1
|
Park K, Gao WW, Zheng J, Oh KT, Kim IY, You S. Hydrogel-Mediated Local Delivery of Induced Nephron Progenitor Cell-Sourced Molecules as a Cell-Free Approach for Acute Kidney Injury. Int J Mol Sci 2024; 25:10615. [PMID: 39408943 PMCID: PMC11477367 DOI: 10.3390/ijms251910615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a severe condition characterized by a sudden decrease in kidney function. Utilizing lineage-restricted stem/progenitor cells, directly reprogrammed from somatic cells, is a promising therapeutic option in personalized medicine for serious and incurable diseases such as AKI. The present study describes the therapeutic potential of induced nephron progenitor cell-sourced molecules (iNPC-SMs) as a cell-free strategy against cisplatin (CP)-induced nephrotoxicity, employing hyaluronic acid (HA) hydrogel-mediated local delivery to minimize systemic leakage and degradation. iNPC-SMs exhibited anti-apoptotic effects on HK-2 cells by inhibiting CP-induced ROS generation. Additionally, the localized biodistribution facilitated by hydrogel-mediated iNPC-SM delivery contributed to enhanced renal function, anti-inflammatory response, and renal regeneration in AKI mice. This study could serve as a 'proof of concept' for injectable hydrogel-mediated iNPC-SM delivery in AKI and as a model for further exploration of the development of cell-free regenerative medicine strategies.
Collapse
Affiliation(s)
- Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Wei-Wei Gao
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Kyung Taek Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Fistrek Prlic M, Vukovic Brinar I, Kos J, Dika Z, Ivandic E, Fucek M, Jelakovic B. Serum Hepatocyte Growth Factor Concentration Correlates with Albuminuria in Individuals with Optimal Blood Pressure and Untreated Arterial Hypertension. Biomedicines 2024; 12:2233. [PMID: 39457546 PMCID: PMC11505527 DOI: 10.3390/biomedicines12102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Hepatocyte growth factor (HGF) is a protective factor against acute renal injury and chronic renal fibrosis. A positive correlation between HGF and blood pressure (BP) has been established. This study aimed to determine the association between serum HGF concentration and albuminuria in subjects with optimal blood pressure (OBP) and untreated arterial hypertension (UAH), as well as its association with BP levels, serum glucose levels, and inflammatory markers. Methods: Data from 563 subjects were analyzed. Albuminuria was normalized to urine creatinine and expressed as the albumin/creatinine ratio (ACR). HGF, serum glucose, C-reactive protein, and blood leucocyte counts were measured. BP was measured and subjects were divided into optimal blood pressure (BP < 120/80 mmHg, N = 295) and untreated arterial hypertension (BP > 140/90 mmHg, N = 268) groups. Results: The subjects with UAH were significantly older and had higher values of body mass index, waist circumference, serum total and LDL cholesterol levels, triglyceride levels, fasting glucose levels, and ACR (all p < 0.001). A significant positive correlation was found between serum HGF concentration and ACR in both groups. There was no difference or correlation between HGF and BP or inflammatory markers in either group. The multivariate regression analysis identified serum HGF concentration as a strong predictor of ACR increase (Beta = 0.376, p < 0.001). Conclusion: This study found that serum HGF concentration is associated with albuminuria not only in individuals with untreated arterial hypertension, but also in those with optimal blood pressure. The results suggest that serum HGF is an independent predictor of ACR increase in both groups.
Collapse
Affiliation(s)
- Margareta Fistrek Prlic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Ivana Vukovic Brinar
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| | - Jelena Kos
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Zivka Dika
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| | - Ema Ivandic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Mirjana Fucek
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Bojan Jelakovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| |
Collapse
|
3
|
Starr MC, Barreto E, Charlton J, Vega M, Brophy PD, Ray Bignall ON, Sutherland SM, Menon S, Devarajan P, Akcan Arikan A, Basu R, Goldstein S, Soranno DE. Advances in pediatric acute kidney injury pathobiology: a report from the 26th Acute Disease Quality Initiative (ADQI) conference. Pediatr Nephrol 2024; 39:941-953. [PMID: 37792076 PMCID: PMC10817846 DOI: 10.1007/s00467-023-06154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In the past decade, there have been substantial advances in our understanding of the pathobiology of pediatric acute kidney injury (AKI). In particular, animal models and studies focused on the relationship between kidney development, nephron number, and kidney health have identified a number of heterogeneous pathophysiologies underlying AKI. Despite this progress, gaps remain in our understanding of the pathobiology of pediatric AKI. METHODS During the 26th Acute Disease Quality Initiative (ADQI) Consensus conference, a multidisciplinary group of experts discussed the evidence and used a modified Delphi process to achieve consensus on recommendations for opportunities to advance translational research in pediatric AKI. The current state of research understanding as well as gaps and opportunities for advancement in research was discussed, and recommendations were summarized. RESULTS Consensus was reached that to improve translational pediatric AKI advancements, diverse teams spanning pre-clinical to epidemiological scientists must work in concert together and that results must be shared with the community we serve with patient involvement. Public and private research support and meaningful partnerships with adult research efforts are required. Particular focus is warranted to investigate the pediatric nuances of AKI, including the effect of development as a biological variable on AKI incidence, severity, and outcomes. CONCLUSIONS Although AKI is common and associated with significant morbidity, the biologic basis of the disease spectrum throughout varying nephron developmental stages remains poorly understood. An incomplete understanding of factors contributing to kidney health, the diverse pathobiologies underlying AKI in children, and the historically siloed approach to research limit advances in the field. The recommendations outlined herein identify gaps and outline a strategic approach to advance the field of pediatric AKI via multidisciplinary translational research.
