1
|
Kovacik A, Helczman M, Arvay J, Jambor T, Kovacikova E. Toxic elements and fatty acid composition in the freshwater fish family Cyprinidae (Rafinesque 1815): balancing nutritional benefits and health risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:676. [PMID: 40419816 DOI: 10.1007/s10661-025-14112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/11/2025] [Indexed: 05/28/2025]
Abstract
The aim of this study was to assess the toxicity of heavy metals/metalloids, including arsenic, cadmium, lead, and mercury accumulated in the muscle of commonly consumed fish from the Cyprinidae. We discussed the importance of fatty acids in the human diet and investigated their profile in the muscle of different fish species. Additionally, our goal was to evaluate the benefits of fish consumption in relation to its risks, not only by considering the advantages of fatty acids and the drawbacks of heavy metal toxicity but also by examining how these pollutants may alter the fatty acid profile in fish muscle, potentially reducing the quality of their nutritional benefits. We categorized these fatty acids based on their proportions in total lipids into muscle tissue of the SFA (saturated fatty acids), MUFA (monounsaturated fatty acids), and PUFA (polyunsaturated fatty acids) groups. Subsequently, we have described the toxic effects of selected elements on human health, reviewing that investigated exposure levels of these toxic elements in fish muscle and the safety of consumption through risk assessment tools such as total hazard quotient (THQ) and carcinogenic risk (CR) calculations. In the final section we focused on lipid metabolism, which is significantly affected by exposure to toxic elements. We searched for a possible relationship between the presence of toxic elements and changes in the fatty acid profile of fish muscle. The knowledge from other studies led us to the possibility of a lower PUFA content due to the damage of double bonds and the subsequent degradation of these fatty acids. Total fatty acid profile is a crucial factor in evaluating health risks and serve as an important indicator of fish meat quality. On the other hand, it can serve as a potential indicator of environmental contamination by these toxicants.
Collapse
Affiliation(s)
- Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Marek Helczman
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Eva Kovacikova
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| |
Collapse
|
2
|
Xu B, Zhuang Y, Zhang Y, Liu S, Fan R, Jiang W. Apigenin Alleviates Intestinal Ischemia/Reperfusion Injury via Upregulating Nrf2-Mediated Tight Junction Integrity. Mol Nutr Food Res 2025; 69:e70043. [PMID: 40150847 DOI: 10.1002/mnfr.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Epithelial barrier dysfunction, critically involved in intestinal ischemia/reperfusion (I/R) injury, is significantly regulated by Nrf2-mediated oxidative stress. Apigenin, a flavonoid commonly found in fruits and vegetables with diverse biological properties, has an unclear impact on intestinal I/R injury. We hypothesize that apigenin improves intestinal barrier dysfunction by activating Nrf2 signaling. Thirty rats were randomly divided into five groups to establish an I/R model using superior mesenteric artery occlusion. Hypoxia and re-oxygenation (H/R) model was developed utilizing Caco-2 and IEC-6 cells, which were exposed to hypoxic conditions followed by re-oxygenation. Apigenin protected against intestinal mucosal damage by suppressing inflammatory cytokines release (TNF-α, IL-1β, IL-6, MPO, p < 0.01), ameliorating oxidative stress (MDA, SOD, GSH, GSH-Px, p < 0.01), and improving barrier dysfunction (DAO and TEER, p < 0.01) both in vivo and in vitro, without causing significant changes in the corresponding normal controls (p > 0.05). Apigenin up-regulated the protein expression of Nrf2, HO-1, and tight junction (TJ) proteins (p < 0.01). Furthermore, the knockdown of Nrf2 significantly abrogated apigenin-enhanced the TJ expression. Apigenin pretreatment alleviates intestinal I/R-induced barrier damage through Nrf2 activation and TJ upregulation, offering new strategies for preventing or treating I/R-associated intestinal diseases.
Collapse
Affiliation(s)
- Bin Xu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Biomedical Engineering & Technology, Qilu Medical University, Zibo, Shandong, China
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Zhuang
- Key Laboratory of Biomedical Engineering & Technology, Qilu Medical University, Zibo, Shandong, China
| | - Ying Zhang
- Department of Environmental Physiology Faculty of Medicine, Shimane University, Shimane, Japan
| | - Suoning Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rongjun Fan
- Key Laboratory of Biomedical Engineering & Technology, Qilu Medical University, Zibo, Shandong, China
| | - Weiru Jiang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
4
|
Deviche P, Sweazea K, Upah N. Adjustments to energy provisioning and oxidative balance in response to temperature in a wild passerine. Comp Biochem Physiol A Mol Integr Physiol 2025:111864. [PMID: 40199398 DOI: 10.1016/j.cbpa.2025.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Climate change and urbanization are associated with elevated ambient temperature (Ta). This increase may negatively impact organisms by creating conditions that are outside their resilience limits, but the physiological mechanisms that limit phenotypic plasticity in response to Ta variation remain poorly understood. We investigated these mechanisms in captive House Finches, Haemorhous mexicanus, a common native resident of rural and urban environments. We exposed finches to temperatures either slightly below the species' lower critical temperature (constant 20 °C; COOL group) or close to its upper critical temperature (daily min. 27 °C, daily max. 35 °C; WARM group) for two weeks. Birds in the COOL group ate more than birds in the WARM group, which is consistent with the prediction that cool Ta exposure increased the metabolic rate. However, finches of the two groups did not differ with regard to their body masses, fat reserves, or blood concentrations of ketone bodies, uric acid, and erythrocytic peroxidized lipids. Thus, exposure to the two experimental treatments did not result in major metabolic differences between groups. Acute stress caused by handling and restraint for 30 min decreased plasma uric acid, which may have been associated with its utilization as a free radical scavenger and so may have decreased stress-associated oxidative damage. Acute stress also increased plasma ketone bodies, suggesting increased lipid oxidation. These stress-related metabolic changes did not differ in the COOL and WARM groups, indicating within the range of Ta to which birds were exposed that temperature did not affect the birds' physiological sensitivity to acute stress.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Nadia Upah
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
5
|
Du H, Yang K, He Z, Su L, Tan X, Li Z, Song W, Cao L, Ma Y. Tianjihuang compound alleviates aflatoxin B 1-induced hepatic steatosis and fibrosis by targeting PPARα-TGF-β pathway in ducklings. Poult Sci 2025; 104:105006. [PMID: 40073684 PMCID: PMC11932684 DOI: 10.1016/j.psj.2025.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Aflatoxin B1 (AFB1), a potent mycotoxin, poses a significant threat to the poultry industry, particularly affecting the health and growth of ducklings. The present study aimed to investigate the therapeutic effects and mechanisms of the Tianjihuang compound (HRS), a traditional Chinese medicine formulation, on AFB1-induced chronic toxicity in ducklings. Firstly, 30 ingredients, including neochlorogenic acid, kaempferol 3-alpha-D-galactoside, quercetin, hispidulin, caffeic acid, and myricetin, were identified from HRS with UPLC-MS/MS method. Then, over a 25-day experimental period, a total of 100 one-day-old Sichuan Sheldrakes were randomly divided into five groups: control, AFB1 model, and HRS high (4 g/kg), medium (2 g/kg), and low dosage (1 g/kg) groups. Results indicated that HRS effectively mitigated the negative impact on the productivity, reduced the levels of liver index, AST, ALT, and AST/ALT in serum, increased the levels of serum TP content, and obviously alleviated inflammatory cell infiltration, liver fibrosis, and liver steatosis induced by AFB1. Additionally, HRS enhanced the levels of GST, CAT, and T-AOC, and decreased the levels of MDA and AFB1-DNA, thereby alleviating oxidative stress and AFB1-DNA generation caused by AFB1. Transcriptome analysis revealed that HRS may improve liver injury in AFB1-chronically poisoned ducklings by regulating the ECM receptor interaction, fatty acid metabolism, cell adhesion molecules, TGF-β signaling pathway, and PPAR signaling pathway. Further RT-qPCR analysis revealed that HRS might downregulate the expression of ASCL4 gene by promoting the activation of PPARα, thereby inhibiting the activation of the TGF-β signaling pathway and improving liver steatosis and fibrosis caused by AFB1 in ducklings. In conclusion, the HRS exhibits hepatoprotective effects against AFB1-induced chronic toxicity in ducklings by restoring liver function, enhancing antioxidant capacity, and its mechanism of damage resistance may be related to the improvement of liver steatosis and fibrosis in ducklings by inhibiting the PPARα-TGF-β signaling pathway.
Collapse
Affiliation(s)
- Hongxu Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China.
| | - Kunzhao Yang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Zhengke He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Lijuan Su
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Xiaoyan Tan
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Zhangxun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Weijie Song
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China
| | - Yue Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China
| |
Collapse
|
6
|
Yuan J, Li Y, Miao J, Zhang X, Xiong Y, Ma F, Ding J, He S. Bamboo leaf flavonoids ameliorate cyclic heat stress-induced oxidative damage in broiler liver through activation of Keap1-Nrf2 signaling pathway. Poult Sci 2025; 104:104952. [PMID: 40043675 PMCID: PMC11927693 DOI: 10.1016/j.psj.2025.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/08/2025] [Accepted: 02/25/2025] [Indexed: 03/24/2025] Open
Abstract
Heat stress (HS) induces oxidative stress in the liver and affects health and production attributes in poultry birds. Bamboo leaf flavonoid (BLF) is a natural plant flavonoid that is effective in controlling oxidative stress. Therefore, the aim of current study was to investigate the impact of BLF on growth performance, liver index, serum biochemical parameters of liver function, liver antioxidant enzyme activities, and expression of genes and proteins related to the liver Keap1-Nrf2 system in cyclic heat stress (CHS) broilers. Twenty-eight-day old Arbor Acres broilers (n = 200) were randomly assigned to 5 groups. TN group fed basal diet was reared in a thermoneutral environment (24 ± 1 °C); CHS, 400 mg/kg BLF + CHS, 800 mg/kg BLF + CHS, and 1600 mg/kg BLF + CHS groups were reared in high temperature conditions (33 ± 1 °C, 8 h/day), with the basal diet supplemented with 0, 400, 800, and 1600 mg/kg BLF. The results indicated that ADG and ADFI of broilers in 28 to 35d and 36 to 42d CHS groups were significantly lower compared to the TN group. BLF improves growth performance of CHS broilers by increasing ADG, ADFI and decreasing F:G. BLF improved live weight, liver weight, liver index and reduced serum AST, ALP, ALT, T-BIL levels and increased TP levels in CHS broilers. Meanwhile, BLF supplementation enhanced the activity of hepatic antioxidant enzymes, resulting in higher T-AOC, CAT, GSH-PX and T-SOD levels than those of CHS broilers, and significantly reduced MDA levels. In addition, BLF down-regulated the protein levels of Keap1 and P62, increased the expression levels of Nrf2 genes and proteins, and activated the expression of its downstream NQO1, HO-1, and SOD-1 antioxidant genes compared to CHS broilers. In summary, BLF regulates the expression of key genes and proteins in the Keap1-Nrf2 signaling pathway to alleviate liver injury in broilers by inhibiting oxidative stress, thereby promoting the growth performance of broilers with CHS.
