1
|
Dashek RJ, Cunningham RP, Taylor CL, Alessi I, Diaz C, Meers GM, Wheeler AA, Ibdah JA, Parks EJ, Yoshida T, Chandrasekar B, Rector RS. Hepatocellular RECK as a Critical Regulator of Metabolic Dysfunction-associated Steatohepatitis Development. Cell Mol Gastroenterol Hepatol 2024; 18:101365. [PMID: 38797477 PMCID: PMC11278626 DOI: 10.1016/j.jcmgh.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND & AIMS Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is an extracellular matrix regulator with anti-fibrotic effects. However, its expression and role in metabolic dysfunction-associated steatohepatitis (MASH) and hepatic fibrosis are poorly understood. METHODS We generated a novel transgenic mouse model with RECK overexpression specifically in hepatocytes to investigate its role in Western diet (WD)-induced liver disease. Proteomic analysis and in vitro studies were performed to mechanistically link RECK to hepatic inflammation and fibrosis. RESULTS Our results show that RECK expression is significantly decreased in liver biopsies from human patients diagnosed with MASH and correlated negatively with severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and fibrosis. Similarly, RECK expression is downregulated in WD-induced MASH in wild-type mice. Hepatocyte-specific RECK overexpression significantly reduced hepatic pathology in WD-induced liver injury. Proteomic analysis highlighted changes in extracellular matrix and cell-signaling proteins. In vitro mechanistic studies linked RECK induction to reduced ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) and ADAM17 activity, amphiregulin release, epidermal growth factor receptor activation, and stellate cell activation. CONCLUSION Our in vivo and mechanistic in vitro studies reveal that RECK is a novel upstream regulator of inflammation and fibrosis in the diseased liver, its induction is hepatoprotective, and thus highlights its potential as a novel therapeutic in MASH.
Collapse
Affiliation(s)
- Ryan J Dashek
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri; NextGen Precision Health, University of Missouri, Columbia, Missouri; Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rory P Cunningham
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Christopher L Taylor
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri; NextGen Precision Health, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Isabella Alessi
- Department of Surgery, University of Missouri, Columbia, Missouri
| | - Connor Diaz
- School of Medicine, University of Missouri, Columbia, Missouri
| | - Grace M Meers
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri; NextGen Precision Health, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri
| | - Jamal A Ibdah
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri; Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Elizabeth J Parks
- NextGen Precision Health, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Tadashi Yoshida
- Department of Medicine and Physiology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri; Division of Cardiology, Department of Medicine, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - R Scott Rector
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri; NextGen Precision Health, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri.
| |
Collapse
|
2
|
Wang J, Su Y, Liu H, Li Y, Fang X, Yu X, Li Q, Han W. Association between the Reduced Expression of RECK and Neutrophilic Inflammation in Chronic Obstructive Pulmonary Disease. Int Arch Allergy Immunol 2024; 185:480-488. [PMID: 38387446 DOI: 10.1159/000536021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a recently discovered inhibitor of matrix metalloproteinase (MMP). There is a large number of chronic obstructive pulmonary disease (COPD) patients worldwide; however, the role of RECK on COPD has not been studied. This study explored the expression of RECK in COPD patients and its effect on neutrophil function to provide a new scientific basis for the prevention and treatment of COPD. METHOD Fifty patients with acute exacerbation of COPD and fifty healthy controls were enrolled in the study. RECK was detected in lung tissue, sputum, and plasma of subjects as well as in BEAS-2B cells stimulated with cigarette smoke extract (CSE) by immunohistochemistry, ELISA, and qRT-PCR. Meanwhile, lung function (FEV1%pred) and inflammatory cytokines (IL-6 and IL-8) were examined, and correlation analysis was performed with RECK expression. The effect of RECK on proliferation, apoptosis, migration, and inflammatory cytokines and its potential mechanism was further quantified by neutrophil stimulated with recombinant human RECK protein (rhRECK) combined with CSE using CCK8, flow cytometry, Transwell assay, qRT-PCR, ELISA, and Western analysis. RESULTS RECK was mainly expressed on airway epithelial cells in normal lung tissue and was significantly diminished in COPD patients. The levels of RECK in sputum and plasma were also significantly decreased in COPD patients. Pearson correlation analysis showed that RECK level in plasma was positively correlated with FEV1%pred (r = 0.458, p < 0.001) and negatively correlated with IL-6 and IL-8 (r = -0.386, -0.437; p = 0.006, 0.002) in COPD patients. The expression of RECK was decreased in BEAS-2B stimulated with CSE. The migration, inflammation, and MMP-9 expression of neutrophils were promoted by CSE, while inhibited by rhRECK. CONCLUSION RECK is low expressed in COPD patients and negatively correlated with inflammation. It may inhibit the inflammation and migration of neutrophils by downregulating MMP-9.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yi Su
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hong Liu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yongchun Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xuejie Fang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- School of Clinical Medicine, Shandong Second Medical University, Wei Fang, China
| | - Xinjuan Yu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qinghai Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