Collapse
Affiliation(s)
- Michelle C Starr
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
- Pediatric and Adolescent Comparative Effectiveness Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erin Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | - Molly Vega
- Renal and Apheresis Services, Texas Children's Hospital, Houston, TX, USA
| | - Patrick D Brophy
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY, USA
| | - O N Ray Bignall
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shina Menon
- Division of Pediatric Nephrology, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Prasad Devarajan
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Ayse Akcan Arikan
- Department of Pediatrics, Divisions of Critical Care and Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Rajit Basu
- Department of Pediatrics, Division of Critical Care, Northwestern University, Chicago, IL, USA
| | - Stuart Goldstein
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Danielle E Soranno
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Bioengineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Xiang Y, Yuan Z, Deng Q, Xie L, Yu D, Shi J. Potential therapeutic medicines for renal fibrosis: Small-molecule compounds and natural products. Bioorg Chem 2024; 143:106999. [PMID: 38035515 DOI: 10.1016/j.bioorg.2023.106999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Renal fibrosis is the pathological change process of chronic kidney disease deteriorating continuously. When the renal organ is stimulated by external stimuli, it will trigger the damage and phenotypic changes of some intrinsic cells in the kidney. When the body's autoimmune regulation or external treatment is not prompted enough to restore the organ, the pathological process is gradually aggravating, inducing a large amount of intracellular collagen deposition, which leads to the appearance of fibrosis and scarring. The renal parenchyma (including glomeruli and tubules) begins to harden, making it difficult to repair the kidney lesions. In the process of gradual changes in the kidney tissue, the kidney units are severely damaged and the kidney function shows a progressive decline, eventually resulting in the clinical manifestation of end-stage renal failure, namely uremia. This review provides a brief description of the diagnosis, pathogenesis, and potential therapeutic inhibitors of renal fibrosis. Since renal fibrosis has not yet had a clear therapeutic target and related drugs, some potential targets and relevant inhibitors are discussed, especially pharmacological effects and interactions with targets. Some existing natural products have potential efficacy for renal fibrosis, which is also roughly summarized, hoping that this article would have reference significance for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
5
|
Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, Allaouchiche B, Tillement O. Iron as an emerging therapeutic target in critically ill patients. Crit Care 2023; 27:475. [PMID: 38049866 PMCID: PMC10694984 DOI: 10.1186/s13054-023-04759-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The multiple roles of iron in the body have been known for decades, particularly its involvement in iron overload diseases such as hemochromatosis. More recently, compelling evidence has emerged regarding the critical role of non-transferrin bound iron (NTBI), also known as catalytic iron, in the care of critically ill patients in intensive care units (ICUs). These trace amounts of iron constitute a small percentage of the serum iron, yet they are heavily implicated in the exacerbation of diseases, primarily by catalyzing the formation of reactive oxygen species, which promote oxidative stress. Additionally, catalytic iron activates macrophages and facilitates the growth of pathogens. This review aims to shed light on this underappreciated phenomenon and explore the various common sources of NTBI in ICU patients, which lead to transient iron dysregulation during acute phases of disease. Iron serves as the linchpin of a vicious cycle in many ICU pathologies that are often multifactorial. The clinical evidence showing its detrimental impact on patient outcomes will be outlined in the major ICU pathologies. Finally, different therapeutic strategies will be reviewed, including the targeting of proteins involved in iron metabolism, conventional chelation therapy, and the combination of renal replacement therapy with chelation therapy.
Collapse
Affiliation(s)
- Coralie Grange
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France.
- Institut Universitaire de France (IUF), 75231, Paris, France.
| | | | - Laurent David
- Institut National des Sciences Appliquées, CNRS UMR 5223, Ingénierie des Matériaux Polymères, Univ Claude Bernard Lyon 1, Université Jean Monnet, 15 bd Latarjet, 69622, Villeurbanne, France
| | - Aymeric Couturier
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Nephrology, American Hospital of Paris, Paris, France
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bernard Allaouchiche
- University of Lyon, University Lyon I Claude Bernard, APCSe VetAgro Sup UP, 2021. A10, Marcy L'Étoile, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| |
Collapse
|
6
|
Costigan C, Balgobin S, Zappitelli M. Drugs in treating paediatric acute kidney injury. Pediatr Nephrol 2023; 38:3923-3936. [PMID: 37052689 DOI: 10.1007/s00467-023-05956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Acute kidney injury (AKI) is a complex syndrome which affects a significant proportion of hospitalized children. The breadth and impact of AKI on health outcomes in both adults and children have come to the fore in recent years with increasing awareness encouraging research advancement. Despite this, management strategies for most types of AKI remain heavily reliant on fluid and electrolyte management, hemodynamic optimization, nephrotoxin avoidance and appropriate initiation of kidney replacement therapy. Specific drugs targeting the mechanisms involved in AKI remain elusive. Recent improvement in appreciation of the complexity of AKI pathophysiology has allowed for greater opportunity to consider novel therapeutic agents. A number of drugs specifically targeting AKI are in various stages of development. This review will consider some novel and repurposed agents; interrogate the plausibility of the proposed mechanisms of action, as they relate to what we know about the pathophysiology of AKI; and review the level of existing literature supporting their efficacy. The evidence base, particularly in children, is limited.
Collapse
Affiliation(s)
- Caoimhe Costigan
- Department of Pediatrics, Division of Nephrology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steve Balgobin
- Department of Pediatrics, Division of Nephrology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael Zappitelli
- Department of Pediatrics, Division of Nephrology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Peter Gilgan Centre for Research and Learning, 686 Bay Street, 11th floor, Rm 11.9722, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
7
|
Doke M, Álvarez-Cubela S, Klein D, Altilio I, Schulz J, Mateus Gonçalves L, Almaça J, Fraker CA, Pugliese A, Ricordi C, Qadir MMF, Pastori RL, Domínguez-Bendala J. Dynamic scRNA-seq of live human pancreatic slices reveals functional endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell Metab 2023; 35:1944-1960.e7. [PMID: 37898119 DOI: 10.1016/j.cmet.2023.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.