Collapse
Affiliation(s)
- Junjun Yuan
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, Anhui 233100, China
| | - Yan Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, Anhui 233100, China
| | - Jiajun Miao
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, Anhui 233100, China
| | - Xueqi Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, Anhui 233100, China
| | - Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, Anhui 233100, China
| | - Feiyang Ma
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, Anhui 233100, China
| | - Jinxue Ding
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, Anhui 233100, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, Anhui 233100, China.
| |
Collapse
|
7
|
Wang S, Pang X, Cai Y, Tian X, Bai J, Xi M, Cao J, Jin L, Wang X, Wang T, Li D, Li M, Fan X. Acute heat stress upregulates Akr1b3 through Nrf-2 to increase endogenous fructose leading to kidney injury. J Biol Chem 2025; 301:108121. [PMID: 39710324 PMCID: PMC11834071 DOI: 10.1016/j.jbc.2024.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/20/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
In recent years, the prevalence of extremely high-temperature climates has led to an increase in cases of acute heat stress (HS), which has been identified as a contributing factor to various kidney diseases. Fructose, the end product of the polyol pathway, has been linked to kidney conditions such as kidney stones, chronic kidney disease, and acute kidney injury. However, the relationship between acute HS and kidney injury caused by endogenous fructose remains unclear. The study found that acute HS triggers the production of reactive oxygen species, which in turn activate the Nrf-2 and Akr1b3 leading to an increase in endogenous fructose levels in kidney cells. It was further demonstrated that the elevated levels of endogenous fructose play a crucial role in causing damage to kidney cells. Moreover, inhibiting Nrf-2 effectively mitigated kidney damage induced by acute HS by reducing endogenous fructose levels. These findings underscore the detrimental impact of excessive fructose resulting from acute stress on kidney function, offering a novel perspective for future research on the prevention and treatment of acute HS-induced kidney injury.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Xuan Pang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yujuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Xue Tian
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Mingchuan Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xiaolan Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Ncho CM, Berdos JI, Gupta V, Rahman A, Mekonnen KT, Bakhsh A. Abiotic stressors in poultry production: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2025; 109:30-50. [PMID: 39132861 PMCID: PMC11731476 DOI: 10.1111/jpn.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
In modern animal husbandry, stress can be viewed as an automatic response triggered by exposure to adverse environmental conditions. This response can range from mild discomfort to severe consequences, including mortality. The poultry industry, which significantly contributes to human nutrition, is not exempt from this issue. Although genetic selection has been employed for several decades to enhance production output, it has also resulted in poor stress resilience. Stress is manifested through a series of physiological reactions, such as the identification of the stressful stimulus, activation of the sympathetic nervous system and the adrenal medulla, and subsequent hormonal cascades. While brief periods of stress can be tolerated, prolonged exposure can have more severe consequences. For instance, extreme fluctuations in environmental temperature can lead to the accumulation of reactive oxygen species, impairment of reproductive performance, and reduced immunity. In addition, excessive noise in poultry slaughterhouses has been linked to altered bird behaviour and decreased production efficiency. Mechanical vibrations have also been shown to negatively impact the meat quality of broilers during transport as well as the egg quality and hatchability in hatcheries. Lastly, egg production is heavily influenced by light intensity and regimens, and inadequate light management can result in deficiencies, including visual anomalies, skeletal deformities, and circulatory problems. Although there is a growing body of evidence demonstrating the impact of environmental stressors on poultry physiology, there is a disproportionate representation of stressors in research. Recent studies have been focused on chronic heat stress, reflecting the current interest of the scientific community in climate change. Therefore, this review aims to highlight the major abiotic stressors in poultry production and elucidate their underlying mechanisms, addressing the need for a more comprehensive understanding of stress in diverse environmental contexts.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Environmental Systems ScienceInstitute of Agricultural Sciences, ETH ZürichZürichSwitzerland
| | - Janine I. Berdos
- Department of Animal ScienceCollege of Agriculture and Forestry, Tarlac Agricultural UniversityMalacampaTarlacPhilippines
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Four Program)Gyeongsang National UniversityJinju‐siRepublic of Korea
| | - Attaur Rahman
- Department of Medicine and TherapeuticsFaculty of Medicine, The Chinese University of Hong KongHong KongChina
| | - Kefala Taye Mekonnen
- Department of Animal ScienceCollege of Agriculture and Environmental Science, Arsi UniversityAsellaOromiaEthiopia
| | - Allah Bakhsh
- Atta‐ur‐Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)IslamabadPakistan
| |
Collapse
|
9
|
Poku RA, Agyemang-Duah E, Donkor S, Ayizanga RA, Osei-Amponsah R, Rekaya R, Aggrey SE. Changes in rectal temperature as a means of assessing heat tolerance and sensitivity in chickens. Trop Anim Health Prod 2024; 56:391. [PMID: 39578253 PMCID: PMC11584500 DOI: 10.1007/s11250-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
High ambient temperature and relative humidity significantly affect growth and production performance in poultry. Ability of poultry to regulate their core body temperature relative to the ambient temperature depends on the relative nutrient/energy expenditure in maintenance and performance requirements. We hypothesized that changes in rectal temperature corrected for surface area can be used as a measure of heat tolerance/sensitivity. Rectal temperatures of one hundred mixed sex Ross 308 broiler chickens were measured hourly from 6 AM to 6 PM at 24 days of age. The ambient temperature and relative humidity were also measured hourly for the same 12-h period. Body weights were measured at day 24 and 38 days of age. The temperature-humidity index (THI) increased from 77.5 at 6.00 AM and peaked at 83.5 at 3.00 PM. The average rectal temperature increased from 39.900C at 6.00 AM to about 41.300C at 9.00 AM. Thereafter, the average rectal temperature remained constant until 3.00 PM when it began to decline. At 6.00 PM, the rectal temperature had declined to about 40.70 °C. Evaporative heat loss is affected by surface areas and as a result, rectal temperature was corrected for surface area. The change in rectal temperature corrected for surface area was negatively correlated with body weight gain indicating variability in the response of individual chickens exposed to similar THI. This variability was attributed to heat tolerance. It was hypothesized that mismatch between nutrient and energy supply and the partition of nutrient/energy between maintenance of core body temperature and protein synthesis could be reflected on the differences in heat-tolerance and body weight gain in the chicken population. The genetic basis of differences in rectal temperature changes corrected for surface area could be elucidated as a means of developing thermo-tolerant chickens.
Collapse
Affiliation(s)
- Ricky A Poku
- Department of Animal Science, University of Ghana, Legon, Ghana
| | | | - Sheila Donkor
- Department of Animal Science, University of Ghana, Legon, Ghana
| | | | | | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, Greece
| | - Samuel E Aggrey
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, Greece.
| |
Collapse
|
10
|
Lu J, Zhao P, Ding X, Li H. N-acetylcysteine stimulates the proliferation and differentiation in heat-stressed skeletal muscle cells. J Therm Biol 2024; 124:103958. [PMID: 39182421 DOI: 10.1016/j.jtherbio.2024.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
N-acetylcysteine (NAC) is known for its beneficial effects on health due to its antioxidant and antiapoptotic properties. This study explored the protective effects of NAC against oxidative stress in heat-stressed (HS) skeletal muscle cells and its role in promoting muscle development. NAC reduced the heat shock response by decreasing the expression of heat shock protein 70 (HSP70) in HS-induced muscle cells during proliferation and differentiation. NAC also mitigated HS-induced oxidative stress via increasing the antioxidant enzyme levels and reducing oxidant enzyme levels. Treatment with NAC at 2 mM increased cell viability from 43.68% ± 5.14%-66.69% ± 14.43% and decreased the apoptosis rate from 7.89% ± 0.53%-5.17% ± 0.11% in skeletal muscle cells. Additionally, NAC promoted the proliferation and differentiation of HS-induced skeletal muscle cells by upregulating the expression of PAX7, MYF5, MRF4 and MYHC. These findings suggest that NAC alleviates HS-induced oxidative damage in skeletal muscle cells and support muscle development.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhu Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Mao H, Chen J, Zhang J, Zhang X, Xu S, Zhang L. High-energy and high-amino acid diet enhances production performance and antioxidant capacity in yellow-feathered broilers under heat stress. Poult Sci 2024; 103:103790. [PMID: 38713989 PMCID: PMC11091689 DOI: 10.1016/j.psj.2024.103790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
This study investigated the ameliorating effects of high-energy and high-amino acid (HEHA) diets on heat stress (HS) in yellow-feathered broilers. Broilers aged 35 d were randomly assigned to 3 groups: control and HS groups fed the basic normal diet, and the HEHA group fed the HEHA diet (basal diet + 100 kcal/kg AME + 15 % DAAs). The HS and HEHA groups were exposed to cyclic HS (30 ± 1 to 34 ± 1 ℃) for 2 wk, while the control group was maintained at 26 ± 1 ℃. The results indicated that the HEHA diet significantly alleviated HS-induced feed intake and body weight loss. HEHA feeding mitigated the increase in body temperature during HS. Compared with observations in the HS group, the HEHA diet reduced the levels of ALT, Alb, and corticosterone in the serum and downregulated the gene expression of HSP27 and HSP60 in the liver. Moreover, the HEHA group showed higher GSH-px activity in the serum and SOD and GSH-Px activity in the jejunal mucosa than that of the HS group. HEHA supplementation also reduced MDA levels in the liver. In conclusion, the HEHA diet improved the production performance of broilers under HS by increasing their antioxidant capacities. These findings suggest an effective strategy to combat HS in poultry production.