Di Pasqua LG, Cagna M, Palladini G, Croce AC, Cadamuro M, Fabris L, Perlini S, Adorini L, Ferrigno A, Vairetti M. FXR agonists INT-787 and OCA increase RECK and inhibit liver steatosis and inflammation in diet-induced ob/ob mouse model of NASH. Liver Int 2024; 44:214-227. [PMID: 37904642 DOI: 10.1111/liv.15767] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND AND AIMS We have previously shown in a model of hepatic ischaemia/reperfusion injury that the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) restores reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), an inverse modulator of metalloproteases (MMPs) and inhibitor of the sheddases ADAM10 and ADAM17 involved in inflammation and fibrogenesis. Here, the effects of FXR agonists OCA and INT-787 on hepatic levels of RECK, MMPs, ADAM10 and ADAM17 were compared in a diet-induced ob/ob mouse model of non-alcoholic steatohepatitis (NASH). METHODS Lep ob/ob NASH mice fed a high-fat diet (HFD) or control diet (CD) for 9 weeks (wks) were treated with OCA or INT-787 0.05% dosed via HFD admixture (30 mg/kg/day) or HFD for further 12 wks. Serum alanine transaminase (ALT) and inflammatory cytokines, liver RECK, MMP-2 and MMP-9 activity as well as ADAM10, ADAM17, collagen deposition (Sirius red), hepatic stellate cell activation (α-SMA) and pCK+ reactive biliary cells were quantified. RESULTS Only INT-787 significantly reduced serum ALT, IL-1β and TGF-β. A downregulation of RECK expression and protein levels observed in HFD groups (at 9 and 21 wks) was counteracted by both OCA and INT-787. HFD induced a significant increase in liver MMP-2 and MMP-9; OCA administration reduced both MMP-2 and MMP-9 while INT-787 markedly reduced MMP-2 expression. OCA and INT-787 reduced both ADAM10 and ADAM17 expression and number of pCK+ cells. INT-787 was superior to OCA in decreasing collagen deposition and α-SMA levels. CONCLUSION INT-787 is superior to OCA in controlling specific cell types and clinically relevant anti-inflammatory and antifibrotic molecular mechanisms in NASH.
Collapse
Affiliation(s)
- Laura G Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Marta Cagna
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Internal Medicine Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna C Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Liver Center and Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Stefano Perlini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Emergency Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Palladini G, Di Pasqua LG, Croce AC, Ferrigno A, Vairetti M. Recent Updates on the Therapeutic Prospects of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Liver Injuries. Int J Mol Sci 2023; 24:17407. [PMID: 38139236 PMCID: PMC10743940 DOI: 10.3390/ijms242417407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a membrane-anchored glycoprotein, negatively regulates various membrane proteins involved in the tissue governing extracellular matrix (ECM) remodeling such as metalloproteases (MMPs) and the sheddases ADAM10 and ADAM17. The significance of the present review is to summarize the current understanding of the pathophysiological role of RECK, a newly discovered signaling pathway associated with different liver injuries. Specifically, this review analyzes published data on the downregulation of RECK expression in hepatic ischemia/reperfusion (I/R) injury, liver-related cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), as well as in the progression of nonalcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). In addition, this review discusses the regulation of RECK by inducers, such as FXR agonists. The RECK protein has also been suggested as a potential diagnostic and prognostic marker for liver injury or as a biomarker with predictive value for drug treatment efficacy.
Collapse
Affiliation(s)
- Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (G.P.); (L.G.D.P.); (M.V.)
- Internal Medicine Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Laura Giuseppina Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (G.P.); (L.G.D.P.); (M.V.)
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (G.P.); (L.G.D.P.); (M.V.)
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (G.P.); (L.G.D.P.); (M.V.)
| |
Collapse
|
5
|
Fu Y, Liu Y, Liu K, Tan L. Tumor Cell-Derived Extracellular Vesicles Promote the Growth, Metastasis and Chemoresistance in Cholangiocarcinoma by Delivering microRNA-210 to Downregulate RECK. Mol Biotechnol 2023; 65:1151-1164. [PMID: 36454533 DOI: 10.1007/s12033-022-00607-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
The development of cholangiocarcinoma (CCA) can be regulated by extracellular vesicles (EVs). In this study, we intend to investigate whether tumor cell-derived EVs delivering microRNA (miR)-210 affect CCA development, involved with reversion-inducing-cysteine-rich protein with kazal motifs (RECK). In silico analysis was performed for identifying differentially expressed miRs and the downstream target genes. The CCA related microarray GSE77984 was used to verify the expression of the target genes in CCA tissue samples. Targeting relationship between miR-210 and RECK was assayed. EVs were extracted from CCA cells, followed by co-culture with CCA cells. The in vitro and in vivo roles of tumor cell-derived EVs on the growth and metastasis of CCA cells were assayed. Upregulated miR-210 and downregulated RECK were found in CCA. CCA cells could uptake tumor cell-derived EVs, and the EVs could promote their migration, invasion, and chemoresistance. RECK expression could be target and inhibited by miR-210. It was further confirmed in vivo that miR-210 shuttled by tumor cell-derived EVs could specifically inhibit RECK expression, which promotes growth, metastasis and chemoresistance of CCA cells. Our current study highlighted that tumor cell-derived EVs could deliver miR-210 to CCA cells, where miR-210 specifically decreases RECK expression, which facilitates growth, metastasis and chemoresistance in CCA.