Collapse
Affiliation(s)
- Mayur Doke
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isabella Altilio
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joseph Schulz
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alberto Pugliese
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mirza M F Qadir
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
8
|
LaForge JM, Urso K, Day JM, Bourgeois CW, Ross MM, Ahmadzadeh S, Shekoohi S, Cornett EM, Kaye AM, Kaye AD. Non-steroidal Anti-inflammatory Drugs: Clinical Implications, Renal Impairment Risks, and AKI. Adv Ther 2023; 40:2082-2096. [PMID: 36947330 DOI: 10.1007/s12325-023-02481-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common class of drugs utilized for a variety of disorders, including headaches, pain states, fever, and other common conditions. In recent years, a link between NSAIDs and adverse effects has been identified, including renal, heart, and liver disease, bleeding, and increased mortality. NSAID-mediated renal disease is associated with interference with the cyclooxygenase enzyme. Literature evaluating NSAID renal effects has indicated that a number of factors are associated with acute and chronic kidney injury (AKI). Early diagnosis can identify changes in renal function and allow for cessation of NSAID use, limiting the risk for long-term chronic renal disease and in some cases reversal of renal injury. Alternative medications should be considered in those patients identified with morbidity linked to NSAID use. Nephrotoxicity is increased in the elderly population and in hypovolemia, high dose exposure, use of vasoconstrictors such as calcineurin inhibitors, and use of renin-angiotensin-aldosterone system (RAAS) inhibitors or diuretics. Careful risk/benefit considerations from healthcare professionals can limit the incidence and degree of morbidity and mortality, including in NSAID-mediated renal disease. Selective NSAID cyclooxygenase-2 inhibitors also possess risks and therefore clinicians should always recommend short-term courses of this class of drugs versus long-term dosing because of the risk of morbidity and mortality. Given that these drugs are available over the counter as well by prescribing, clinicians must communicate the risks and benefits of NSAIDs and provide sound recommendations to their patients regarding use short and long term.
Collapse
Affiliation(s)
- John M LaForge
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Kelsey Urso
- Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 420 E Superior St, Chicago, IL, 6061, USA
| | - Juan Martin Day
- School of Medicine, Texas A&M University, 400 Bizzell St, College Station, TX, 77843, USA
| | - Cade W Bourgeois
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Maggie M Ross
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Adam M Kaye
- Thomas J. Long School of Pharmacy and Health Sciences, Department of Pharmacy Practice, University of the Pacific, Stockton, CA, 95211, USA
| | - Alan David Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| |
Collapse
|
9
|
Wanyan P, Wang X, Li N, Huang Y, She Y, Zhang L. Mesenchymal stem cells therapy for acute kidney injury: A systematic review with meta-analysis based on rat model. Front Pharmacol 2023; 14:1099056. [PMID: 37124211 PMCID: PMC10133560 DOI: 10.3389/fphar.2023.1099056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Objective: To systematically evaluate the efficacy of mesenchymal stem cells (MSCs) for acute kidney injury (AKI) in preclinical studies and to explore the optimal transplantation strategy of MSCs by network meta-analysis with the aim of improving the efficacy of stem cell therapy. Methods: Computer searches of PubMed, Web of Science, Cochrane, Embase, CNKI, Wanfang, VIP, and CBM databases were conducted until 17 August 2022. Literature screening, data extraction and quality evaluation were performed independently by two researchers. Results and Discussion: A total of 50 randomized controlled animal studies were included. The results of traditional meta-analysis showed that MSCs could significantly improve the renal function and injured renal tissue of AKI rats in different subgroups. The results of network meta-analysis showed that although there was no significant difference in the therapeutic effect between different transplant routes and doses of MSCs, the results of surface under the cumulative ranking probability curve (SUCRA) showed that the therapeutic effect of intravenous transplantation of MSCs was better than that of arterial and intrarenal transplantation, and the therapeutic effect of high dose (>1×106) was better than that of low dose (≤1×106). However, the current preclinical studies have limitations in experimental design, measurement and reporting of results, and more high-quality studies, especially direct comparative evidence, are needed in the future to further confirm the best transplantation strategy of MSCs in AKI. Systematic Review Registration: identifier https://CRD42022361199, https://www.crd.york.ac.uk/prospero.
Collapse
Affiliation(s)
- Pingping Wanyan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Surgery, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Nenglian Li
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yong Huang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yali She
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Li Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
10
|
Rohovyi YY, Tsitrin VY, Bilookiy VV, Sheremet MI, Kolesnik OV. Effect of water diuresis with hydrogen saturation on the course of acute kidney damage during the separation of oxidation and phosphorylation. J Med Life 2022; 15:1397-1402. [PMID: 36567846 PMCID: PMC9762360 DOI: 10.25122/jml-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/24/2022] [Indexed: 12/27/2022] Open
Abstract
Molecular hydrogen has the ability to penetrate cells, easily reach mitochondria, overcome body barriers, penetrate areas of ischemia, edema and inflammation, improve energy supply by supplying additional electrons and have antioxidant and anti-inflammatory effects by neutralizing highly reactive hydroxyl radical and peroxynitrite. In this experiment, we included 60 nonlinear male rats weighing 0.16-0.18 kg and investigated the effect of a negative redox potential solution -297.3±5.27 mV with a molecular hydrogen saturation of 1.2 ppm on the functional-biochemical processes of the kidneys in tissue hypoxia in moderately resistant rats during the separation of oxidation and phosphorylation with the introduction of 2,4-dinitrophenol at a dose of 3 mg/kg. All studies were performed on moderately stable rats. Experimental, functional, biochemical, enzyme-linked immunosorbent, physicochemical, histoenzymochemical, and statistical research methods were used. Under conditions of renal hypoxia in the separation of oxidation and phosphorylation, the use of a solution of negative redox reabsorption of sodium ions in the distal nephron reduces the manifestations of tubular proteinuria, increases the activity of succinate dehydrogenase in the proximal nephron and reduces the redox potential of urine to negative values. Negative redox potential solution with molecular hydrogen saturation has a protective effect on the kidneys and reduces elevated levels of proinflammatory cytokines of tumor necrosis factor-α, interleukin-1-β, and interleukin-6 in blood plasma, and causes oxidative modification of proteins in the renal cortex for their hypoxia in the separation of oxidation and phosphorylation.