Collapse
Affiliation(s)
- Huihua Mao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiang Su, China
| | - Jinglong Chen
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China
| | - Jinbi Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiang Su, China
| | - Xu Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiang Su, China
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiang Su, China
| | - Ling Zhang
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiang Su, China.
| |
Collapse
|
12
|
Khan WA, Penrose B, Yun P, Zhou M, Shabala S. Exogenous zinc application mitigates negative effects of salinity on barley ( Hordeum vulgare) growth by improving root ionic homeostasis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23266. [PMID: 38753957 DOI: 10.1071/fp23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
13
|
Hu D, Qin B, Zhang L, Bu H. Construction of an oxidative stress-associated genes signature in breast cancer by machine learning algorithms. J Int Med Res 2024; 52:3000605241232560. [PMID: 38520254 PMCID: PMC10960342 DOI: 10.1177/03000605241232560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/26/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVE To construct a prognostic model of a breast cancer-related oxidative stress-related gene (OSRG) signature using machine learning algorithms. METHODS The OSRGs of breast cancer were constructed by least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. The Cancer Genome Atlas (TCGA) was used to analyse the gene expression and prognostic value. The Human Protein Atlas was used to analyse the protein expression of hub genes. Receiver operating characteristic analysis, calibration curve and decision curve analysis were used to predict the stability of this model. RESULTS The area under the curve of 1-, 3- and 5-year overall survival were 0.751, 0.707 and 0.645 in the TCGA training dataset; and 0.692, 0.678 and 0.602 in the TCGA testing dataset, respectively. Calibration plot showed good agreement between predicted probabilities and observed outcomes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) pathway analysis indicated that multiple cancer-related pathways were highly enriched in the high-risk group. Immune infiltration analysis showed immune cells and their functions may play a key role in the development and mechanism of breast cancer. CONCLUSIONS This new OSRG signature was associated with the immune infiltration and it might be useful in predicting the prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Daojun Hu
- Department of Laboratory Medicine, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bing Qin
- Department of Laboratory Medicine, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Zhang
- Department of Laboratory Medicine, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hanli Bu
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
14
|
Ghareeb AFA, Foutz JC, Schneiders GH, Richter JN, Milfort MC, Fuller AL, Rekaya R, Aggrey SE. Host transcriptome response to heat stress and Eimeria maxima infection in meat-type chickens. PLoS One 2024; 19:e0296350. [PMID: 38394169 PMCID: PMC10889870 DOI: 10.1371/journal.pone.0296350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/05/2023] [Indexed: 02/25/2024] Open
Abstract
Eimeria (E.) maxima parasite infects chickens' midgut disrupting the jejunal and ileal mucosa causing high morbidity and mortality. Heat stress (HS) is a seasonal stressor that impacts biological functions leading to poor performance. This study elucidates how HS, E. maxima infection, and their combination affect the ileum transcriptome. Two-hundred and forty 2-week-old males Ross708 chickens were randomly allocated into four treatment groups: thermoneutral-control (TNc), thermoneutral-infected (TNi), heat-stress control (HSc), and heat stress-infected (HSi), with 6 replicates each of 10 birds. Infected groups received 200x103 sporulated E. maxima oocysts/bird, and heat-treated groups were raised at 35°C. At 6-day post-treatment, ileums of five randomly selected chickens per group were sampled, RNA was extracted and sequenced. A total of 413, 3377, 1908, and 2304 DEGs were identified when applying the comparisons: TNc vs HSc, TNc vs TNi, HSi vs HSc, and TNi vs HSi, respectively, at cutoff ≥1.2-fold change (FDR: q<0.05). HSc vs TNc showed upregulation of lipid metabolic pathways and degradation/metabolism of multiple amino acids; and downregulation of most immune-related and protein synthesis pathways. TNc vs TNi displayed upregulation of most of immune-associated pathways and eukaryotic mRNA maturation pathways; and downregulation of fatty acid metabolism and multiple amino acid metabolism pathways including tryptophan. Comparing HSi versus HSc and TNi revealed that combining the two stressors restored the expression of some cellular functions, e.g., oxidative phosphorylation and protein synthesis; and downregulate immune response pathways associated with E. maxima infection. During E. maxima infection under HS the calcium signaling pathway was downregulated, including genes responsible for increasing the cytoplasmic calcium concentration; and tryptophan metabolism was upregulated, including genes that contribute to catabolizing tryptophan through serotonin and indole pathways; which might result in reducing the cytoplasmic pool of nutrients and calcium available for the parasite to scavenge and consequently might affect the parasite's reproductive ability.
Collapse
Affiliation(s)
- Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - James C. Foutz
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Gustavo H. Schneiders
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Jennifer N. Richter
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
15
|
Jiang X, Ma Y, Gong S, Zi X, Zhang D. Resveratrol Promotes Proliferation, Antioxidant Properties, and Progesterone Production in Yak ( Bos grunniens) Granulosa Cells. Animals (Basel) 2024; 14:240. [PMID: 38254409 PMCID: PMC10812796 DOI: 10.3390/ani14020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol (RES) is a class of natural polyphenolic compounds known for its strong anti-apoptotic and antioxidant properties. Granulosa cells (GCs) are one of the important components of ovarian follicles and play crucial roles in follicular development of follicles in the ovary. Here, we explored the effects of RES on the proliferation and functions of yak GCs. Firstly, we evaluated the effect of RES dose and time in culture on the viability of GCs, and then the optimum treatment protocol (10 μM RES, 36 h) was selected to analyze the effects of RES on the proliferation, cell cycle, apoptosis, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) accumulation, lipid droplet content, ATP production, and steroidogenesis of GCs, as well as the expression of related genes. The results show that RES treatment significantly (1) increased cell viability and proliferation and inhibited cell apoptosis by upregulating BCL-2 and SIRT1 genes and downregulating BAX, CASP3, P53, and KU70 genes; (2) increased the proportion of GCs in the S phase and upregulated CCND1, PCNA, CDK4, and CDK5 genes; (3) reduced ROS accumulation and MDA content and increased GSH content, as well as upregulating the relative expression levels of CAT, SOD2, and GPX1 genes; (4) decreased lipid droplet content and increased ATP production; (5) promoted progesterone (P4) secretion and the expression of P4 synthesis-related genes (StAR, HSD3B1, and CYP11A1); and (6) inhibited E2 secretion and CYP19A1 expression. These findings suggest that RES at 10 μM increases the proliferation and antioxidant properties, inhibits apoptosis, and promotes ATP production, lipid droplet consumption, and P4 secretion of yak GCs.
Collapse
Affiliation(s)
- Xudong Jiang
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Yao Ma
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Sanni Gong
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Xiangdong Zi
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Dawei Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
16
|
Teyssier JR, Cozannet P, Greene E, Dridi S, Rochell SJ. Influence of different heat stress models on nutrient digestibility and markers of stress, inflammation, lipid, and protein metabolism in broilers. Poult Sci 2023; 102:103048. [PMID: 37797358 PMCID: PMC10613759 DOI: 10.1016/j.psj.2023.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
This experiment determined the effects of different HS models and pair-feeding (PF) on nutrient digestibility and markers of stress, inflammation, and metabolism in broilers. Birds (720 total) were allocated into 12 environmentally controlled chambers and reared under thermoneutral conditions until 20 d. Until 41 d birds were exposed to 4 treatments, including: thermoneutral at 24°C (TN-al), daily cyclic HS (12 h at 24 and 12 h at 35°C; cyHS), constant HS at 35°C (coHS), and PF birds maintained at 24°C and fed to equalize FI with coHS birds (TN-coPF). At d 41, ileal digesta were collected to determine nutrient apparent ileal digestibility (AID). Blood, liver, and breast tissues were collected from 8 birds per treatment to determine the mRNA expression of stress, inflammation, and metabolism markers. An additional 8 TN-al birds were sampled after acute HS exposure at 35°C for 4 h (aHS), and 8 cyHS birds were sampled either right before or 4 h after HS initiation. Data were analyzed by 1-way ANOVA and means were separated using Tukey's HSD test. Compared with TN-al birds, AID of nitrogen and ether extract were reduced in coHS birds, and both cyHS and coHS reduced (P < 0.05) AID of total essential amino acids. TNFα and SOD2 expression were increased (P < 0.05) under aHS, coHS, and TN-coPF conditions. IL6 and HSP70 were increased (P < 0.05) under coHS and aHS, respectively. Expression of lipogenic enzymes ACCα and FASN were reduced by coHS and TN-coPF, while coHS increased the lipolytic enzyme ATGL (P < 0.05). IGF1 was lowered in coHS birds, and p70S6K and MyoG were reduced under coHS and TN-coPF (P < 0.05). Interestingly, MuRF1 and MAFbx were increased (P < 0.05) under coHS only. Overall, these results indicate that coHS has a greater impact on nutrient digestibility and metabolism than aHS and cyHS. Interestingly, increased protein degradation during HS appears to be mostly driven by HS per se and not the reduced FI.
Collapse
Affiliation(s)
- J R Teyssier
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - P Cozannet
- Adisseo France S.A.S., Center of Expertise in Research and Nutrition, 03600 Malicorne, France
| | - E Greene
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S Dridi
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S J Rochell
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
17
|
Zhao Z, Wu J, Liu Y, Zhuang Y, Yan H, Xiao M, Zhang L, An L. Dietary Canthaxanthin Supplementation Promotes the Laying Rate and Follicular Development of Huaixiang Hens. BIOLOGY 2023; 12:1375. [PMID: 37997976 PMCID: PMC10669059 DOI: 10.3390/biology12111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Canthaxanthin(CX) is a ketocarotenoid, which is widely used in poultry production as a lipophilic antioxidant. Huaixiang chickens are a local breed in China famous for their excellent meat quality; improving their laying rate via nutritional regulation has attracted extensive attention. The aim of this study was to evaluate the effects of dietary CX on the laying rate and follicular development in Huaixiang hens. A total of 180 Huaixiang hens were randomly divided into five groups with six replicates, and six chickens per replication. The control group (CON) were fed a basal diet, and the treatment group (NT) were fed a basal diet supplemented with 4, 6, 8 and 10 mg/kg CX. All chickens were 26 weeks old, living at an average environmental temperature of 25 ± 2 °C with a relative humidity of 65-75%. The results showed that supplementing the CX improved the laying rate and large white follicles (LWF) number (p < 0.05) and increased the concentration of reproductive hormones (LH, FSH, E2 and Prog) (p < 0.05), and the basal diet supplemented with 6 mg/kg CX worked best. Moreover, CX could increase the activities of antioxidant enzymes SOD and GSH-Px (p < 0.05) and reduce the content of the lipid peroxidation product MDA in Huaixiang chickens (p < 0.05); again, 6 mg/kg CX was best. In conclusion, dietary CX had positive effects on the laying rate, ovarian structure, reproductive hormone secretion, follicle development, and the antioxidant capacity of Huaixiang hens, and 6 mg/kg CX was recommended to be added to the diet of Huaixiang chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lilong An
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| |
Collapse
|
18
|
Zmrhal V, Svoradova A, Venusova E, Slama P. The Influence of Heat Stress on Chicken Immune System and Mitigation of Negative Impacts by Baicalin and Baicalein. Animals (Basel) 2023; 13:2564. [PMID: 37627355 PMCID: PMC10451628 DOI: 10.3390/ani13162564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Heat stress (HS) in poultry husbandry is an important stressor and with increasing global temperatures its importance will increase. The negative effects of stress on the quality and quantity of poultry production are described in a range of research studies. However, a lack of attention is devoted to the impacts of HS on individual chicken immune cells and whole lymphoid tissue in birds. Oxidative stress and increased inflammation are accompanying processes of HS, but with deleterious effects on the whole organism. They play a key role in the inflammation and oxidative stress of the chicken immune system. There are a range of strategies that can help mitigate the adverse effects of HS in poultry. Phytochemicals are well studied and some of them report promising results to mitigate oxidative stress and inflammation, a major consequence of HS. Current studies revealed that mitigating these two main impacts of HS will be a key factor in solving the problem of increasing temperatures in poultry production. Improved function of the chicken immune system is another benefit of using phytochemicals in poultry due to the importance of poultry health management in today's post pandemic world. Based on the current literature, baicalin and baicalein have proven to have strong anti-inflammatory and antioxidative effects in mammalian and avian models. Taken together, this review is dedicated to collecting the literature about the known effects of HS on chicken immune cells and lymphoid tissue. The second part of the review is dedicated to the potential use of baicalin and baicalein in poultry to mitigate the negative impacts of HS on poultry production.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| | - Andrea Svoradova
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
- NPPC, Research Institute for Animal Production in Nitra, 951 41 Luzianky, Slovakia
| | - Eva Venusova
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| |
Collapse
|
19
|
Voronina OA, Zaitsev SY, Savina AA, Rykov RA, Kolesnik NS. Seasonal Changes in the Antioxidant Activity and Biochemical Parameters of Goat Milk. Animals (Basel) 2023; 13:ani13101706. [PMID: 37238136 DOI: 10.3390/ani13101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Goats are ubiquitous, including in hot and dry regions, while also being very sensitive to climate fluctuations, expressed in temperature differences. This affects their productivity and milk quality. Adaptation to heat requires high energy costs, affects "neurohumoral" regulation and is accompanied by oxidative stress with the increased production of free radicals. The aim was to study the main biochemical parameters of goat milk and its antioxidant activity depending on the season of the year. Sampling was carried out in April, June, August and October. Analysis of the biochemical components and antioxidant activity of goat milk was performed using modern analytical systems. From spring to autumn, the mass fraction of true or crude proteins in goat milk increased by 14.6-63.7% or by 12.3-52.1%, and the mass fraction of caseins also increased by 13.6-60.6%. For vitamin C level and the total amount of water-soluble antioxidants, a pronounced gradual decrease from spring to autumn was observed. In the summer period, a small increase in the carotene level in milk (by 3.0-6.1% compared to April) was established. Vitamin A content increased by 86.5% (June) or by 70.3% (October) compared to April. Thus, the numerous significant changes in the major parameters of goat's milk depending on the season were revealed.