Collapse
Affiliation(s)
- Yu Fu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China
| | - Yahui Liu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China
| | - Kai Liu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China
| | - Ludong Tan
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China.
| |
Collapse
|
6
|
Loilome W, Namwat N, Jusakul A, Techasen A, Klanrit P, Phetcharaburanin J, Wangwiwatsin A. The Hallmarks of Liver Fluke Related Cholangiocarcinoma: Insight into Drug Target Possibility. Recent Results Cancer Res 2023; 219:53-90. [PMID: 37660331 DOI: 10.1007/978-3-031-35166-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nisana Namwat
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
7
|
Kittirat Y, Suksawat M, Thongchot S, Padthaisong S, Phetcharaburanin J, Wangwiwatsin A, Klanrit P, Sangkhamanon S, Titapun A, Loilome W, Saya H, Namwat N. Interleukin-6-derived cancer-associated fibroblasts activate STAT3 pathway contributing to gemcitabine resistance in cholangiocarcinoma. Front Pharmacol 2022; 13:897368. [PMID: 36091805 PMCID: PMC9459012 DOI: 10.3389/fphar.2022.897368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the dominant component of the tumor microenvironment (TME) that can be beneficial to the generation and progression of cancer cells leading to chemotherapeutic failure via several mechanisms. Nevertheless, the roles of CAFs on anti-cancer drug response need more empirical evidence in cholangiocarcinoma (CCA). Herein, we examined the oncogenic roles of CAFs on gemcitabine resistance in CCA cells mediated via IL-6/STAT3 activation. Our findings showed that CCA-derived CAFs promote cell viability and enhance gemcitabine resistance in CCA cells through the activation of IL-6/STAT3 signaling. High expression of IL-6R was correlated with a poor overall survival rate and gemcitabine resistance in CCA, indicating that IL-6R can be a prognostic or predictive biomarker for the chemotherapeutic response of CCA patients. Blockade of IL-6R on CCA cells by tocilizumab, an IL-6R humanized antihuman monoclonal antibody, contributed to inhibition of the CAF-CCA interaction leading to enhancement of gemcitabine sensitivity in CCA cells. The results of this study should be helpful for modifying therapeutic regimens aimed at targeting CAF interacting with cancer cells resulting in the suppression of the tumor progression but enhancement of drug sensitivity.
Collapse
Affiliation(s)
- Yingpinyapat Kittirat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Sakkarn Sangkhamanon
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Hideyuki Saya
- Division of Gene Regulation, Fujita Cancer Center, Fujita Health University, Tokyo, Japan
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Nisana Namwat,
| |
Collapse
|
8
|
Zhang X, Gu J, Zhao C, Hu Y, Zhang B, Wang J, Lv H, Ji X, Wang S. Sweeteners Maintain Epithelial Barrier Function Through the miR-15b/RECK/MMP-9 Axis, Remodel Microbial Homeostasis, and Attenuate Dextran Sodium Sulfate-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:171-183. [PMID: 34962394 DOI: 10.1021/acs.jafc.1c06788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-nutritive sweeteners are the most widely used food additives designed to provide sweetness and reduce caloric intake. Studies have confirmed a link between sweeteners and colitis, yet supporting scientific data remain exiguous and controversial. In this study, three common sweeteners (Saccharin sodium, Stevioside, and Sucralose) in acceptable daily intake dosage were added to water in order to determine their effects on dextran sodium sulfate-induced colitis in mice. Our results show that the three sweeteners meliorate colitis to varying degrees─Saccharin exerts the most pronounced effect, followed by Stevioside and Sucralose. Intake of sweeteners alleviates colitis symptoms, alters gut microbiota, reshapes the TH17/Treg balance, protects the intestinal barrier, and reduces inflammation. Most significantly, sweeteners can enhance the abundance of Mucispirillum and Alistipes, which are conducive to colitis recovery, and upregulate the expression of E-cadherin through the miR-15b/RECK/MMP-9 axis to improve intestinal barrier integrity. Moreover, by inhibiting the MMP-9/AKT/NF-κB pathway, inflammation is relieved, as reflected in the restoration of the Th17/Treg balance. Our results link the consumption of sweeteners to the remission of colitis, which provides new scientific evidence for the safe use of sweeteners.