Collapse
Affiliation(s)
- Yurii Yevgenivich Rohovyi
- Department of Pathological Physiology, Bukovinian State Medical University, Chernivtsi, Ukraine,Corresponding Author: Yurii Yevgenivich Rohovyi, Department of Pathological Physiology, Bukovinian State Medical University, Chernivtsi, Ukraine. E-mail:
| | - Volf Yakovich Tsitrin
- Department of Pathological Physiology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | | | | | | |
Collapse
|
11
|
Tang W, Zhang Y, Cui S, Yi F. The Growth Factors: Potential Biomarkers and Therapeutic Targets in Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:368-380. [PMID: 36466071 PMCID: PMC9710479 DOI: 10.1159/000526208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Kidney diseases are a prevalent health problem worldwide. Although substantial progress has been made in understanding the pathophysiology of kidney disease, currently there is no satisfactory clinical treatment available to prevent or treat kidney disease. Therefore, strategies to establish early diagnosis, identify the key molecules, and develop novel therapeutic interventions to slow the progression of kidney diseases and reduce their complications are encouraged. SUMMARY The growth factors play a crucial role in the development of kidney diseases. The altered levels of growth factors are usually detected in circulation and urine in the disease course. A growing body of studies has suggested that growth factors, receptors, and related regulators are promising biomarkers for the diagnosis and/or prognosis and potential therapeutic targets for the treatment of kidney diseases. In this review, we summarize recent advances in the potential applications of growth factors for diagnostic biomarkers and therapeutic targets in kidney diseases and highlight their performances in clinical trials. KEY MESSAGES Most diagnostic and therapeutic strategies targeting growth factors are still far from clinical implementation. The better understanding of growth factor-regulated pathophysiology and the progress of new intervention approaches are expected to facilitate the clinical translation of growth factor-based diagnosis and therapy of kidney diseases.
Collapse
Affiliation(s)
- Wei Tang
- Department of Pharmacology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yufeng Zhang
- Department of Pharmacology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sijia Cui
- Department of Pharmacology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
12
|
Sun D, Cui S, Ma H, Zhu P, Li N, Zhang X, Zhang L, Xuan L, Li J. Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115331. [PMID: 35489662 DOI: 10.1016/j.jep.2022.115331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute kidney injury (AKI) is a common clinical disease characterized by rapid loss of renal function. Salvianolate is a prescribed Chinese medicine derived from traditional Chinese medicine Salvia miltiorrhiza bunge that possesses many pharmacological effects, the active components extracted from Salvia miltiorrhiza bunge have been proved to protect ischemia-reperfusion (I/R)-AKI. AIM OF THE STUDY This study aims to validate the therapeutic effect of SAL on I/R-AKI, and explore its potential pharmacological mechanism. MATERIALS AND METHODS Mice were pretreated with/without salvianolate (10, 30, and 90 mg/kg) before renal ischemia-reperfusion operation. Serum creatinine, BUN, and H&E staining were performed to evaluate renal function. Immunofluorescence analysis was conducted to measure renal tubular injury including inflammatory factors and peroxide level. Apoptosis of the kidney tissues was determined by TUNEL assay. Keap1-Nrf2-ARE and apoptosis signaling pathways were measured by Western blot, RT-PCR, and YO-PRO-1 staining in kidneys or NRK52E cells. RESULTS Pretreatment with SAL effectively alleviated renal function and ameliorated epithelial tubular injury, oxidative stress, and inflammatory response. Furthermore, the mechanistic study demonstrated that the SAL exerts anti-apoptotic effects through activation of the Keap1-Nrf2-ARE signaling pathway in renal tubular cells. CONCLUSION These findings indicate the therapeutic benefit of salvianolate in the protection of renal injury from ischemia-reperfusion, and strengthen the evidence for the AKI treatment strategy by the anti-oxidative stress response, suggesting that SAL may be a potential agent for the treatment of AKI.
Collapse
Affiliation(s)
- Dan Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haijian Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Pengfei Zhu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ni Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lina Zhang
- Shanghai Green Valley Pharmaceutical Co.,Ltd, Shanghai, China
| | - Lijiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Hasson D, Menon S, Gist KM. Improving acute kidney injury diagnostic precision using biomarkers. Pract Lab Med 2022; 30:e00272. [PMID: 35494424 PMCID: PMC9046880 DOI: 10.1016/j.plabm.2022.e00272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is common in hospitalized patients of all ages and is associated with significant morbidity and mortality. Accurate prediction and early identification of AKI is of utmost importance because no therapy exists to mitigate AKI once it has occurred. Yet, serum creatinine lacks adequate sensitivity and specificity, and quantification of urine output is challenging in incontinent children without indwelling bladder catheters. Integration of clinically available biomarkers have the potential to delineate unique AKI phenotypes that could have important prognostic and therapeutic implications. Plasma Cystatin C, urine neutrophil gelatinase associated lipocalin (NGAL) and the urinary product of tissue inhibitor metalloproteinase (TIMP-2) and insulin growth factor binding protein-7 (IGFBP7) are clinically available. These biomarkers have been studied in heterogenous populations across the age spectrum and in a variety of clinical settings for prediction of AKI. The purpose of this review is to describe and discuss the clinically available AKI biomarkers including how they have been used to delineate AKI phenotypes.
Collapse
Affiliation(s)
- Denise Hasson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Shina Menon
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | - Katja M. Gist
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| |
Collapse
|
14
|
Salvadori M, Tsalouchos A. Innovative immunosuppression in kidney transplantation: A challenge for unmet needs. World J Transplant 2022; 12:27-41. [PMID: 35433332 PMCID: PMC8968476 DOI: 10.5500/wjt.v12.i3.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the optimal results obtained in kidney transplantation and to the lack of interest of the industries, new innovative drugs in kidney transplantation are difficult to be encountered. The best strategy to find the new drugs recently developed or under development is to search in the sections of kidney transplantation still not completely covered by the drugs on the market. These unmet needs are the prevention of delayed graft function (DGF), the protection of the graft over the long time and the desensitization of preformed anti human leukocyte antigen antibodies and the treatment of the acute antibody-mediated rejection. These needs are particularly relevant due to the expansion of some kind of kidney transplantation as transplantation from non-heart beating donor and in the case of antibody-incompatible grafts. The first are particularly exposed to DGF, the latter need a safe desensitization and a safe treatments of the antibody mediated rejections that often occur. Particular caution is needed in treating these drugs. First, they are described in very recent studies and the follow-up of their effect is of course rather short. Second, some of these drugs are still in an early phase of study, even if in well-conducted randomized controlled trials. Particular caution and a careful check need to be used in trials launched 2 or 3 years ago. Indeed, is always necessary to verify whether the study is still going on or whether and why the study itself was abandoned.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Division of Nephrology, Santa Maria Annunziata Hospital, Florence 50012, Italy
| |
Collapse
|
15
|