Collapse
Affiliation(s)
- Oksana A Voronina
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Sergei Yu Zaitsev
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Anastasia A Savina
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Roman A Rykov
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Nikita S Kolesnik
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| |
Collapse
|
20
|
Jiang XD, Liu Y, Wu JF, Gong SN, Ma Y, Zi XD. Regulation of proliferation, apoptosis, hormone secretion and gene expression by acetyl-L-carnitine in yak (Bos grunniens) granulosa cells. Theriogenology 2023; 203:61-68. [PMID: 36972666 DOI: 10.1016/j.theriogenology.2023.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Supplementation with acetyl-l-carnitine (ALC) during in vitro maturation significantly improves the rates of oocyte cleavage and morula and blastocyst formation in sheep and buffalo; however, the mode of action of ALC in improving oocyte competence is not completely understood. Therefore, the aim of this study was to investigate the effects of ALC on proliferation, antioxidant properties, lipid droplet accumulation and steroid hormone secretion in yak (Bos grunniens) granulosa cells (GCs). Yak GCs were identified using FSHR immunofluorescence. The cells were treated with different concentrations of ALC, cell proliferation was detected by cell counting kit-8, and the optimal concentration and treatment time were determined for subsequent experiments. Then, reactive oxygen species (ROS) were detected by a DCFH-DA probe, and lipid droplet accumulation was observed by oil red O staining. Estradiol (E2) and progesterone (P4) in the medium were detected by ELISA, and the expression of genes related to cell proliferation, apoptosis, the cell cycle, antioxidants and steroid synthesis was determined by RT‒qPCR. The results showed that 1 mM ALC treatment for 48 h was the optimum treatment. It significantly increased cell viability (P < 0.05), significantly decreased the amount of ROS and lipid droplet content, and promoted P4 and E2 secretion (P < 0.05) of yak GCs. RT‒qPCR results verified that GCs treated with 1 mM ALC for 48 h significantly increased the expression of genes related to anti-apoptosis and the cell cycle (BCL-2, PCNA, CCND1 and CCNB1), antioxidants (CAT, SOD2 and GPX1), and E2 and P4 secretion (StAR, CYP19A1 and HSD3B1) (P < 0.05), but it significantly decreased the expression of apoptosis genes (BAX and P53) (P < 0.05). In conclusion, ALC increased the viability of yak GCs, reduced the amount of ROS and lipid droplets, increased P4 and E2 synthesis and affected the expression of related genes in yak GCs.
Collapse
|
21
|
Effect of Glutamine on the Growth Performance, Oxidative Stress, and Nrf2/p38 MAPK Expression in the Livers of Heat-Stressed Broilers. Animals (Basel) 2023; 13:ani13040652. [PMID: 36830439 PMCID: PMC9951748 DOI: 10.3390/ani13040652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The purpose of this work was to study the effects of glutamine (Gln) on the growth performance, oxidative stress, Nrf2, and p38 MAPK pathway in the livers of heat-stressed broilers. In total, 300 broilers were divided into five groups, including a normal temperature (NT, without dietary Gln) group and four cyclic high temperature groups (HT, GHT1, GHT2, and GHT3) fed with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. High temperature conditions increased (p < 0.05) liver malonaldehyde (MDA) concentration, but decreased (p < 0.05), body weight gain (BWG), feed intake (FI), liver superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione (GSH) levels in broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were lower (p < 0.05) in the NT group than that in the HT group. However, dietary 1.5% Gln decreased (p < 0.05) liver MDA concentration, but increased (p < 0.05) BWG, FI, liver SOD, T-AOC, GSH-Px, GST, and GSH levels in heat-stressed broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were higher (p < 0.05) in the GHT3 group than that in the HT group. In summary, Gln improved oxidative damage through the activation of Nrf2 and p38 MAPK expression in the livers of heat-stressed broilers.
Collapse
|
22
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
23
|
Oladokun S, Adewole DI. Biomarkers of heat stress and mechanism of heat stress response in Avian species: Current insights and future perspectives from poultry science. J Therm Biol 2022; 110:103332. [DOI: 10.1016/j.jtherbio.2022.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
24
|
Ou-Yang YN, Yuan MD, Yang ZM, Min Z, Jin YX, Tian ZM. Revealing the Pathogenesis of Salt-Sensitive Hypertension in Dahl Salt-Sensitive Rats through Integrated Multi-Omics Analysis. Metabolites 2022; 12:1076. [PMID: 36355159 PMCID: PMC9694938 DOI: 10.3390/metabo12111076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 10/18/2023] Open
Abstract
Salt-induced renal metabolism dysfunction is an important mechanism of salt-sensitive hypertension. Given that the gut-liver axis is the first hit of a high-salt diet (HSD), we aimed to identify the extra-renal mechanism from hepatic metabolism and gut microbiota, and attempted to relieve the salt-induced metabolic dysfunctions by curcumin. Untargeted metabolomics analysis was performed to identify the changes in hepatic metabolic pathways, and integrated analysis was employed to reveal the relationship between hepatic metabolic dysfunction and gut microbial composition. HSD induced significant increase in fumaric acid, l-lactic acid, creatinine, l-alanine, glycine, and l-cysteine levels, and amino acids metabolism pathways associated with glycolysis were significantly altered, including alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism, which were involved in the regulation of blood pressure. Integrated multi-omics analysis revealed that changes in Paraprevotella, Erysipelotrichaceae, and genera from Clostridiales are associated with metabolic disorders. Gene functional predication analysis based on 16S Ribosomal RNA sequences showed that the dysfunction in hepatic metabolism were correlated with enhanced lipopolysaccharide (LPS) biosynthesis and apoptosis in gut microbes. Curcumin (50 mg/kg/d) might reduce gut microbes-associated LPS biosynthesis and apoptosis, partially reverse metabolic dysfunction, ameliorate renal oxidative stress, and protect against salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ya-nan Ou-Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Meng-di Yuan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | | | - Zhuo Min
- Department of Brewing Engineering, Moutai University, Renhuai 564500, China
| | - Yue-xin Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhong-min Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
25
|
Rahman MM, McConnell R, Schlaerth H, Ko J, Silva S, Lurmann FW, Palinkas L, Johnston J, Hurlburt M, Yin H, Ban-Weiss G, Garcia E. The Effects of Coexposure to Extremes of Heat and Particulate Air Pollution on Mortality in California: Implications for Climate Change. Am J Respir Crit Care Med 2022; 206:1117-1127. [PMID: 35727303 PMCID: PMC9704834 DOI: 10.1164/rccm.202204-0657oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Extremes of heat and particulate air pollution threaten human health and are becoming more frequent because of climate change. Understanding the health impacts of coexposure to extreme heat and air pollution is urgent. Objectives: To estimate the association of acute coexposure to extreme heat and ambient fine particulate matter (PM2.5) with all-cause, cardiovascular, and respiratory mortality in California from 2014 to 2019. Methods: We used a case-crossover study design with time-stratified matching using conditional logistic regression to estimate mortality associations with acute coexposures to extreme heat and PM2.5. For each case day (date of death) and its control days, daily average PM2.5 and maximum and minimum temperatures were assigned (0- to 3-day lag) on the basis of the decedent's residence census tract. Measurements and Main Results: All-cause mortality risk increased 6.1% (95% confidence interval [CI], 4.1-8.1) on extreme maximum temperature-only days and 5.0% (95% CI, 3.0-8.0) on extreme PM2.5-only days, compared with nonextreme days. Risk increased by 21.0% (95% CI, 6.6-37.3) on days with exposure to both extreme maximum temperature and PM2.5. Increased risk of cardiovascular and respiratory mortality on extreme coexposure days was 29.9% (95% CI, 3.3-63.3) and 38.0% (95% CI, -12.5 to 117.7), respectively, and were more than the sum of individual effects of extreme temperature and PM2.5 only. A similar pattern was observed for coexposure to extreme PM2.5 and minimum temperature. Effect estimates were larger over age 75 years. Conclusions: Short-term exposure to extreme heat and air pollution alone were individually associated with increased risk of mortality, but their coexposure had larger effects beyond the sum of their individual effects.