Collapse
Affiliation(s)
- Xuejiao Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jiaxin Gu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Congying Zhao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Thongchot S, Vidoni C, Ferraresi A, Loilome W, Khuntikeo N, Sangkhamanon S, Titapun A, Isidoro C, Namwat N. Cancer-Associated Fibroblast-Derived IL-6 Determines Unfavorable Prognosis in Cholangiocarcinoma by Affecting Autophagy-Associated Chemoresponse. Cancers (Basel) 2021; 13:cancers13092134. [PMID: 33925189 PMCID: PMC8124468 DOI: 10.3390/cancers13092134] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary We aimed to validate with clinical and molecular data the hypothesis that CAF infiltration and release of IL-6 predict poor prognosis in CCA patients following dysregulation of autophagy in cancer cells. Stromal IL-6 and cancer-cell-associated autophagy proteins were assayed by Tissue MicroArray immunohistochemistry and their expression correlated with overall survival (OS) in a cohort of 70 CCA patients. We found that patients bearing a CCA with low stromal IL-6 and active autophagy flux in the cancer cells have the best prognosis and this correlates with a more effective response to post-operative chemotherapy. A similar trend was observed in CCA patients from the TCGA database. In vitro experiments with primary CAFs isolated from human CCA showed that IL-6 impairs the autophagy-associated apoptotic response to 5-FU in human CCA cells. Stromal IL-6 inhibition of autophagy in cancer cells was confirmed in an animal model of CCA. Our data support a therapeutic strategy that includes drugs limiting the stromal inflammation and enhancing autophagy to improve the survival of CCA patients. Abstract Background: Interleukin-6 (IL-6) released by cancer-associated fibroblasts (CAFs) has been shown to associate with the malignant behavior of cholangiocarcinoma (CCA). Here, we aimed to validate with clinical and molecular data the hypothesis that CAF infiltration and release of IL-6 predict poor prognosis in CCA patients following dysregulation of autophagy in cancer cells. Methods: Stromal IL-6 and cancer-cell-associated autophagy proteins LC3 and p62 were assayed by Tissue MicroArray immunohistochemistry and their expression correlated with overall survival (OS) in a cohort of 70 CCA patients. The 5-FU cytotoxicity and autophagy were determined in CCA cells cultured with CAF-conditioned medium. Results: We show that patients bearing a CCA with low production of stromal IL-6 and active autophagy flux in the cancer cells have the best prognosis and this correlates with a more effective response to post-operative chemotherapy. A similar trend was observed in CCA patients from the TCGA database. In vitro genetic manipulation of IL-6 production by primary CAFs isolated from human CCA showed that IL-6 impairs the autophagy-associated apoptotic response to 5-FU in human CCA cells. Stromal IL-6 inhibition of autophagy in cancer cells was confirmed in an animal model of CCA. Conclusion: Our data support a therapeutic strategy that includes autophagy-enhancing drugs along with adjuvants limiting the stromal inflammation (i.e., the secretion of IL-6) to improve the survival of CCA patients.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand; (S.T.); (W.L.)
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy; (C.V.); (A.F.)
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy; (C.V.); (A.F.)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy; (C.V.); (A.F.)
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand; (S.T.); (W.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand; (N.K.); (S.S.); (A.T.)
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand; (N.K.); (S.S.); (A.T.)
- Department of Surgery, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand
| | - Sakkarn Sangkhamanon
- Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand; (N.K.); (S.S.); (A.T.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand; (N.K.); (S.S.); (A.T.)
- Department of Surgery, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy; (C.V.); (A.F.)
- Correspondence: (C.I.); (N.N.); Tel.: +39-(0321)-660507 (C.I.); +66-6-3635-2491 (N.N.)
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand; (S.T.); (W.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen 40002, Thailand; (N.K.); (S.S.); (A.T.)
- Correspondence: (C.I.); (N.N.); Tel.: +39-(0321)-660507 (C.I.); +66-6-3635-2491 (N.N.)
| |
Collapse
|
10
|
Armartmuntree N, Jusakul A, Sakonsinsiri C, Loilome W, Pinlaor S, Ungarreevittaya P, Yong CH, Techasen A, Imtawil K, Kraiklang R, Suwannakul N, Kaewlert W, Chaiprasert T, Thanan R, Murata M. Promoter hypermethylation of early B cell factor 1 (EBF1) is associated with cholangiocarcinoma progression. J Cancer 2021; 12:2673-2686. [PMID: 33854627 PMCID: PMC8040704 DOI: 10.7150/jca.52378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/14/2021] [Indexed: 01/20/2023] Open
Abstract
DNA hypermethylation in a promoter region causes gene silencing via epigenetic changes. We have previously reported that early B cell factor 1 (EBF1) was down-regulated in cholangiocarcinoma (CCA) tissues and related to tumor progression. Thus, we hypothesized that the DNA hypermethylation of EBF1 promoter would suppress EBF1 expression in CCA and induce its progression. In this study, the DNA methylation status of EBF1 and mRNA expression levels were analyzed in CCA and normal bile duct (NBD) tissues using a publicly available database of genome-wide association data. The results showed that the DNA methylation of EBF1 promoter region was significantly increased in CCA tissues compared with those of NBD. The degree of methylation was negatively correlated with EBF1 mRNA expression levels. Using methylation-specific PCR technique, the DNA methylation rates of EBF1 promoter region were investigated in CCA tissues (n=72). CCA patients with high methylation rates of EBF1 promoter region in the tumor tissues (54/72) had a poor prognosis. Higher methylation rates of EBF1 promoter region have shown in all CCA cell lines than that of an immortal cholangiocyte cell line (MMNK1). Upon treatment with the DNA methyltransferase inhibitor 5-Aza-dC, increased EBF1 expression levels and reduced DNA methylation rates were observed in CCA cells. Moreover, restoration of EBF1 expression in CCA cells led to inhibition of cell growth, migration and invasion. In addition, RNA sequencing analysis suggested that EBF1 is involved in suppression of numerous pathways in cancer. Taken together, DNA hypermethylation in the EBF1 promoter region suppresses EBF1 expression and induces CCA progression with aggressive clinical outcomes.