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinically critical disease exhibiting an acute decline in renal function. The lack of an effective prevention and treatment method equates to a high morbidity and mortality rate. Consequently, over the past few decades, many therapeutic drugs with different mechanisms of action have been proposed and gradually applied to the clinic. The involved drug mechanisms evaluated have included hemodynamic modulation, anti-inflammatory, antioxidant, repair agents, metabolic derangement and mitochondrial function. AREAS COVERED The authors of this review provide the reader with a reference point for the latest advances in pharmacotherapy in acute kidney injury. This is achieved by the evaluation of the latest data collected on potential therapeutic drugs with different mechanisms of action, as well as their preclinical and clinical impact on AKI. EXPERT OPINION Presently, the vast majority of drugs are still in clinical development, which is a huge challenge. Nevertheless, in addition to current chemical drugs and gene therapy strategies, the advent of mesenchymal stem cell treatments and other emerging pharmaceutical strategies could enable clinicians to better treat AKI. Due to the nonselective distribution and low bioavailability of some of the latest pharmaceutical strategies, there is hope that these treatment options may provide more efficacious avenues.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Zou
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojing Cao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Abbas W, Altemimi M, Qassam H, Hameed AA, Zigam Q, Abbas L, Jabir M, Hadi N. Fimasartan ameliorates renal ischemia reperfusion injury via modulation of oxidative stress, inflammatory and apoptotic cascades in a rat model. J Med Life 2022; 15:241-251. [PMID: 35419091 PMCID: PMC8999095 DOI: 10.25122/jml-2021-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) can be defined as changes in the functions and structures of the tissues resulting from the restoration of blood after a period of ischemia. This study aimed to assess the potential protective effect of Fimasartan (angiotensin receptor antagonist) in the bilateral renal IRI in male rats through its potential effect on renal functions, modulation of the inflammatory cascade, oxidative stress, and apoptotic effect. The animals were equally assigned into four groups. The sham (negative control) group was exposed to surgical conditions without induction of IRI. The control group was exposed to ischemia by occluding the renal pedicles by clamps for 30 min, followed by restoration of blood for 2h. The vehicle-treated group received dimethyl sulfoxide (DMSO) by intraperitoneal injection (IP) 30 minutes before clamping. Fimasartan-treated group: rats pretreated with Fimasartan a dose of 3 mg/kg IP; this was half hour before occluding the renal pedicles. Animals were then exposed to 30 min ischemia (clamping the renal pedicles) followed by 2h reperfusion by releasing the clamps. Blood samples were collected to examine the levels of serum urea and creatinine. Renal tissue was used to measure the levels of cytokines (TNFα, IL-6) and total antioxidant capacity (TAC). Immunohistochemistry was used to assess the levels of Bax, caspase 3, and Bcl-2. Histopathological analyses were performed to detect the parenchymal injury. The present study shows that pretreatment with Fimasartan improves kidney function through its effects on oxidative stress, cytokines, and apoptotic markers.
Collapse
Affiliation(s)
- Weaam Abbas
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Murooj Altemimi
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Heider Qassam
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Ahmed Abdul Hameed
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Jabir Ibn Hayyan Medical University, Najaf, Iraq
| | - Qassim Zigam
- Department of Pharmacology, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Lamaan Abbas
- Al-Sadr Medical City, Al-Najaf Health Directorate, Al-Najaf Al-Ashraf, Iraq
| | - Majid Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Najah Hadi
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq,Corresponding Author: Najah Hadi, Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq. E-mail: ;
| |
Collapse
|
17
|
Advances in pediatric acute kidney injury. Pediatr Res 2022; 91:44-55. [PMID: 33731820 DOI: 10.1038/s41390-021-01452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023]
Abstract
The objective of this study was to inform the pediatric nephrologists of recent advances in acute kidney injury (AKI) epidemiology, pathophysiology, novel biomarkers, diagnostic tools, and management modalities. Studies were identified from PubMed, EMBASE, and Google Scholar for topics relevant to AKI. The bibliographies of relevant studies were also reviewed for potential articles. Pediatric (0-18 years) articles from 2000 to May 2020 in the English language were included. For epidemiological outcomes analysis, a meta-analysis on data regarding AKI incidence, mortality, and proportion of kidney replacement therapy was performed and an overall pooled estimate was calculated using the random-effects model. Other sections were created highlighting pathophysiology, novel biomarkers, changing definitions of AKI, evolving tools for AKI diagnosis, and various management modalities. AKI is a common condition seen in hospitalized children and the diagnosis and management have shown to be quite a challenge. However, new standardized definitions, advancements in diagnostic tools, and the development of novel management modalities have led to increased survival benefits in children with AKI. IMPACT: This review highlights the recent innovations in the field of AKI, especially in regard to epidemiology, pathophysiology, novel biomarkers, diagnostic tools, and management modalities.
Collapse
|
18
|
McMahon KR, Chui H, Rassekh SR, Schultz KR, Blydt-Hansen TD, Mammen C, Pinsk M, Cuvelier GDE, Carleton BC, Tsuyuki RT, Ross CJ, Devarajan P, Huynh L, Yordanova M, Crépeau-Hubert F, Wang S, Cockovski V, Palijan A, Zappitelli M. Urine Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 to Detect Pediatric Cisplatin-Associated Acute Kidney Injury. KIDNEY360 2021; 3:37-50. [PMID: 35368557 PMCID: PMC8967607 DOI: 10.34067/kid.0004802021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023]
Abstract
Background Few studies have described associations between the AKI biomarkers urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) with AKI in cisplatin-treated children. We aimed to describe excretion patterns of urine NGAL and KIM-1 and associations with AKI in children receiving cisplatin. Methods Participants (n=159) were enrolled between 2013 and 2017 in a prospective cohort study conducted in 12 Canadian pediatric hospitals. Participants were evaluated at early cisplatin infusions (at first or second cisplatin cycle) and late cisplatin infusions (last or second-to-last cycle). Urine NGAL and KIM-1 were measured (1) pre-cisplatin infusion, (2) post-infusion (morning after), and (3) at hospital discharge at early and late cisplatin infusions. Primary outcome: AKI defined by serum creatinine rise within 10 days post-cisplatin, on the basis of Kidney Disease Improving Global Outcomes guidelines criteria (stage 1 or higher). Results Of 159 children, 156 (median [interquartile range (IQR)] age: 5.8 [2.4-12.0] years; 78 [50%] female) had biomarker data available at early cisplatin infusions and 127 had data at late infusions. Forty six of the 156 (29%) and 22 of the 127 (17%) children developed AKI within 10 days of cisplatin administration after early and late infusions, respectively. Urine NGAL and KIM-1 concentrations were significantly higher in patients with versus without AKI (near hospital discharge of late cisplatin infusion, median [IQR] NGAL levels were 76.1 [10.0-232.7] versus 14.9 [5.4-29.7] ng/mg creatinine; KIM-1 levels were 4415 [2083-9077] versus 1049 [358-3326] pg/mg creatinine; P<0.01). These markers modestly discriminated for AKI (area under receiver operating characteristic curve [AUC-ROC] range: NGAL, 0.56-0.72; KIM-1, 0.48-0.75). Biomarker concentrations were higher and better discriminated for AKI at late cisplatin infusions (AUC-ROC range, 0.54-0.75) versus early infusions (AUC-ROC range, 0.48-0.65). Conclusions Urine NGAL and KIM-1 were modest at discriminating for cisplatin-associated AKI. Further research is needed to determine clinical utility and applicability of these markers and associations with late kidney outcomes.