Collapse
Affiliation(s)
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine
| | - Hannah Schlaerth
- Department of Civil and Environmental Engineering, Viterbi School of Engineering
| | - Joseph Ko
- Department of Civil and Environmental Engineering, Viterbi School of Engineering
| | | | | | - Lawrence Palinkas
- Department of Population and Public Health Sciences, Keck School of Medicine
- Suzanne Dworak Peck School of Social Work, and
| | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine
| | - Michael Hurlburt
- Department of Population and Public Health Sciences, Keck School of Medicine
- Suzanne Dworak Peck School of Social Work, and
| | - Hao Yin
- Department of Economics, University of Southern California, Los Angeles, California
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - George Ban-Weiss
- Department of Civil and Environmental Engineering, Viterbi School of Engineering
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine
| |
Collapse
|
26
|
Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress. Animals (Basel) 2022; 12:ani12202759. [PMID: 36290147 PMCID: PMC9597838 DOI: 10.3390/ani12202759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
This study aimed to investigate the role of dietary Spirulina platensis (SP) supplementation in relieving the negative impacts of heat stress (HS) on the productive performance, cholesterol profile, redox status, and inflammatory cytokines of laying hens. A total of 288, 45-wk-old and 1550.7 ± 2.3 g initial body weight, HY-Line W-36 laying hens were housed in two environmental-controlled compartments. Layers were allotted to eight treatments of a two × four factorial design, with six replicates containing six birds per treatment. The temperature in one of the compartments was kept at a thermoneutral condition (24 °C group), while the temperature in the other compartment was raised to a cyclic heat stress of 35 °C from 9:00 a.m. to 5.00 p.m. (35 °C group). Layers in each compartment were fed on one of four experimental diets, containing 0%, 3%, 6%, or 9% SP (SP groups). The trial continued for five weeks. As a result of this study, exposure of laying hens to cyclic HS resulted in a significant (p < 0.05) increase in the total cholesterol (CH), low-density lipoprotein-CH, liver- and egg yolk-CH, ceruloplasmin, malondialdehyde, interleukins (IL-1β and IL-6), and tumor necrosis factor-α, and a significant (p < 0.05) decrease in the high-density lipoprotein-CH, total antioxidant capacity, and reduced glutathione levels. HS negatively (p < 0.05) affected the hen−day egg production (EP, 90.5% vs. 77.0%), egg weight (EW, 61.8 g vs. 56.8 g), feed intake (FI, 111.6 g vs. 101.5 g) and feed conversion ratio (FCR, 2.00 vs. 2.37). As SP levels increased in layer diets, a linear (p < 0.05) improvement response in most of the parameters was obtained in both HS and non-HS layers, recording the best results with 9% SP (e.g., 78.8% vs. 87.6% EP, 56.7 g vs. 61.9 g EW, 103.3 g vs. 110.2 g FI, and 2.38 vs. 2.04 FCR, in 0% vs. 9% SP, respectively). When incorporating SP into the diets of HS-layers, the negative impacts of HS were remarkably relieved (p < 0.05). Therefore, diets containing 9% SP could be used as a promising approach to improve the productive and physiological performance of laying hens, particularly under heat stress conditions.
Collapse
|
27
|
Lian Y, Zhu M, Yang B, Wang X, Zeng J, Yang Y, Guo S, Jia X, Feng L. Characterization of a novel polysaccharide from red ginseng and its ameliorative effect on oxidative stress injury in myocardial ischemia. Chin Med 2022; 17:111. [PMID: 36153627 PMCID: PMC9509600 DOI: 10.1186/s13020-022-00669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Red ginseng (RG) was widely used as traditional Chinese medicine (TCM) or dietary supplement. However, few researches had been reported on the red ginseng polysaccharide (RGP). METHODS In this study, a novel heteropolysaccharide named RGP1-1 was fractionated sequentially by DEAE-52 column and Sephadex G-100 gel column. The primary structure of RGP1-1, including glycosyl linkages, molecular weight, monosaccharide composition, morphology and physicochemical property were conducted by nuclear magnetic resonance (NMR), gas chromatography-mass spectrometer (GC-MS), atomic force microscope (AFM), scanning electron microscope (SEM), differential scanning calorimetry-thermogravimetric analysis (DSC-TG) and so on. The effect of RGP1-1 in preventing and treating myocardial ischemia was evaluated by an animal model isoprenaline (ISO) induced mice. RESULTS RGP1-1, with a homogeneous molecular weight of 5655 Da, was composed of Glc and Gal in the ratio of 94.26:4.92. The methylation and NMR analysis indicated the backbone was composed of → 1)-Glcp-(4 → and → 1)-Galp-(4 →, branched partially at O-4 with α-D-Glcp-(1 → residue. Morphology and physicochemical property analysis revealed a triple-helical conformation, flaky and irregular spherical structure with molecule aggregations and stable thermal properties of RGP1-1. And it contained 6.82 mV zeta potential, 117.4 nm partical size and polymerization phenomenon. Furthermore, RGP1-1 possessed strong antioxidant activity in vitro and in vivo, RGP1-1 could decrease cardiomyocyte apoptosis and myocardium fibrosis of mice in histopathology and it could decrease significantly the serum levels of cardiac troponin (cTnI), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), malondialdehyde (MDA). Western blot analysis showed that RGP1-1 can increase the expression of main protein Nuclear factor E2-related factor 2(Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase-1(HO-1) and kelch-like ECH-associated protein1(keap1) in oxidative stress injure progress, and therefore regulate the pathway of Nrf2/HO-1. CONCLUSION The above findings indicated that RGP1-1 had an improving effect on ISO-induced myocardial ischemia injury in mice, as novel natural antioxidant and heart-protecting drugs.
Collapse
Affiliation(s)
- Yuanpei Lian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou, People's Republic of China, 213003
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xianfeng Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuchen Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
28
|
Liu X, Hussain R, Mehmood K, Tang Z, Zhang H, Li Y. Mitochondrial-Endoplasmic Reticulum Communication-Mediated Oxidative Stress and Autophagy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6459585. [PMID: 36164446 PMCID: PMC9509228 DOI: 10.1155/2022/6459585] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
Oxidative stress is an imbalance between free radicals and the antioxidant system causing overgeneration of free radicals (oxygen-containing molecules) ultimately leading to oxidative damage in terms of lipid peroxidation, protein denaturation, and DNA mutation. Oxidative stress can activate autophagy to alleviate oxidative damage and maintain normal physiological activities of cells by degrading damaged organelles or local cytoplasm. When oxidative stress is not eliminated by autophagy, it activates the apoptosis cascade. This review provides a brief summary of mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy. Mitochondria and endoplasmic reticulum being important organelles in cells are directly or indirectly connected to each other through mitochondria-associated endoplasmic reticulum membranes and jointly regulate oxidative stress and autophagy. The reactive oxygen species (ROS) produced by the mitochondrial respiratory chain are the main inducers of oxidative stress. Damaged mitochondria can be effectively cleared by the process of mitophagy mediated by PINK1/parkin pathway, Nix/BNIP3 pathways, and FUNDC1 pathway, avoiding excessive ROS production. However, the mechanism of mitochondrial-endoplasmic reticulum communication in the regulation of oxidative stress and autophagy is rarely known. For this reason, this review explores the mutual connection of mitochondria and endoplasmic reticulum in mediating oxidative stress and autophagy through ROS and Ca2+ and aims to provide part of the theoretical basis for alleviating oxidative stress through autophagy mediated by mitochondrial-endoplasmic reticulum communication.
Collapse
Affiliation(s)
- Xiaoqing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Transcriptome Analyses Reveal Essential Roles of Alternative Splicing Regulation in Heat-Stressed Holstein Cows. Int J Mol Sci 2022; 23:ijms231810664. [PMID: 36142577 PMCID: PMC9505234 DOI: 10.3390/ijms231810664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Heat stress (HS) severely impacts the productivity and welfare of dairy cows. Investigating the biological mechanisms underlying HS response is crucial for developing effective mitigation and breeding strategies. Therefore, we evaluated the changes in milk yield, physiological indicators, blood biochemical parameters, and alternative splicing (AS) patterns of lactating Holstein cows during thermoneutral (TN, N = 19) and heat-stress (HS, N = 17) conditions. There was a significant (p < 0.05) decline in milk yield as physiological indicators increased after exposure to natural HS conditions. The levels of eight out of 13 biochemical parameters of HS were also significantly altered in the presence of HS (p < 0.05). These results demonstrate that HS negatively influences various biological processes of Holstein cows. Furthermore, we investigated AS events based on the RNA-seq data from blood samples. With HS, five common types of AS events were generally increased by 6.7−38.9%. A total of 3470 AS events corresponding to 3143 unique genes were differentially alternatively spliced (DSGs) (p-adjusted < 0.05) between TN and HS groups. The functional annotation results show that the majority of DSGs are involved in mRNA splicing and spliceosomal complex, followed by enrichment in immune and metabolic processes. Eighty-seven out of 645 differentially expressed genes (DEGs) (fold change ≥ 1.5 and false discovery rate < 0.05) overlapped with DSGs. Further analyses showed that 20 of these genes were significantly enriched for the RNA splicing, RNA binding, and RNA transport. Among them, two genes (RBM25 and LUC7L3) had strong interrelation and co-expression pattern with other genes and were identified as candidate genes potentially associated with HS responses in dairy cows. In summary, AS plays a crucial role in changing the transcriptome diversity of heat-stress-related genes in multiple biological pathways and provides a different regulation mechanism from DEGs.
Collapse
|
30
|
Chen X, Liu W, Li H, Zhang J, Hu C, Liu X. The adverse effect of heat stress and potential nutritional interventions. Food Funct 2022; 13:9195-9207. [PMID: 36040720 DOI: 10.1039/d2fo01813f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat stress can cause tissue damage and metabolic disturbances, including intestinal and liver dysfunction, acid-base imbalance, oxidative damage, inflammatory response, and immune suppression. Serious cases can lead to heatstroke, which can be life-threatening. The body often finds it challenging to counteract these adverse effects, and traditional cooling methods are limited by the inconvenience of tool portability and the difficulty of determining the cooling endpoint. Consequently, more research was conducted to prevent and mitigate the negative effect of heat stress via nutritional intervention. This article reviewed the pathological changes and altered metabolic mechanisms caused by heat stress and discussed the protein (amino acid), vitamin, trace element, and electrolyte action pathways and mechanisms to mitigate heat stress and prevent heat-related disease. The main food sources for these nutrients and the recommended micronutrient supplementation forms were summarized to provide scientific dietary protocols for special populations.
Collapse
Affiliation(s)
- Xinwei Chen
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Changli Hu
- Jinmailang Beverage Corporation Limited, Beijing, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
31
|
Jacobs PJ, Finn KT, van Vuuren AKJ, Suess T, Hart DW, Bennett NC. Defining the link between oxidative stress, behavioural reproductive suppression and heterothermy in the Natal mole-rat (Cryptomys hottentotus natalensis). Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110753. [PMID: 35537667 DOI: 10.1016/j.cbpb.2022.110753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Abstract
Sub-lethal effects, such as oxidative stress, can be linked to various breeding and thermophysiological strategies, which themselves can be linked to seasonal variability in abiotic factors. In this study, we investigated the subterranean, social living Natal mole-rat (Cryptomys hottentotus natalensis), which, unlike other social mole-rat species, implements heterothermy seasonally in an attempt to avoid exercise-induced hyperthermia and relies solely on behavioural reproductive suppression to maintain reproductive skew in colonies. Subsequently, we investigated how oxidative stress varied between season, sex and breeding status in Natal mole-rats. Oxidative markers included total oxidant status (TOS measure of total peroxides present), total antioxidant capacity (TAC), OSI (oxidative stress index) and malondialdehyde (MDA) to measure oxidative stress. Breeding and non-breeding mole-rats of both sexes were captured during the summer (wet season) and winter (dry season). Seasonal environmental variables (air temperature, soil temperature and soil moisture) had a significant effect on TOS, OSI and MDA, where season affected each sex differently. Unlike other social mole-rat species that use both physiological and behavioural means of reproductive suppression, no oxidative costs to reproduction were present in the Natal mole-rats. Males had significantly higher MDA than females, which was most apparent in summer (wet season). We conclude that the significant oxidative damage in males is a consequence of exercise-induced oxidative stress, exacerbated by increased burrow humidities and poorer heat dissipation abilities as a function of body mass. This study highlights the importance of both breeding and thermophysiological strategies in affecting oxidative stress.