Collapse
Affiliation(s)
- Napat Armartmuntree
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chern Han Yong
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanokwan Imtawil
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Nattawan Suwannakul
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Waleeporn Kaewlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Timpika Chaiprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
11
|
Dashek RJ, Diaz C, Chandrasekar B, Rector RS. The Role of RECK in Hepatobiliary Neoplasia Reveals Its Therapeutic Potential in NASH. Front Endocrinol (Lausanne) 2021; 12:770740. [PMID: 34745017 PMCID: PMC8564138 DOI: 10.3389/fendo.2021.770740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multimorbidity disorder ranging from excess accumulation of fat in the liver (steatosis) to steatohepatitis (NASH) and end-stage cirrhosis, and the development of hepatocellular carcinoma (HCC) in a subset of patients. The defining features of NASH are inflammation and progressive fibrosis. Currently, no pharmaceutical therapies are available for NAFLD, NASH and HCC; therefore, developing novel treatment strategies is desperately needed. Reversion Inducing Cysteine Rich Protein with Kazal motifs (RECK) is a well-known modifier of the extracellular matrix in hepatic remodeling and transition to HCC. More recently, its role in regulating inflammatory and fibrogenic processes has emerged. Here, we summarize the most relevant findings that extend our current understanding of RECK as a regulator of inflammation and fibrosis, and its induction as a potential strategy to blunt the development and progression of NASH and HCC.
Collapse
Affiliation(s)
- Ryan J. Dashek
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Comparative Medicine Program, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Connor Diaz
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Division of Cardiology, Department of Medicine, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, United States
- *Correspondence: R. Scott Rector,
| |
Collapse
|
12
|
Ferrigno A, Palladini G, Di Pasqua LG, Berardo C, Richelmi P, Cadamuro M, Fabris L, Perlini S, Adorini L, Vairetti M. Obeticholic acid reduces biliary and hepatic matrix metalloproteinases activity in rat hepatic ischemia/reperfusion injury. PLoS One 2020; 15:e0238543. [PMID: 32911524 PMCID: PMC7482919 DOI: 10.1371/journal.pone.0238543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background We have previously shown that obeticholic acid (OCA) upregulates the biliary excretion of asymmetric dimethylarginine (ADMA), an inhibitor of iNOS regulating the activity of matrix metalloproteinases (MMPs). Here, the effects of OCA on MMP-2 and MMP-9 activity in liver, bile and serum were evaluated after hepatic ischemia/reperfusion (I/R) injury. Material and methods Male Wistar rats (n = 20) were orally administered 10 mg/kg/day of OCA (5 days) and subjected to a 60-min ischemia and 60-min reperfusion. Bile, serum and tissue were collected for MMP-2 and MMP-9 activity quantification. The MMP regulator tissue reversion-inducing cysteine rich protein with Kazal motifs (RECK), tissue inhibitor of metalloproteinases (TIMPs), iNOS and biliary levels of LDH, γGT, glucose and ADMA were quantified. Results In the I/R group, OCA administration reduced MMP-2 and MMP-9 in liver, bile and serum. A downregulation of tissue RECK and TIMPs, observed under I/R, were recovered by OCA. Immunohistochemical staining of hepatic tissue demonstrated that RECK expression is mainly localized in both cholangiocytes and hepatocytes. Hepatic iNOS positively correlated with tissue MMP-2 and MMP-9 activity. Biliary levels of LDH, γGT and glucose were lower in I/R rats treated with OCA; in bile, MMP levels positively correlated with LDH and γGT. Conclusion Thus, OCA administration confers protection to cholangiocytes via downregulation of biliary MMPs in livers submitted to I/R. This event is associated with hepatic RECK- and TIMP-mediated MMP decrease.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail: (MV); (AF)
| | - Giuseppina Palladini
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Clarissa Berardo
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Plinio Richelmi
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Luca Fabris
- Dept. of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Liver Center and Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| | - Stefano Perlini
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Emergency Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luciano Adorini
- Intecept Pharmaceuticals, San Diego, CA, United States of America
| | - Mariapia Vairetti
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail: (MV); (AF)
| |
Collapse
|
13
|
Padthaisong S, Thanee M, Namwat N, Phetcharaburanin J, Klanrit P, Khuntikeo N, Titapun A, Sungkhamanon S, Saya H, Loilome W. Overexpression of a panel of cancer stem cell markers enhances the predictive capability of the progression and recurrence in the early stage cholangiocarcinoma. J Transl Med 2020; 18:64. [PMID: 32039729 PMCID: PMC7008521 DOI: 10.1186/s12967-020-02243-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cancer recurrence is the important problem of cholangiocarcinoma (CCA) patients, lead to a very high mortality rate. Therefore, the identification of candidate markers to predict CCA recurrence is needed in order to effectively manage the disease. This study aims to examine the predictive value of cancer stem cell (CSC) markers on the progression and recurrence of CCA patients. Methods The expression of 6 putative CSC markers, cluster of differentiation 44 (CD44), CD44 variant 6 (CD44v6), CD44 variants 8-10 (CD44v8-10), cluster of differentiation 133 (CD133), epithelial cell adhesion molecule (EpCAM), and aldehyde dehydrogenase 1A1 (ALDH1A1), was investigated in 178 CCA tissue samples using immunohistochemistry (IHC) and analyzed with respect to clinicopathological data and patient outcome including recurrence-free survival (RFS) and overall survival (OS). The candidate CSC markers were also investigated in serum from CCA patients, and explored for their predictive ability on CCA recurrence. Results Elevated protein level of CD44 and positive expression of CD44v6 and CD44v8-10 were significantly associated with short RFS and OS, while high levels of ALDH1A1 were correlated with a favorable prognosis patient. The elevated CD44v6 level was also correlated with higher tumor staging, whereas a decreasing level of ALDH1A1 was correlated with lower tumor staging. The levels of CD44, CD44v6 and CD44v8-10 were also correlated and were associated with a poor outcome. Furthermore, soluble CD44, CD44v6, CD44v8-10 and EpCAM were significantly increased in the recurrence group for early stage CCA; they also correlated with high levels of the tumor marker CA19-9. Elevated levels of CD44, CD44v6, CD44v8-10 or EpCAM alone or in combination has the potential to predict CCA recurrence. Conclusions The overexpression of CD44, CD44v6, CD44v8-10 and EpCAM increases predictability of post-operative CCA recurrence. Moreover, the overexpression of the panel of CSC markers combined with CA19-9 could improve our predictive ability for tumor recurrence in early stage CCA patients. This result may be beneficial for the patients in order to predict the outcome after treatment and may be useful for clinical intervention in order to improve patient survival.
