin. J Vet Res 2019; 63:573-577. [PMID: 31934669 PMCID: PMC6950428 DOI: 10.2478/jvetres-2019-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/05/2019] [Indexed: 12/04/2022] Open
Abstract
In veterinary medicine, sensitive and specific markers of the early stages of renal failure still remain to be established. Podocytes could be a promising diagnostic tool in veterinary nephrology, especially in the differentiation of active pathological disease and glomerulopathies. Podocin is one of the robust proteins exploitable in detection of podocyturia. This article presents podocyte detection in urine for diagnostic purposes in veterinary medicine using a variety of methods. We describe the advantages and disadvantages of the immunohistochemical technique currently used, and of scanning microscopy, chromatography, and immunostaining. The identification of podocin-positive cells is a promising diagnostic tool in the detection of the early stages of glomerular basement membrane damage. The detection of renal failure prior to the occurrence of azotaemia is of high clinical importance from the clinical and scientific points of view.
Collapse
|
22
|
Puelles VG, van der Wolde JW, Wanner N, Scheppach MW, Cullen-McEwen LA, Bork T, Lindenmeyer MT, Gernhold L, Wong MN, Braun F, Cohen CD, Kett MM, Kuppe C, Kramann R, Saritas T, van Roeyen CR, Moeller MJ, Tribolet L, Rebello R, Sun YB, Li J, Müller-Newen G, Hughson MD, Hoy WE, Person F, Wiech T, Ricardo SD, Kerr PG, Denton KM, Furic L, Huber TB, Nikolic-Paterson DJ, Bertram JF. mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight 2019; 4:99271. [PMID: 31534053 DOI: 10.1172/jci.insight.99271] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles. Advanced morphometric analyses in murine and human tissues identified podocyte hypertrophy as a compensatory mechanism aiming to regulate glomerular functional integrity in response to somatic growth, podocyte depletion, and even glomerulosclerosis - all of this in the absence of detectable podocyte regeneration. In mice, pharmacological inhibition of mTOR signaling during acute podocyte loss impaired hypertrophy of remaining podocytes, resulting in unexpected albuminuria, PEC activation, and glomerulosclerosis. Exacerbated and persistent podocyte hypertrophy enabled a vicious cycle of podocyte loss and PEC activation, suggesting a limit to its beneficial effects. In summary, our data highlight a critical protective role of mTOR-mediated podocyte hypertrophy following podocyte loss in order to preserve glomerular integrity, preventing PEC activation and glomerulosclerosis.
Collapse
Affiliation(s)
- Victor G Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James W van der Wolde
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Tillmann Bork
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Gernhold
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Michelle M Kett
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | | | | | | | | | | | - Leon Tribolet
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Richard Rebello
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Yu By Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jinhua Li
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| | - Fermin Person
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sharon D Ricardo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia.,Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Postnatal podocyte gain: Is the jury still out? Semin Cell Dev Biol 2019; 91:147-152. [DOI: 10.1016/j.semcdb.2018.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
|
24
|
Yuvashree M, Gokulakannan R, Ganesh RN, Viswanathan P. Enhanced Therapeutic Potency of Nanoemulsified Garlic Oil Blend Towards Renal Abnormalities in Pre-diabetic Rats. Appl Biochem Biotechnol 2019; 188:338-356. [PMID: 30450513 DOI: 10.1007/s12010-018-2919-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023]
Abstract
The therapeutic potency of ultrasonic nanoemulsified garlic oil blend using a non-ionic surfactant (Tween 80) was assessed on pre-diabetic Wistar rats with microalbuminuria. The pre-diabetic condition was induced in male albino Wistar rats by supplementing high-fat diet. The prolonged period of the pre-diabetic state caused renal dysfunctioning, which was indicated by microalbuminuria. Treatment of pre-diabetic rats with nanoemulsified garlic oil blend significantly ameliorated the lipid profile (p < 0.001), urinary albumin (p < 0.01), microprotein (p < 0.001), urinary triglycerides (p < 0.01), serum triglycerides (p < 0.01), serum albumin (p < 0.05), and protein levels (p < 0.01) in comparison to treatment of pre-diabetic rats with garlic oil blend or atorvastatin. Similarly, histopathological investigations indicated a remarkable attenuation in the mesangial expansion and proliferation, glomerular and tubular basement membrane thickening, and the tubular lipid deposits on administering nanoemulsified garlic oil blend than garlic oil blend or atorvastatin. Moreover, nanoemulsified garlic oil blend significantly promoted renal podocin gene expression by 3.98-fold (p < 0.001) and attenuated increased urinary podocin level by 2.92-fold (p < 0.01). Thus, our study affirms that the efficacy of garlic oil blend was augmented upon nanoemulsification, which substantially ameliorated the renal abnormalities observed in the pre-diabetic condition than garlic oil blend or atorvastatin.