Collapse
Affiliation(s)
- Paul J Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa.
| | - Kyle T Finn
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Andries Koch Janse van Vuuren
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Tobias Suess
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Daniel William Hart
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Nigel Charles Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
32
|
Ghareeb AFA, Schneiders GH, Foutz JC, Milfort MC, Fuller AL, Yuan J, Rekaya R, Aggrey SE. Heat Stress Alters the Effect of Eimeria maxima Infection on Ileal Amino Acids Digestibility and Transporters Expression in Meat-Type Chickens. Animals (Basel) 2022; 12:ani12121554. [PMID: 35739890 PMCID: PMC9219439 DOI: 10.3390/ani12121554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Heat stress (HS) and Eimeria (E.) maxima infection are the most common physical and pathological stressors in chicken houses, and both affect intestinal digestibility and absorption leading to reduction in growth, morbidity, and mortality, causing massive economic losses. This study identifies the impact of each stressor and their combined effects on apparent amino acid digestibility and molecular transporters expression in the ileum of broiler chicken. Heat-stressed chickens showed no change in amino acids digestibility, despite the reduction in feed intake. Combining HS and E. maxima infection modulated the reduction in amino acids digestibility observed in the infected chickens. The expression of the ileal amino acid transporters was severely impacted by E. maxima infection but not by HS. Interestingly, the infected group reared under HS exhibited significantly higher expression levels in all the enterocytic apical and about half of the basolateral amino acid transporters than the infected birds raised in thermoneutral environment. Thus, HS putatively curtailed the maldigestion effects of E. maxima. Abstract Eimeria (E.) maxima invades the midgut of chickens and destroys the intestinal mucosa, impacting nutrient digestibility and absorption. Heat stress (HS) commonly affects the broiler chicken and contributes to inflammation and oxidative stress. We examined the independent and combined effects of HS and E. maxima infection on apparent amino acid ileal digestibility (AID) and mRNA expression of amino acid transporters in broiler chickens (Ross 708). There were four treatment groups: thermoneutral-control (TNc) and infected (TNi), heat-stress control (HSc) and infected (HSi), six replicates of 10 birds/treatment. Ileal content and tissue were sampled at 6 d post infection to determine AID and transporters expression. Surprisingly, the HSi chickens exposed to two critical stressors exhibited normal AID. Only the TNi group displayed reduction in AID. Using TNc as control, the HSc group showed upregulated CAT1, LAT4, TAT1, SNAT1, and SNAT7. The HSi group showed upregulated CAT1 and LAT1, and downregulated b0,+AT, rBAT, SNAT1, and SNAT2. The TNi group showed upregulated CAT1, LAT1, and SNAT1 and downregulated B0AT1, b0,+AT, rBAT, LAT4, and TAT1. The expression of all enterocytic-apical and about half of the basolateral transporters was higher in the HSi group than in the TNi group, indicating that HS can putatively alleviate the E. maxima adverse effect on ileal digestion and absorption.
Collapse
Affiliation(s)
- Ahmed F. A. Ghareeb
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
| | - Gustavo H. Schneiders
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA
| | - James C. Foutz
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), 1110 Airport Pkwy, Gainesville, GA 30501, USA
| | - Marie C. Milfort
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, 425 River Rd, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
- Correspondence: ; Tel.: +1-706-542-1351
| |
Collapse
|
33
|
Zurak D, Slovenec P, Janječić Z, Bedeković XD, Pintar J, Kljak K. Overview on recent findings of nutritional and non-nutritional factors affecting egg yolk pigmentation. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2046447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D. Zurak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - P. Slovenec
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Z. Janječić
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - X, D. Bedeković
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - J. Pintar
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - K. Kljak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
34
|
Abdel-Moneim AME, Shehata AM, Mohamed NG, Elbaz AM, Ibrahim NS. Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biol Trace Elem Res 2022; 200:768-779. [PMID: 33674946 DOI: 10.1007/s12011-021-02662-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
This study examined the effects of dietary Spirulina platensis (SP) at levels of 0, 5, and 10 g.kg-1 and selenium nanoparticles (SeNPs) at 0, 0.1, and 0.2 mg.kg-1, individually and in combination, on heat-stressed broiler chickens for 5 weeks. Four hundred fifty one-day-old Ross-308 chicks were allocated to 9 dietary groups with 5 replicates (10 chicks each). The control diet was consisted of corn-soybean-based basal diet. The obtained results displayed a significant increase in final body weight (p = 0.005) and weight gain during the periods from 22 to 35 days (p = 0.002) and 1 to 35 days (p = 0.005) in birds fed supplemented diets compared to those fed control diet, with the highest being in birds fed with both 10 g SP and 0.1 mg SeNPs. Feed conversion ratio was also improved in birds fed supplemented compared to control group. Dietary supplements significantly improved carcass dressing (p < 0.001), carcass yield (p = 0.001) percentages, and blood lipid profile. Blood triiodothyronine was higher (p = 0.005) with all treated diets except that contain 5 g SP compared to the control, with the highest being in birds fed diet contains 5 g SP + 0.2 mg SeNPs. Immunoglobulin subclasses IgG, IgM, and IgA were higher in birds fed supplemented diets compared to the control group. Antibody titers to Newcastle disease, avian influenza, and infectious bursal disease were numerically increased with dietary supplementation compared to the control group. Dietary treatments increased (p < 0.001) glutathione peroxidase and superoxide dismutase (SOD) levels, except diet contains 5 g SP for SOD level and decreased (p < 0.001) malondialdehyde level. It is concluded that dietary inclusion of SP and SeNPs, particularly their combination at levels 5 g SP plus 0.2 mg SeNPs kg-1 and 10 g SP plus 0.1 mg SeNPs kg-1, improved growth performance, carcass yield, immunity, and antioxidant capacity of heat-stressed broilers.
Collapse
Affiliation(s)
- Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Noureldeen G Mohamed
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | | | - Nashaat S Ibrahim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| |
Collapse
|
35
|
Wang W, Jiang J, Huang Y, Peng F, Hu T, Wu J, Pan X, Rao C. Aconitine induces autophagy via activating oxidative DNA damage-mediated AMPK/ULK1 signaling pathway in H9c2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114631. [PMID: 34520828 DOI: 10.1016/j.jep.2021.114631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum species, with a medicinal history of 2000 years, was traditionally used in the treatment of rheumatism, arthritis, bruises, and pains. However, many studies have reported that Aconitum species can cause arrhythmia in experimental animals, resulting in myocardial fibrosis and cardiomyocyte damage. Cardiotoxicity is the main toxic effect of aconitine, but the detailed mechanism remains unclear. AIM OF THE STUDY This study aimed to explore the effects and underlying mechanism of autophagy in H9c2 cardiomyocytes induced by aconitine. MATERIALS AND METHODS H9c2 cells were incubated with different concentrations of aconitine for 24 h, and the intervention sections were pretreated with various inhibitors for 1 h. The effects of aconitine on the oxidative DNA damage, autophagy and viability of H9c2 cells were evaluated by flow cytometry, confocal microscopy, enzyme-linked immunosorbent assay and Western blot. RESULTS In H9c2 cells, the cell viability declined, LDH release rate, the number of autophagosomes, protein expression levels of LC3 and Beclin-1 increased significantly after 24 h of aconitine incubation. The pretreatment of autophagy inhibitor 3-MA decreased markedly autophagosomes and protein expression levels of LC3 and Beclin-1, which suggested that aconitine could induce cell autophagy. The significant increase of ROS and 8-OHdG showed that aconitine could cause oxidative DNA damage through ROS accumulation. Meanwhile, treatment of aconitine dramatically increased AMPKThr172 and ULK1Ser317 phosphorylation, and Compound C inhibited AMPKThr172 and ULK1Ser317 phosphorylation, which proved that aconitine induced autophagy via AMPK activation mediated ULK1 phosphorylation. Antioxidant NAC significantly reduced LDH, ROS and 8-OHdG, inhibited the phosphorylation of AMPKThr172 and ULK1Ser317, and down-regulated autophagosomes and proteins expression levels of LC3 and Beclin-1. Consequently, the inhibition of oxidative DNA damage and AMPK/ULK1 signaling pathway alleviated the aconitine-induced autophagic death of H9c2 cells. CONCLUSIONS These results showed that aconitine induces autophagy of H9c2 cardiomyocytes by activating AMPK/ULK1 signaling pathway mediated by oxidative DNA damage. The autophagy induced by aconitine in cardiomyocytes is dependent on the activation of the AMPK pathway, which may provide novel insights into the prevention of aconitine-related toxicity.
Collapse
Affiliation(s)
- Wenlin Wang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Jialuo Jiang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Yan Huang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Fu Peng
- West China School of Pharmacy, West China School of Public Health, Sichuan University, Chengdu City, Sichuan Province, 610041, China.
| | - Tingting Hu
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Jiayang Wu
- West China School of Pharmacy, West China School of Public Health, Sichuan University, Chengdu City, Sichuan Province, 610041, China.
| | - Xiaoqi Pan
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| |
Collapse
|
36
|
Yan N, Zhang H, Zhang Z, Zhang H, Zhou L, Chen T, Feng S, Ding C, Yuan M. The extraction, antioxidant and against β-amyloid induced toxicity of polyphenols from Alsophila spinulosa leaves. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
37
|
The relationship between small heat shock proteins and redox homeostasis during acute heat stress in chickens. J Therm Biol 2021; 100:103040. [PMID: 34503787 DOI: 10.1016/j.jtherbio.2021.103040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022]
Abstract
As heat stress is a major emerging issue in poultry farming, investigations on the molecular mechanisms of the heat-triggered cellular response in chickens are of special importance. In the present study, 32-day-old Ross 308 broiler chickens were subjected to 37 °C environmental temperature combined with 50% relative humidity for 4 or 8 h respectively. Following sampling, redox parameters such as malondialdehyde (MDA), reduced glutathione (GSH), protein carbonyl levels as well as glutathione peroxidase activity were assessed in liver, spleen, and kidney homogenates. The concentrations of small heat shock proteins (sHSP-s) HSP27, αA- and αB-crystallins were also investigated. Among these organs, the liver was found the most susceptible to heat-provoked oxidative stress, indicated by enhanced lipid peroxidation and rapid activation of protective pathways, including the definite increase of glutathione peroxidase activity and the excessive utilization of αA- and αB-crystallin proteins. Heat-associated decline of protein carbonylation and GSH content was observed in the liver in correlation with the increased involvement of αA- and αB-crystallins in cellular defense, resulting supposedly in an overcompensation mechanism. These data highlight the hepatic sensitivity to acute heat shock, potential adaptation mechanisms, and the specific role of sHSP-s in the restoration of physiologic cell function.