Collapse
Affiliation(s)
- Sureerat Padthaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Malinee Thanee
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakkarn Sungkhamanon
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
14
|
Duangkumpha K, Stoll T, Phetcharaburanin J, Yongvanit P, Thanan R, Techasen A, Namwat N, Khuntikeo N, Chamadol N, Roytrakul S, Mulvenna J, Mohamed A, Shah AK, Hill MM, Loilome W. Urine proteomics study reveals potential biomarkers for the differential diagnosis of cholangiocarcinoma and periductal fibrosis. PLoS One 2019; 14:e0221024. [PMID: 31425520 PMCID: PMC6699711 DOI: 10.1371/journal.pone.0221024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a primary malignant tumor of the epithelial lining of biliary track associated with endemic Opisthorchis viverrini (Ov) infection in northeastern Thailand. Ov-associated periductal fibrosis (PDF) is the precancerous lesion for CCA, and can be detected by ultrasonography (US) to facilitate early detection. However, US cannot be used to distinguish PDF from cancer. Therefore, the objective of this study was to discover and qualify potential urine biomarkers for CCA detection in at-risk population. Biomarker discovery was conducted on pooled urine samples, 42 patients per group, with PDF or normal bile duct confirmed by ultrasound. After depletion of high abundance proteins, 338 urinary proteins were identified from the 3 samples (normal-US, PDF-US, CCA). Based on fold change and literature review, 70 candidate proteins were selected for qualification by multiple reaction monitoring mass spectrometry (MRM-MS) in 90 individual urine samples, 30 per group. An orthogonal signal correction projection to latent structures discriminant analysis (O-PLS-DA) multivariate model constructed from the 70 candidate biomarkers significantly discriminated CCA from normal and PDF groups (P = 0.003). As an independent validation, the expression of 3 candidate proteins was confirmed by immunohistochemistry in CCA tissues: Lysosome associated membrane glycoprotein 1 (LAMP1), lysosome associated membrane glycoprotein 2 (LAMP2) and cadherin-related family member 2 (CDHR2). Further evaluation of these candidate biomarkers in a larger cohort is needed to support their applicability in a clinical setting for screening and monitoring early CCA and for CCA surveillance.
Collapse
Affiliation(s)
- Kassaporn Duangkumpha
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Puangrat Yongvanit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nittaya Chamadol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alok K Shah
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Daya M, Loilome W, Techasen A, Thanee M, Sa-Ngiamwibool P, Titapun A, Yongvanit P, Namwat N. Progranulin modulates cholangiocarcinoma cell proliferation, apoptosis, and motility via the PI3K/pAkt pathway. Onco Targets Ther 2018; 11:395-408. [PMID: 29403285 PMCID: PMC5783154 DOI: 10.2147/ott.s155511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Progranulin (PGRN) is a growth factor normally expressed in rapidly cycling epithelial cells for growth, differentiation, and motility. Several studies have shown the association of PGRN overexpression with the progression of numerous malignancies, including cholangiocarcinoma (CCA). However, the underlying mechanisms on how PGRN modulates CCA cell proliferation and motility is not clear. In this study, we investigated the prognostic significance of PGRN expression in human CCA tissue and the mechanisms of PGRN modulation of CCA cell proliferation and motility. We found that CCA tissues with high PGRN expression were correlated with poor prognosis and likelihood of metastasis. PGRN knockdown KKU-100 and KKU-213 cells demonstrated a reduced rate of proliferation and colony formation and decreased levels of phosphatidyl inositol-3-kinase (PI3K) and phosphorylated Akt (pAkt) proteins. Accumulation of cells at the G1 phase was observed and was accompanied by a reduction of cyclin D1 and CDK4 protein levels. Knockdown cells also induced apoptosis by increasing the Bax-to-Bcl-2 ratio. Increased cell apoptosis was confirmed by annexin V-FITC/PI staining. Moreover, suppression of PGRN reduced CCA cell migration and invasion in vitro. Investigating the biomarkers in epithelial–mesenchymal transition (EMT) revealed a decrease in the expression of vimentin, snail, and metalloproteinase-9. In conclusion, our findings imply that PGRN modulates cell proliferation by dysregulating the G1 phase, inhibiting apoptosis, and that it plays a role in the EMT affecting CCA cell motility, possibly via the PI3K/pAkt pathway.