Collapse
Affiliation(s)
- Kelly R. McMahon
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Hayton Chui
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada,Faculty of Health Sciences, McMaster Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Shahrad Rod Rassekh
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Kirk R. Schultz
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Tom D. Blydt-Hansen
- Division of Pediatric Nephrology, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Cherry Mammen
- Division of Pediatric Nephrology, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Maury Pinsk
- Department of Pediatrics and Child Health, Section of Pediatric Nephrology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoffrey D. E. Cuvelier
- Division of Pediatric Oncology-Hematology-BMT, Department of Pediatrics and Child Health, University of Manitoba, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Bruce C. Carleton
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia and BC Children’s Hospital and Research Institute, Vancouver, British Columbia, Canada
| | - Ross T. Tsuyuki
- EPICORE Centre, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Colin J.D. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Louis Huynh
- Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Mariya Yordanova
- Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Quebec, Canada
| | - Frédérik Crépeau-Hubert
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada
| | - Stella Wang
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Vedran Cockovski
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Ana Palijan
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada
| | - Michael Zappitelli
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada,Department of Pediatrics, Division of Nephrology, Toronto Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Vargas I, Stephenson DJ, Baldwin M, Gaut JP, Chalfant CE, Pan H, Wickline SA. Sustained local inhibition of thrombin preserves renal microarchitecture and function after onset of acute kidney injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 38:102449. [PMID: 34303838 PMCID: PMC8541929 DOI: 10.1016/j.nano.2021.102449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/24/2022]
Abstract
Acute kidney injury (AKI) management remains mainly supportive as no specific therapeutic agents directed at singular signaling pathways have succeeded in clinical trials. Here, we report that inhibition of thrombin-driven clotting and inflammatory signaling with use of locally-acting thrombin-targeted perfluorocarbon nanoparticles (PFC NP) protects renal vasculature and broadly modulates diverse inflammatory processes that cause renal ischemia reperfusion injury. Each PFC NP was complexed with ~13,650 copies of the direct thrombin inhibitor, PPACK (proline-phenylalanine-arginine-chloromethyl-ketone). Mice treated after the onset of AKI with PPACK PFC NP exhibited downregulated VCAM-1, ICAM-1, PGD2 prostanoid, M-CSF, IL-6, and mast cell infiltrates. Microvascular architecture, tubular basement membranes, and brush border components were better preserved. Non-reperfusion was reduced as indicated by reduced red blood cell trapping and non-heme iron. Kidney function and tubular necrosis improved at 24 hours versus the untreated control group, suggesting a benefit for dual inhibition of thrombosis and inflammation by PPACK PFC NP.
Collapse
Affiliation(s)
- Ian Vargas
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Margaret Baldwin
- Department of Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Joseph P Gaut
- Washington University in St. Louis, Department of Pathology and Immunology and Department of Medicine, St Louis, MO, USA
| | - Charles E Chalfant
- Department of Cell biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA; The Moffitt Cancer Center, Tampa, FL; Research Service, James A. Haley Veterans Hospital, Tampa, FL
| | - Hua Pan
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Samuel A Wickline
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
20
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Zhao Y, Pu M, Wang Y, Yu L, Song X, He Z. Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications. J Control Release 2021; 336:233-251. [PMID: 34171444 DOI: 10.1016/j.jconrel.2021.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI), a major health issue concerning ~50% of patients treated in intensive care units, generally leads to severe renal damage associated with high mortality rate. The application of nanotechnology for the management of AKI has profound potential of further development, providing innovative strategies for predicting the early onset and progression of renal disease and improving the treatment efficacy of the life-threating AKI. This review has comprehensively summarized the nanomedicines in the application of AKI diagnosis and emphatically discussed the unique potential of various nanotechnology-based drug delivery systems (e.g., polymeric nanoparticles, organic nanoparticles, inorganic nanoparticles, lipid-based nanoparticles, hydrogels etc.) in the treatment of AKI, allowing for improved therapeutic index by enhancing both efficacy and safety concurrently. These approaches may mechanically mitigate oxidative stress, inflammation, and mitochondrial and other organellar damage, etc. In addition, the combination of nanotechnology with stem cells-based therapy or gene therapy has been explored for reducing renal tissues damage and promoting kidney repair or recovery from AKI. The review provides insights into the synthesis, advantages, and limitations of innovative nanomedicine application in the early detection and effective treatment of AKI.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mingju Pu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
22
|
Wang X, Chen X, Tang F, Luo W, Fang J, Qi C, Sun H, Xiao H, Peng X, Shao J. Be aware of acute kidney injury in critically ill children with COVID-19. Pediatr Nephrol 2021; 36:163-169. [PMID: 32844290 PMCID: PMC7447530 DOI: 10.1007/s00467-020-04715-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication of critically ill adult patients with COVID-19. However, currently, no studies investigate kidney impairment in children with COVID-19. We investigated incidence and treatment of AKI in pediatric patients with COVID-19 in Wuhan Children's Hospital during the early stages of the COVID-19 pandemic and discuss possible mechanisms of AKI related to SARS-CoV-2 infection. METHODS By extracting data from electronic medical records, we conducted a retrospective observational study of kidney involvement in confirmed pediatric COVID-19 cases in Wuhan Children's Hospital during the coronavirus outbreak, from January 24 to March 20, 2020. Clinical presentations, clinical courses, laboratory findings, and medical interventions are described below. RESULTS Among 238 confirmed COVID-19 cases, only three were critically ill and needed intensive care unit (ICU) admission. All three developed AKI, but AKI was not detected in any non-critically ill patients outside the ICU. Two of the three patients with AKI had prodromal gastrointestinal symptoms. Significantly elevated interleukin-6 (IL-6) levels and complement activation were observed in these patients with AKI. The three patients with AKI were treated with plasma exchange (PE) and continuous kidney replacement therapy (CKRT), resulting in one complete recovery, one partial recovery, and one mortality due to critical illness. CONCLUSIONS Critically ill children with COVID-19 may develop AKI, especially following prodromal gastrointestinal symptoms. An inflammatory storm and complement-mediated injury may underlie AKI development in children with COVID-19. Our study supports implantation of PE and CKRT in management of critically ill patients with AKI.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China
| | - Xingfeng Chen
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China
| | - Feng Tang
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China
| | - Wanjun Luo
- Hospital Acquired Infection Control Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China
| | - Jian Fang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China
| | - Chang Qi
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China
| | - Hua Sun
- Department of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China
| | - Xuehua Peng
- Medical Imaging Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China
| | - Jianbo Shao
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China.