Collapse
Affiliation(s)
- Muralidaran Yuvashree
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Ragavan Gokulakannan
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantrinagar, Puducherry, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
25
|
Development of the Human Fetal Kidney from Mid to Late Gestation in Male and Female Infants. EBioMedicine 2017; 27:275-283. [PMID: 29329932 PMCID: PMC5828465 DOI: 10.1016/j.ebiom.2017.12.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/27/2017] [Accepted: 12/14/2017] [Indexed: 01/03/2023] Open
Abstract
Background During normal human kidney development, nephrogenesis (the formation of nephrons) is complete by term birth, with the majority of nephrons formed late in gestation. The aim of this study was to morphologically examine nephrogenesis in fetal human kidneys from 20 to 41 weeks of gestation. Methods Kidney samples were obtained at autopsy from 71 infants that died acutely in utero or within 24 h after birth. Using image analysis, nephrogenic zone width, the number of glomerular generations, renal corpuscle cross-sectional area and the cellular composition of glomeruli were examined. Kidneys from female and male infants were analysed separately. Findings The number of glomerular generations formed within the fetal kidneys was directly proportional to gestational age, body weight and kidney weight, with variability between individuals in the ultimate number of generations (8 to 12) and in the timing of the cessation of nephrogenesis (still ongoing at 37 weeks gestation in one infant). There was a slight but significant (r2 = 0.30, P = 0.001) increase in renal corpuscle cross-sectional area from mid gestation to term in females, but this was not evident in males. The proportions of podocytes, endothelial and non-epithelial cells within mature glomeruli were stable throughout gestation. Interpretation These findings highlight spatial and temporal variability in nephrogenesis in the developing human kidney, whereas the relative cellular composition of glomeruli does not appear to be influenced by gestational age. There is spatial and temporal variability in nephrogenesis in the developing human kidney. The relative cellular composition of mature glomeruli does not appear to be influenced by gestational age. There is apparent sexual dimorphism in the growth of glomeruli during late gestation.
The number of glomeruli (filtering units of the kidneys) you are born with directly influences your life-long kidney health, therefore it is important to understand how they are formed. Between mid-pregnancy and term, there was variability between individuals in relation to the number of layers of glomeruli formed in the developing kidney, and variation in the timing of when they stopped being formed. In fully-formed glomeruli, the proportion of the different cell types in glomeruli remained constant within the developing kidneys throughout pregnancy. Female infants, but not males, exhibited an increase in the size of glomeruli from mid-pregnancy to term.
Collapse
|
26
|
Ding F, Wickman L, Wang SQ, Zhang Y, Wang F, Afshinnia F, Hodgin J, Ding J, Wiggins RC. Accelerated podocyte detachment and progressive podocyte loss from glomeruli with age in Alport Syndrome. Kidney Int 2017; 92:1515-1525. [PMID: 28754557 PMCID: PMC5696060 DOI: 10.1016/j.kint.2017.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023]
Abstract
Podocyte depletion is a common mechanism driving progression in glomerular diseases. Alport Syndrome glomerulopathy, caused by defective α3α4α5 (IV) collagen heterotrimer production by podocytes, is associated with an increased rate of podocyte detachment detectable in urine and reduced glomerular podocyte number suggesting that defective podocyte adherence to the glomerular basement membrane might play a role in driving progression. Here a genetically phenotyped Alport Syndrome cohort of 95 individuals [urine study] and 41 archived biopsies [biopsy study] were used to test this hypothesis. Podocyte detachment rate (measured by podocin mRNA in urine pellets expressed either per creatinine or 24-hour excretion) was significantly increased 11-fold above control, and prior to a detectably increased proteinuria or microalbuminuria. In parallel, Alport Syndrome glomeruli lose an average 26 podocytes per year versus control glomeruli that lose 2.3 podocytes per year, an 11-fold difference corresponding to the increased urine podocyte detachment rate. Podocyte number per glomerulus in Alport Syndrome biopsies is projected to be normal at birth (558/glomerulus) but accelerated podocyte loss was projected to cause end-stage kidney disease by about 22 years. Biopsy data from two independent cohorts showed a similar estimated glomerular podocyte loss rate comparable to the measured 11-fold increase in podocyte detachment rate. Reduction in podocyte number and density in biopsies correlated with proteinuria, glomerulosclerosis, and reduced renal function. Thus, the podocyte detachment rate appears to be increased from birth in Alport Syndrome, drives the progression process, and could potentially help predict time to end-stage kidney disease and response to treatment.