Collapse
Affiliation(s)
- Minerva Daya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Sampaloc, Manila, Philippines.,Cholangiocarcinoma Research Institute
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute.,Faculty of Associated Medical Science
| | | | | | - Attapol Titapun
- Department of Pathology.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute
| |
Collapse
|
16
|
Research and Development of Atractylodes lancea (Thunb) DC. as a Promising Candidate for Cholangiocarcinoma Chemotherapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5929234. [PMID: 29348769 PMCID: PMC5733893 DOI: 10.1155/2017/5929234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
Abstract
Treatment and control of cholangiocarcinoma (CCA): the bile duct cancer is limited by the lack of effective chemotherapeutic drugs and alternative drugs are needed, particularly those from natural sources. This article reviews steps of research and development of Atractylodes lancea (Thunb) DC. (AL) as potential candidate for CCA chemotherapy, with adoption of the reverse pharmacology approach. Major steps include (1) reviewing of existing information on its phytochemistry and pharmacological properties, (2) screening of its activities against CCA, (3) standardization of AL, (4) nonclinical studies to evaluate anti-CCA activities, (5) phytochemistry and standardization of AL extract, (6) development of oral pharmaceutical formulation of standardized AL extract, and (7) toxicity testing of oral pharmaceutical formulation of standardized AL extract. Results from a series of our study confirm anti-CCA potential and safety profiles of both the crude extract and the finished product (oral pharmaceutical formulation of the standardized AL extract). Phases I and II clinical trials of the product to confirm tolerability and efficacy in healthy subjects and patients with advanced stage CCA will be carried out soon.
Collapse
|
17
|
Phanthaphol N, Techasen A, Loilome W, Thongchot S, Thanan R, Sungkhamanon S, Khuntikeo N, Yongvanit P, Namwat N. Upregulation of TCTP is associated with cholangiocarcinoma progression and metastasis. Oncol Lett 2017; 14:5973-5979. [PMID: 29113234 PMCID: PMC5661414 DOI: 10.3892/ol.2017.6985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
In order to investigate the role of translationally-controlled tumor protein (TCTP) in cholangiocarcinoma (CCA) progression and metastasis, TCTP protein staining in paraffin-embedded sections of human CCA tissue samples was examined using immunohistochemistry, and its expression was subsequently compared with clinicopathological parameters. Small interfering RNA (siRNA) targeting TCTP (siTCTP) were transfected into CCA cell lines to evaluate its effects on cellular functions. The proliferation, tumorigenicity and migration abilities of the transfected cells were measured using sulforhodamine B, clonogenic and would healing assays, respectively. The protein levels of TCTP and its associated molecules were evaluated by western blot analysis. Of the 119 individual cases of CCA tissues analyzed, high TCTP scores were significantly correlated with overall metastasis (P=0.044) and a shorter survival time (P<0.001). Multivariate proportional hazards analysis revealed that TCTP is an independent indicator of poor prognosis in CCA (hazard ratio =2.864; P<0.001). siTCTP transfection suppressed CCA cell growth and migration abilities, compared with the control cells (P<0.01). The siTCTP reduced the protein levels of focal adhesion kinase (FAK), phospho-FAK, nuclear factor kappa-light-chain-enhancer of activated B cells and matrix metalloproteinase 9, suggesting potential roles of TCTP in regulating CCA progression and metastasis. In conclusion, the upregulation of TCTP is clinically significant in patients with CCA, serving roles in CCA progression, particularly in cell survival and metastasis. Suppression of TCTP may serve as a potential target in CCA prevention and treatment.