- Medical Imaging Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430000, China.
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), 100# Hongkong Road, Wuhan, 430000, China.
| |
Collapse
|
23
|
Kellum JA, van Till JWO, Mulligan G. Targeting acute kidney injury in COVID-19. Nephrol Dial Transplant 2020; 35:1652-1662. [PMID: 33022712 PMCID: PMC7665651 DOI: 10.1093/ndt/gfaa231] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
As of 15 August 2020, Coronavirus disease 2019 (COVID-19) has been reported in >21 million people world-wide and is responsible for more than 750,000 deaths. The occurrence of acute kidney injury (AKI) in patients hospitalized with COVID-19 has been reported to be as high as 43%. This is comparable to AKI in other forms of pneumonia requiring hospitalization, as well as in non-infectious conditions like cardiac surgery. The impact of AKI on COVID-19 outcomes is difficult to assess at present but, similar to other forms of sepsis, AKI is strongly associated with hospital mortality. Indeed, mortality is reported to be very low in COVID-19 patients without AKI. Given that AKI contributes to fluid and acid-base imbalances, compromises immune response and may impair resolution of inflammation, it seems likely that AKI contributes to mortality in these patients. The pathophysiologic mechanisms of AKI in COVID-19 are thought to be multifactorial including systemic immune and inflammatory responses induced by viral infection, systemic tissue hypoxia, reduced renal perfusion, endothelial damage and direct epithelial infection with Severe Acute Respiratory Syndrome Coronavirus 2. Mitochondria play a central role in the metabolic deregulation in the adaptive response to the systemic inflammation and are also found to be vital in response to both direct viral damage and tissue reperfusion. These stress conditions are associated with increased glycolysis and reduced fatty acid oxidation. Thus, there is a strong rationale to target AKI for therapy in COVID-19. Furthermore, many approaches that have been developed for other etiologies of AKI such as sepsis, inflammation and ischemia-reperfusion, have relevance in the treatment of COVID-19 AKI and could be rapidly pivoted to this new disease.
Collapse
Affiliation(s)
- John A Kellum
- Department of Critical Care Medicine, The Center for Critical Care Nephology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | |
Collapse
|
24
|
Borawski B, Malyszko J. Iron, ferroptosis, and new insights for prevention in acute kidney injury. Adv Med Sci 2020; 65:361-370. [PMID: 32592957 DOI: 10.1016/j.advms.2020.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 06/14/2020] [Indexed: 01/01/2023]
Abstract
Acute kidney injury (AKI) is a very common condition with high morbidity and mortality, which can be seen in 5-7% of all hospitalized patients and in up to 57% of all intensive care unit admissions. Despite recent advances in clinical care, the prevalence of AKI has been shown to increase with virtually no change in mortality. AKI is a complex syndrome occurring in a variety of clinical settings. Early detection is crucial to prevent irreversible loss of renal function. The pathogenesis of AKI is highly multifactorial and complex, including vasoconstriction, reactive oxygen species formation, cell death, abnormal immune modulators and growth factors. Emerging evidence from both human and animal studies suggests that dysregulation of iron metabolism may play a potentially important role in AKI. Therefore, targeting the iron homeostasis may provide a new therapeutic intervention for AKI. New therapeutic strategies including iron chelation therapy, targeting iron metabolism related proteins and direct inhibitors of ferroptosis are imperative to improve the outcomes of patients. Taking into consideration the complexity of AKI, one intervention may not be enough for therapeutic success. Future preclinical studies in animal disease models followed by well-designed clinical trials should be conducted to extend findings from animal AKI models to humans.
Collapse
|
25
|
Battistone MA, Mendelsohn AC, Spallanzani RG, Allegretti AS, Liberman RN, Sesma J, Kalim S, Wall SM, Bonventre JV, Lazarowski ER, Brown D, Breton S. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J Clin Invest 2020; 130:3734-3749. [PMID: 32287042 PMCID: PMC7324186 DOI: 10.1172/jci134791] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Ischemic acute kidney injury (AKI), a complication that frequently occurs in hospital settings, is often associated with hemodynamic compromise, sepsis, cardiac surgery, or exposure to nephrotoxins. Here, using a murine renal ischemia/reperfusion injury (IRI) model, we show that intercalated cells (ICs) rapidly adopted a proinflammatory phenotype after IRI. Wwe demonstrate that during the early phase of AKI either blockade of the proinflammatory P2Y14 receptor located on the apical membrane of ICs or ablation of the gene encoding the P2Y14 receptor in ICs (a) inhibited IRI-induced increase of chemokine expression in ICs, (b) reduced neutrophil and monocyte renal infiltration, (c) reduced the extent of kidney dysfunction, and (d) attenuated proximal tubule damage. These observations indicate that the P2Y14 receptor participates in the very first inflammatory steps associated with ischemic AKI. In addition, we show that the concentration of the P2Y14 receptor ligand UDP-glucose (UDP-Glc) was higher in urine samples from intensive care unit patients who developed AKI compared with patients without AKI. In particular, we observed a strong correlation between UDP-Glc concentration and the development of AKI in cardiac surgery patients. Our study identifies the UDP-Glc/P2Y14 receptor axis as a potential target for the prevention and/or attenuation of ischemic AKI.