Collapse
|
38
|
Mahmoudi J, Hosseini L, Sadigh-Eteghad S, Farajdokht F, Vatandoust SM, Ziaee M. Sericin Alleviates Thermal Stress Induced Anxiety-Like Behavior and Cognitive Impairment Through Regulation of Oxidative Stress, Apoptosis, and Heat-Shock Protein-70 in the Hippocampus. Neurochem Res 2021; 46:2307-2316. [PMID: 34089443 DOI: 10.1007/s11064-021-03370-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Exposure to heat stress (HS) has adverse effects on brain function, leading to anxiety-like behavior and memory impairment. Sericin is a silk derived protein with various neurobiological activities. The present study has investigated the effects of sericin on anxiety and cognitive impairments, in HS-received mice. The adult male mice were exposed to HS (43 ºC, 15 min once a day for 14 days) and simultaneously treated with 100, 150, and 200 mg/kg/day of sericin through oral gavage. Elevated plus-maze and Lashley III Maze tests were used to evaluate anxiety and learning and memory, respectively. The hippocampal BAX, BCL-2, caspase3, caspase9 and heat-shock protein-70 (HSP-70) were evaluated by western blotting and oxidative stress markers including malondialdehyde (MDA), total antioxidant capacity (TAC), super oxide dismutase (SOD) as well as glutathione peroxidase (GPx) were evaluated by spectroscopy method. The serum was collected for the analysis of the corticosterone levels. Treatment with sericin in higher doses reversed anxiety-like behavior and cognitive deficit induced by HS. Moreover, heat exposure increased serum corticosterone, hippocampal MDA, apoptotic proteins and HSP-70 levels. Sericin administration decreased serum corticosterone and enhanced hippocampal antioxidant defense and attenuated apoptosis and HSP-70 levels. The results show that the protective effects of sericin against HS-mediated cognitive dysfunction and anxiety-like behavior is possibly through suppressing HSP-70, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
- Department of Pharmacology, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
39
|
Habashy WS, Milfort MC, Rekaya R, Aggrey SE. Molecular and Cellular Responses of DNA Methylation and Thioredoxin System to Heat Stress in Meat-Type Chickens. Animals (Basel) 2021; 11:ani11071957. [PMID: 34208977 PMCID: PMC8300342 DOI: 10.3390/ani11071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) causes molecular dysfunction that adversely affects chicken performance and increases mortality. The responses of chickens to HS are extremely complex. Thus, the aim of this study was to evaluate the influence of acute and chronic exposure to HS on the expression of thioredoxin-peroxiredoxin system genes and DNA methylation in chickens. Chickens at 14 d of age were divided into two groups and reared under either constant normal temperature (25 °C) or high temperature (35 °C) in individual cages for 12 days. Five birds per group at one and 12 days post-HS were euthanized and livers were sampled for gene expression. The liver and Pectoralis major muscle were sampled for cellular analysis. mRNA expression of thioredoxin and peroxiredoxins (Prdx) 1, 3, and 4 in the liver were down-regulated at 12 days post-HS compared to controls. The liver activity of thioredoxin reductase (TXNRD) and levels of peroxiredoxin1 (Prdx1) at 12 days post-HS were significantly decreased. The results reveal that there was a significant decrease in DNA methylation at 12 days post HS in liver tissues. In conclusion, pathway of thioredoxin system under HS may provide clues to nutritional strategies to mitigate the effect of HS in meat-type chicken.
Collapse
Affiliation(s)
- Walid S. Habashy
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt
- Correspondence: or (W.S.H.); (S.E.A.)
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
- Correspondence: or (W.S.H.); (S.E.A.)
| |
Collapse
|
40
|
Nidamanuri AL, Prince LLL, Mahapatra RK, Murugesan S. Effect on physiological and production parameters upon supplementation of fermented yeast culture to Nicobari chickens during and post summer. J Anim Physiol Anim Nutr (Berl) 2021; 106:284-295. [PMID: 34110055 DOI: 10.1111/jpn.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Nicobari is an indigenous bird reared for meat and eggs. This study evaluated the effect of heat stress on plasma levels of leptin, growth hormone and their receptors, liver AMP kinase, plasma cholesterol and lipid peroxide (MDA). The laying period coincided with the post summer period. The birds were equally divided into three groups, control group was offered ad libitum feed and treatment groups were supplemented with fermented yeast culture at 700 mg (T1) and 1.4 g/kg (T2) of feed/day. The levels of plasma Leptin and GH hormones were higher (p < 0.05) in the control group when compared to the treatment groups. The expression of the hormone receptors was higher in the brain, and MMP3 gene expression in the magnum was lower in the treatment group. Plasma cholesterol, MDA and AMP kinase were significantly higher (p < 0.05) in the control group. Fermented yeast culture supplementation decreased feed intake and increased egg production parameters, which indicates a greater efficiency of supplementation. Supplementation reduced the severity of necrosis of villi in the jejunum when compared to control. In conclusion, higher ambient temperature during summer had negative effect on production parameters through modulation of physiological parameters which could be ameliorated by supplementation of FYC.
Collapse
|
41
|
Li T, He W, Liao X, Lin X, Zhang L, Lu L, Guo Y, Liu Z, Luo X. Zinc alleviates the heat stress of primary cultured hepatocytes of broiler embryos via enhancing the antioxidant ability and attenuating the heat shock responses. ACTA ACUST UNITED AC 2021; 7:621-630. [PMID: 34401540 PMCID: PMC8334375 DOI: 10.1016/j.aninu.2021.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Zinc (Zn) has been shown to attenuate the adverse effects of heat stress on broilers, but the mechanisms involving this process remain unclear. We aimed to investigate possible protective mechanisms of Zn on primary cultured hepatocytes of broiler embryos subjected to heat stress. Three experiments were conducted. In Exp. 1, hepatocytes were treated with 0, 50, 100, 200, or 400 μmol/L added Zn as inorganic Zn sulfate (iZn) for 12, 24 or 48 h. In Exp. 2, cells were exposed to 40 °C (a normal temperature [NT]) and 44 °C (a high temperature [HT]) for 1, 2, 4, 6, or 8 h. In Exp. 3, cells were preincubated with 0 or 50 μmol/L Zn as iZn or organic Zn lysine chelate (oZn) for 8 h under NT, and then incubated with the same Zn treatments under NT or HT for 4 or 6 h. The biomarkers of antioxidative status and heat stress in cells were measured. The results in Exp. 1 indicated that 50 μmol/L Zn and 12 h incubation were the optimal conditions for increasing antioxidant ability of hepatocytes. In Exp. 2, the 4 or 6 h incubation under HT was effective in inducing heat shock responses of hepatocytes. In Exp. 3, HT elevated (P < 0.01) malondialdehyde content and expressions of heat shock protein 70 (HSP70) mRNA and protein, as well as HSP90 mRNA. However, Zn supplementation increased (P < 0.05) copper zinc superoxide dismutase (CuZnSOD) activity and metallothionein mRNA expression, and effectively decreased (P < 0.05) the expressions of HSP70 mRNA and protein, as well as HSP90 mRNA. Furthermore, oZn was more effective (P < 0.05) than iZn in enhancing CuZnSOD activity of hepatocytes under HT. It was concluded that Zn (especially oZn) could alleviate heat stress of broiler hepatocytes via enhancing their antioxidant ability and attenuating heat shock responses.
Collapse
Affiliation(s)
- Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wengang He
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
42
|
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Oxidative stress in response to heat stress in wild caught Namaqua rock mice, Micaelamys namaquensis. J Therm Biol 2021; 98:102958. [PMID: 34016369 DOI: 10.1016/j.jtherbio.2021.102958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
Modelling of anthropogenic induced climate suggests more frequent and severe heatwaves in the future, which are likely to result in the mass die-off of several species of organisms. Oxidative stress induced by severe heat stress has previously been associated with a reduction in animal cognitive performance, depressed reproduction and lower life expectancy. Little is known about the non-lethal consequences of species should they survive extreme heat exposure. We investigated the oxidative stress experienced by the Namaqua rock mouse, a nocturnal rodent, using two experimental heat stress protocols, a 6 hour acute heat stress protocol without access to water and a 3-day heatwave simulation with ad libitum water. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers of oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defence. Incubator heat stress (heat and dehydration stress) was brought about by increasing the body temperatures of animals to 39-40.8 °C for 6 hours. Following incubator heat stress, significantly higher levels of MDA were observed in the liver. Dehydration did not explain the variation in oxidative markers and is likely a combined effect of thermal and dehydration stress. Individual body mass was significantly negatively correlated to kidney SOD and lipid peroxidation. A heatwave was simulated using a temperature cycle that would naturally occur during a heatwave in the species' local habitat, with a maximal ambient temperature of 38 °C. Following the simulated heatwave, SOD activity of the kidney demonstrated significantly lowered activity suggesting oxidative stress. Current heat waves in this species have the potential of causing oxidative stress. Heat and dehydration stress following exacerbated temperatures are likely to incur significant oxidative stress in multiple tissues demonstrating the importance of water availability to allow for rehydration to prevent oxidative stress.
Collapse
Affiliation(s)
- Paul J Jacobs
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| | - M K Oosthuizen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| | - C Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - J D Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
43
|
Abdel-Moneim AME, Shehata AM, Khidr RE, Paswan VK, Ibrahim NS, El-Ghoul AA, Aldhumri SA, Gabr SA, Mesalam NM, Elbaz AM, Elsayed MA, Wakwak MM, Ebeid TA. Nutritional manipulation to combat heat stress in poultry - A comprehensive review. J Therm Biol 2021; 98:102915. [PMID: 34016342 DOI: 10.1016/j.jtherbio.2021.102915] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Global warming and climate change adversely affect livestock and poultry production sectors under tropical and subtropical conditions. Heat stress is amongst the most significant stressors influencing poultry productivity in hot climate regions, causing substantial economic losses in poultry industry. These economic losses are speculated to increase in the coming years with the rise of global temperature. Moreover, modern poultry strains are more susceptible to high ambient temperature. Heat stress has negative effects on physiological response, growth performance and laying performance, which appeared in the form of reducing feed consumption, body weight gain, egg production, feed efficiency, meat quality, egg quality and immune response. Numerous practical procedures were used to ameliorate the negative impacts of increased temperature; among them the dietary manipulation, which gains a great concern in different regions around the world. These nutritional manipulations are feed additives (natural antioxidants, minerals, electrolytes, phytobiotics, probiotics, fat, and protein), feed restriction, feed form, drinking cold water and others. However, in the large scale of poultry industry, only a few of these strategies are commonly used. The current review article deliberates the different practical applications of useful nutritional manipulations to mitigate the heat load in poultry. The documented information will be useful to poultry producers to improve the general health status and productivity of heat-stressed birds via enhancing stress tolerance, oxidative status and immune response, and thereby provide recommendations to minimize production losses due to heat stress in particular under the growing global warming crisis.