Collapse
Affiliation(s)
- Fangrui Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Larysa Wickman
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Su Q Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Farsad Afshinnia
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Roger C Wiggins
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
27
|
Nishizono R, Kikuchi M, Wang SQ, Chowdhury M, Nair V, Hartman J, Fukuda A, Wickman L, Hodgin JB, Bitzer M, Naik A, Wiggins J, Kretzler M, Wiggins RC. FSGS as an Adaptive Response to Growth-Induced Podocyte Stress. J Am Soc Nephrol 2017; 28:2931-2945. [PMID: 28720684 DOI: 10.1681/asn.2017020174] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/08/2017] [Indexed: 11/03/2022] Open
Abstract
Glomerular sclerotic lesions develop when the glomerular filtration surface area exceeds the availability of podocyte foot process coverage, but the mechanisms involved are incompletely characterized. We evaluated potential mechanisms using a transgenic (podocin promoter-AA-4E-BP1) rat in which podocyte capacity for hypertrophy in response to growth factor/nutrient signaling is impaired. FSGS lesions resembling human FSGS developed spontaneously by 7 months of age, and could be induced earlier by accelerating kidney hypertrophy by nephrectomy. Early segmental glomerular lesions occurred in the absence of a detectable reduction in average podocyte number per glomerulus and resulted from the loss of podocytes in individual glomerular capillary loops. Parietal epithelial cell division, accumulation on Bowman's capsule, and tuft invasion occurred at these sites. Three different interventions that prevented kidney growth and glomerular enlargement (calorie intake reduction, inhibition of mammalian target of rapamycin complex, and inhibition of angiotensin-converting enzyme) protected against FSGS lesion development, even when initiated late in the process. Ki67 nuclear staining and unbiased transcriptomic analysis identified increased glomerular (but not podocyte) cell cycling as necessary for FSGS lesion development. The rat FSGS-associated transcriptomic signature correlated with human glomerular transcriptomes associated with disease progression, compatible with similar processes occurring in man. We conclude that FSGS lesion development resulted from glomerular growth that exceeded the capacity of podocytes to adapt and adequately cover some parts of the filtration surface. Modest modulation of the growth side of this equation significantly ameliorated FSGS progression, suggesting that glomerular growth is an underappreciated therapeutic target for preservation of renal function.
Collapse
Affiliation(s)
- Ryuzoh Nishizono
- Departments of Internal Medicine.,Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masao Kikuchi
- Departments of Internal Medicine.,Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | - Akihiro Fukuda
- Departments of Internal Medicine.,Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Podocytes, the postmitotic and highly branched epithelial cells of the glomerulus, play a pivotal role for the function of the glomerular filtration barrier and the development of chronic kidney disease. It has long been discussed whether podocytes in vivo are motile and can laterally migrate in a coordinated way along the capillaries until they reach the position of naked glomerular basement membrane often found in podocytopathies. Such motility would also be the prerequisite for the replacement of lost podocytes by progenitor cells. Additionally, the change of the podocyte foot processes from a normal to an effaced morphology, like it is found in many kidney diseases, would require a dynamic behavior of podocytes. Since the actin cytoskeleton is expressed in podocytes in vitro and in vivo and the morphology of podocytes is highly dependent on actin, actin-associated, and actin-regulating proteins, it was assumed that podocytes are dynamic and motile. After earlier technical limitations had been overcome and novel microscopic techniques like multiphoton microscopy had been developed, it became possible to continuously study the behavior of podocytes in living rodents and zebrafish larvae under physiological and pathological conditions. Recent in vivo microscopic studies in different model organisms suggest that lateral migration of podocytes in situ is a very unlikely event and only dynamic apical cell protrusions can be observed under pathological conditions. This review discusses recent findings concerning different forms of motility (like lateral translocative (LTM), apical translocative (ATM), and stationary motility (SM)) and their role for podocytopathies.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany. .,Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17487, Greifswald, Germany.
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany
| |
Collapse
|