Collapse
Affiliation(s)
- Maria Agustina Battistone
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexandra C. Mendelsohn
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raul German Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rachel N. Liberman
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Juliana Sesma
- Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Susan M. Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Eduardo R. Lazarowski
- Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sylvie Breton
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
IGF-1 Deficiency Rescue and Intracellular Calcium Blockade Improves Survival and Corresponding Mechanisms in a Mouse Model of Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21114095. [PMID: 32521790 PMCID: PMC7312627 DOI: 10.3390/ijms21114095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
This study was undertaken to test two therapies for acute kidney injury (AKI) prevention, IGF-1, which is renal protective, and BTP-2, which is a calcium entry (SOCE) inhibitor. We utilized lipopolysaccharide (LPS) IP, as a systemic model of AKI and studied in five groups of animals. Three experiments showed that at 7 days: (1) LPS significantly reduced serum IGF-1 and intramuscular IGF-I in vivo gene therapy rescued this deficiency. (2) Next, at the 7-day time point, our combination therapy, compared to the untreated group, caused a significant increase in survival, which was noteworthy because all of the untreated animals died in 72 h. (3) The four pathways associated with inflammation, including (A) increase in cytosolic calcium, (B) elaboration of proinflammatory cytokines, (C) impairment of vascular integrity, and (D) cell injury, were adversely affected in renal tissue by LPS, using a sublethal dose of LPS. The expression of several genes was measured in each of the above pathways. The combined therapy of IGF-1 and BTP-2 caused a favorable gene expression response in all four pathways. Our current study was an AKI study, but these pathways are also involved in other types of severe inflammation, including sepsis, acute respiratory distress syndrome, and probably severe coronavirus infection.
Collapse
|
27
|
Uddin MJ, Dorotea D, Pak ES, Ha H. Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury. Biomol Ther (Seoul) 2020; 28:213-221. [PMID: 32336052 PMCID: PMC7216742 DOI: 10.4062/biomolther.2019.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/29/2023] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a non-receptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
28
|
Chen Y, Tang W, Yu F, Xie Y, Jaramillo L, Jang HS, Li J, Padanilam BJ, Oupický D. Determinants of preferential renal accumulation of synthetic polymers in acute kidney injury. Int J Pharm 2019; 568:118555. [PMID: 31344445 PMCID: PMC6708481 DOI: 10.1016/j.ijpharm.2019.118555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/17/2022]
Abstract
Acute kidney injury (AKI) is a major kidney disease associated with high mortality and morbidity. AKI may lead to chronic kidney disease and end-stage renal disease. Currently, the management of AKI is mainly focused on supportive treatments. Previous studies showed macromolecular delivery systems as a promising method to target AKI, but little is known about how physicochemical properties affect the renal accumulation of polymers in ischemia-reperfusion AKI. In this study, a panel of fluorescently labeled polymers with a range of molecular weights and net charge was synthesized by living radical polymerization. By testing biodistribution of the polymers in unilateral ischemia-reperfusion mouse model of AKI, the results showed that negatively charged and neutral polymers had the greatest potential for selectively accumulating in I/R kidneys. The polymers passed through glomerulus and were retained in proximal tubular cells for up to 24 h after injection. The results obtained in the unilateral model were validated in a bilateral ischemic-reperfusion model. This study demonstrates for the first time that polymers with specific physicochemical characteristics exhibit promising ability to accumulate in the injured AKI kidney, providing initial insights on their use as polymeric drug delivery systems in AKI.
Collapse
Affiliation(s)
- Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lee Jaramillo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
29
|
Cho MH, Kang HG. Acute kidney injury and continuous renal replacement therapy in children; what pediatricians need to know. KOREAN JOURNAL OF PEDIATRICS 2018; 61:339-347. [PMID: 30360040 PMCID: PMC6258966 DOI: 10.3345/kjp.2018.06996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is characterized by abrupt deterioration of renal function, and its diagnosis relies on creatinine measurements and urine output. AKI is associated with higher morbidity and mortality, and is a risk factor for development of chronic kidney disease. There is no proven medication for AKI. Therefore, prevention and early detection are important. Physicians should be aware of the risk factors for AKI and should monitor renal function in high-risk patients. Management of AKI includes optimization of volume status and renal perfusion, avoidance of nephrotoxic agents, and sufficient nutritional support. Continuous renal replacement therapy is widely available for critically ill children, and this review provides basic information regarding this therapy. Long-term follow-up of patients with AKI for renal function, blood pressure, and proteinuria is recommended.
Collapse
Affiliation(s)
- Myung Hyun Cho
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Abstract
Pathophysiologically, the classification of acute kidney injury (AKI) can be divided into three categories: (1) prerenal, (2) intrinsic, and (3) postrenal. Emerging evidence supports the involvement of renal tubular epithelial cells and the innate and adaptive arms of the immune system in the pathogenesis of intrinsic AKI. Pro-inflammatory damage-associated molecular patterns, pathogen-associated molecular patterns, hypoxia inducible factors, toll-like receptors, complement system, oxidative stress, adhesion molecules, cell death, resident renal dendritic cells, neutrophils, T and B lymphocytes, macrophages, natural killer T cells, cytokines, and secreted chemokines contribute to the immunopathogenesis of AKI. However, other immune cells and pathways such as M2 macrophages, regulatory T cells, progranulin, and autophagy exhibit anti-inflammatory properties and facilitate kidney tissue repair after AKI. Thus, therapies for AKI include agents such as anti-inflammatory (e.g., recombinant alkaline phosphatase), antioxidants (iron chelators), and apoptosis inhibitors. In preclinical toxicity studies, drug-induced kidney injury can be seen after exposure to a nephrotoxicant test article due to immune mechanisms and dysregulation of innate, and/or adaptive cellular immunity. The focus of this review will be on intrinsic AKI, as it relates to the immune and renal systems cross talks focusing on the cellular and pathophysiologic mechanisms of AKI.
Collapse
Affiliation(s)
- Zaher A. Radi
- Drug Safety R&D, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Paediatric acute kidney injury: can we match therapy with resources around the world? Intensive Care Med 2018; 45:86-88. [DOI: 10.1007/s00134-018-5166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
|