Collapse
Affiliation(s)
- Abdel-Moneim Eid Abdel-Moneim
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt; Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | - Vinod K Paswan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nashaat S Ibrahim
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Abdelkawy A El-Ghoul
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Sami Ali Aldhumri
- Department of Biology, Khurmah University College, Taif University, Saudi Arabia
| | - Salah A Gabr
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt; Department of Biology, Khurmah University College, Taif University, Saudi Arabia
| | - Noura M Mesalam
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | | | - Mohamed A Elsayed
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Magda M Wakwak
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Tarek A Ebeid
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
44
|
Fitchett JM. Perspectives on biometeorological research on the African continent. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:133-147. [PMID: 32997273 DOI: 10.1007/s00484-020-02020-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Since the first issue of the International Journal of Biometeorology in 1957, a total of 135 papers have reported on research in or of African countries. The majority of these have been on topics of animal biometeorology (36%), and the greatest proportion (24%) are situated in Nigeria. There has been a considerable increase in papers on African biometeorology since 2011, with those from this past decade accounting for 58% of all African papers in the journal. This occurs concurrent to an increase in the total number of papers published in the journal, driven by a move to the Editorial Manager system. While 66% of the papers on African biometeorology in the journal are authored by at least one person with an affiliation in the African continent, only 15 African countries are represented in the total authorship. As much of the African continent is projected to experience climatic changes exceeding the global mean, as much of the region is involved in animal and plant farming, and as seasonally-fluctuating and climatically affected diseases are common place, this low representation of work in Africa is surprising. This points to the need for greater awareness among African researchers of the discipline of biometeorology, greater involvement of African biometeorologists in International Society of Biometeorology and Commission meetings, and the inclusion of a greater number of African academics in the review process. This would be beneficial to the Society in increasing diversity and encouraging a more cosmopolitan engagement, and to the recognition of scientific development in African countries.
Collapse
Affiliation(s)
- Jennifer M Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
45
|
Acetyl-L-Carnitine Induces Autophagy to Promote Mouse Spermatogonia Cell Recovery after Heat Stress Damage. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8871328. [PMID: 33532499 PMCID: PMC7837762 DOI: 10.1155/2021/8871328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
Acetyl-L-carnitine (ALC) is an effective substrate for mitochondrial energy metabolism and is known to prevent neurodegeneration and attenuate heavy metal-induced injury. In this study, we investigated the function of ALC in the recovery of mouse spermatogonia cells (GC-1 cells) after heat stress (HS). The cells were randomly divided into three groups: control group, HS group (incubated at 42°C for 90 min), and HS + ALC group (treatment of 150 μM ALC after incubated at 42°C for 90 min). After heat stress, all of the cells were recovered at 37°C for 6 h. In this study, the content of intracellular lactate dehydrogenase (LDH) in the cell supernatant and the malondialdehyde (MDA) levels, catalase (CAT) levels, and total antioxidant capacity (T-AOC) were significantly increased in the HS group compared to the CON group. In addition, the mitochondrial membrane potential (MMP) was markedly decreased, while the apoptosis rate and the expression of apoptosis-related genes (Bcl-2, Bax, and caspase3) were significantly increased in the HS group compared to the CON group. Furthermore, the number of autophagosomes and the expression of autophagy-related genes (Atg5, Beclin1, and LC3II) and protein levels of p62 were increased, but the expression of LAMP1 was decreased in the HS group compared to the CON group. However, treatment with ALC remarkably improved cell survival and decreased cell oxidative stress. It was unexpected that levels of autophagy were markedly increased in the HS + ALC group compared to the HS group. Taken together, our present study evidenced that ALC could alleviate oxidative stress and improve the level of autophagy to accelerate the recovery of GC-1 cells after heat stress.
Collapse
|
46
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
47
|
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 2020; 15:e0242279. [PMID: 33186409 PMCID: PMC7665817 DOI: 10.1371/journal.pone.0242279] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023] Open
Abstract
Heat waves are known for their disastrous mass die-off effects due to dehydration and cell damage, but little is known about the non-lethal consequences of surviving severe heat exposure. Severe heat exposure can cause oxidative stress which can have negative consequences on animal cognition, reproduction and life expectancy. We investigated the current oxidative stress experienced by a mesic mouse species, the four striped field mouse, Rhabdomys dilectus through a heat wave simulation with ad lib water and a more severe temperature exposure with minimal water. Wild four striped field mice were caught between 2017 and 2019. We predicted that wild four striped field mice in the heat wave simulation would show less susceptibility to oxidative stress as compared to a more severe heat stress which is likely to occur in the future. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers for oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defense. Incubator heat stress was brought about by increasing the body temperatures of animals to 39-40.8°C for 6 hours. A heat wave (one hot day, followed by a 3-day heatwave) was simulated by using temperature cycle that wild four striped field mice would experience in their local habitat (determined through weather station data using temperature and humidity), with maximal ambient temperature of 39°C. The liver and kidney demonstrated no changes in the simulated heat wave, but the liver had significantly higher SOD activity and the kidney had significantly higher lipid peroxidation in the incubator experiment. Dehydration significantly contributed to the increase of these markers, as is evident from the decrease in body mass after the experiment. The brain only showed significantly higher lipid peroxidation following the simulated heat wave with no significant changes following the incubator experiment. The significant increase in lipid peroxidation was not correlated to body mass after the experiment. The magnitude and duration of heat stress, in conjunction with dehydration, played a critical role in the oxidative stress experienced by each tissue, with the results demonstrating the importance of measuring multiple tissues to determine the physiological state of an animal. Current heat waves in this species have the potential of causing oxidative stress in the brain with future heat waves to possibly stress the kidney and liver depending on the hydration state of animals.
Collapse
Affiliation(s)
- Paul J. Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - M. K. Oosthuizen
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - C. Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Nigel C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
48
|
Abdelnour S, El-Saadony M, Saghir S, Abd El-Hack M, Al-shargi O, Al-Gabri N, Salama A. Mitigating negative impacts of heat stress in growing rabbits via dietary prodigiosin supplementation. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104220] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Egbuniwe IC, Uchendu CN, Obidike IR. Effects of betaine and ascorbic acid supplementation on serum gonadotropin, testicular histological analysis and sperm quality in male Japanese quails during the dry season. Theriogenology 2020; 158:391-405. [PMID: 33038825 DOI: 10.1016/j.theriogenology.2020.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
The study investigated the effects of betaine and ascorbic acid supplementation on serum gonadotropin, testicular histological features and sperm quality in male Japanese quails reared during the dry season. Two hundred and forty 14 day-old male Japanese quails, obtained commercially and housed in cages, were assigned randomly to four dietary treatments for 56 days. Each treatment comprised of 3 replicates (20 birds per replicate). Birds in Control group were fed only basal diet, while those in AA group consumed supplemental ascorbic acid at (200 mg/kg); BET group, betaine (2 g/kg) and AA + BET, a combination of AA (200 mg/kg) and betaine (2 g/kg) in diets. Feeds and water were offered to all birds ad libitum. The prevailing environmental conditions during the study predominantly exceeded the zone of thermal comfort for Japanese quails with DBT ranging from 25.0 to 37.0 °C; RH, 48.0-92.0% and THI, 69.8-91.0. At 28, 49 and 70 day-old, serum concentrations of malondialdhyde (MDA), superoxide dismutase (SOD), gonadotropins [luteinizing hormone (LH) and follicle stimulating hormones (FSH)] and testicular histological analyses were evaluated. Sperm quality was assessed in 70 day - old quails as sperm motility (SM), vitality (SV), total abnormalities (STA) and reserve (SR). Supplemental AA + BET decreased (P < 0.05) MDA, but improved (P < 0.05) SOD in 28, 49 and 70 day-old quails. Serum LH and FSH activities were enhanced (P < 0.05) in birds fed AA ± BET diets, but those which consumed BET or AA + BET showed enhanced (P < 0.05) testicular histological architecture and spermatogenic activities. Birds fed AA ± BET showed improved SM, SV and SR (P < 0.05), but lower STA in 70 days old male quails. It is concluded that supplementation of betaine and ascorbic acid enhances male reproductive potentials in Japanese quails during the dry season.
Collapse
Affiliation(s)
| | - Chukwuka Nwocha Uchendu
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
50
|
Orhan C, Kucuk O, Sahin N, Tuzcu M, Sahin K. Effects of taurine supplementation on productive performance, nutrient digestibility and gene expression of nutrient transporters in quails reared under heat stress. J Therm Biol 2020; 92:102668. [PMID: 32888571 DOI: 10.1016/j.jtherbio.2020.102668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
This study was conducted to examine the effects of dietary taurine supplementation on productive performance, nutrient digestibility, antioxidant status, and the gene expression of ileal nutrient transporters in laying quails reared under heat stress (HS). One hundred and eighty laying Japanese quails (Coturnix coturnix japonica) were fed a basal diet or basal diet supplemented with either 2.5 or 5 g of taurine per kg of diet, and reared at either 22 ± 2 °C for 24 h/d (thermoneutral, TN) or 34 ± 2 °C for 8 h/d (HS) for 12 weeks. The quails reared under HS consumed less feed, produced less egg, and had lower dry matter, organic matter and crude protein apparent digestibilities compared with the quails reared under the TN condition (P = 0.001). However, increasing taurine concentrations in the diet improved feed intake and egg production (P = 0.001), but also the apparent digestibilities (P ≤ 0.027) in quails reared under HS. The greater doses (5 g/kg) of taurine resulted in more responses. The quails reared under HS had greater serum and liver MDA concentrations (P = 0.0001) which decreased with dietary taurine supplementations, particularly greater doses. The gene expressions of ileal PEPT1, EAAT3, CAT1, CAT2, SGLT1, SGLT5, GLUT2, and GLUT5 decreased under HS conditions (P = 0.001). However, supplementing taurine, in a dose-dependent fashion, to the diet of quails reared under HS resulted in increases in the gene expressions of the transporters (P < 0.05) except for CAT1. The results of the present work showed that taurine supplementation, particularly with greater doses (5 g/kg), to the diet of laying quails kept under HS acts as alleviating negative effects of HS, resulting in improvements in productive performance and nutrient digestion, and also upregulation of ileal nutrient transporters.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, 23119, Turkey
| | - Osman Kucuk
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey.
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, 23119, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, 23119, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, 23119, Turkey
| |
Collapse
|