Collapse
Affiliation(s)
- Nattaporn Phanthaphol
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Faculty of Associated Medical Sciences, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- CASCAP Program, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- CASCAP Program, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suyanee Thongchot
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakkarn Sungkhamanon
- CASCAP Program, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- CASCAP Program, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- CASCAP Program, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- CASCAP Program, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence to: Dr Nisana Namwat, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraphap Road, Khon Kaen 40002, Thailand, E-mail:
| |
Collapse
|
18
|
Zhang X, Liu L, Liu J, Cheng Z, Wang Z, Shi C, Ding F, Chen S, Chen P. Endothelial cells co-cultured with renal carcinoma cells significantly reduce RECK expression under chemical hypoxia. Cell Biol Int 2017; 41:922-927. [PMID: 28561419 DOI: 10.1002/cbin.10801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/29/2017] [Indexed: 11/07/2022]
Abstract
Renal cell carcinoma (RCC) is characterized by excessive angiogenesis, while chronic kidney disease (CKD) suffers from the opposite problem-failure of reparative angiogenesis. It can be due to their different responses to hypoxic environment. But the specific molecular regulators are still unclear. This study is aimed to explore the influence of human renal cell cancer cells (786-0) and human renal tubular epithelial cells (HK-2) on RECK expression, proliferation, and angiogenesis of adjacent microvascular endothelial cells (HMEC-1) under chemical hypoxia. Cobalt chloride (CoCl2 ) treatment was used to simulate the hypoxia environment in RCC and CKD. Co-culture, cell proliferation assay, and tube formation assay were used to evaluate the influence of 786-0 or HK-2 cells on proliferation and angiogenesis of adjacent HMEC-1 cells. Effects of different environments on RECK expressions in 786-0, HK2, or HMEC-1 cells were determined by Western blot. We found that both 786-0 cells and HK2 cells can upregulate RECK expression of adjacent HMEC-1 cells in normoxic conditions. However, under hypoxia, the HMEC-1 cells co-cultured with 786-0 significantly reduced RECK expression and there was no significant change in HMEC-1 cells co-cultured with HK2 cells. We also found that 786-0 significantly enhanced the proliferation and angiogenesis of adjacent HMEC-1 cells. Our results suggested that some paracrine substances produced by 786-0 cells may reduce RECK expression of adjacent HMEC-1 cells and enhance their proliferation and in vitro angiogenic capacity.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Lei Liu
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Jing Liu
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Zhengyuan Cheng
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Zhi Wang
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Chuanbing Shi
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Fengan Ding
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Sijie Chen
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Pingsheng Chen
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| |
Collapse
|
19
|
HDAC Inhibitors and RECK Modulate Endoplasmic Reticulum Stress in Tumor Cells. Int J Mol Sci 2017; 18:ijms18020258. [PMID: 28134767 PMCID: PMC5343794 DOI: 10.3390/ijms18020258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
In the tumor microenvironment hypoxia and nutrient deprived states can induce endoplasmic reticulum (ER) stress. If ER stress is not relieved, the tumor cells may become apoptotic. Therefore, targeting ER homeostasis is a potential strategy for cancer treatment. Various chemotherapeutic agents including histone deacetylase (HDAC) inhibitors can induce ER stress to cause cell death in cancers. Some HDAC inhibitors can prevent HDAC from binding to the specificity protein 1-binding site of the promoter of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and up-regulate RECK expression. Up-regulation of RECK expression by HDAC inhibitors has been observed in various cancer types. RECK is a tumor and metastasis suppressor gene and is critical for regulating tumor cell invasiveness and metastasis. RECK also modulates ER stress via binding to and sequestering glucose-regulated protein 78 protein, so that the transmembrane sensors, such as protein kinase RNA-like ER kinase are released to activate eukaryotic translational initiation factor 2α phosphorylation and enhance ER stress. Therefore, HDAC inhibitors may directly induce ER stress or indirectly induce this stress by up-regulating RECK in cancer cells.
Collapse
|
20
|
Pramanik KK, Singh AK, Alam M, Kashyap T, Mishra P, Panda AK, Dey RK, Rana A, Nagini S, Mishra R. Reversion-inducing cysteine-rich protein with Kazal motifs and its regulation by glycogen synthase kinase 3 signaling in oral cancer. Tumour Biol 2016; 37:15253-15264. [PMID: 27696293 DOI: 10.1007/s13277-016-5362-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022] Open
Abstract
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and glycogen synthase kinase (GSK3) are novel tumor suppressors, and emerging evidence has suggested their active role in oral cancer pathogenesis. In the present study, 112 human samples, including 55 fresh samples of 14 adjacent normal tissues, 25 noninvasive oral tumors, and 18 invasive tumors, were included. The messenger RNA (mRNA) expression, protein expression, and promoter methylation of the RECK gene, as well as the expression of GSK3β, phospho/total β-catenin, and c-myc, were measured by RT-PCR, bisulphate modification-PCR, immunohistochemistry, and Western blot analysis. Additionally, ectopic expression of in/active GSK3β was performed in cell culture experiments. This study provided information on the progressive silencing of RECK gene expression at the protein and mRNA levels paralleled with promoter hypermethylation at various stages of oral tumor invasion. RECK expression and the hypermethylation of the RECK gene promoter were negatively and positively correlated with pS9GSK3β/c-myc expression, respectively. Further, a negative trend of RECK protein expression with nuclear β-catenin expression was observed. Induced expression of active GSK3β reversed the RECK silencing in SCC9 cells. Collectively, our results demonstrated that the silencing of the RECK gene, possibly regulated by the GSK3β pathway, is an important event in oral cancer invasion and this pathway could be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Kamdeo K Pramanik
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Abhay K Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Manzar Alam
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Tanushree Kashyap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Prajna Mishra
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Aditya K Panda
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Ratan K Dey
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Ajay Rana
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The University of Illinois at Chicago, 840 S. Wood Street, Suite 601 Clinical Sciences Building, MC 958, Chicago, IL, 60612, USA
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India.
| |
Collapse
|
21
|
Mahl C, Egea V, Megens RTA, Pitsch T, Santovito D, Weber C, Ries C. RECK (reversion-inducing cysteine-rich protein with Kazal motifs) regulates migration, differentiation and Wnt/β-catenin signaling in human mesenchymal stem cells. Cell Mol Life Sci 2016; 73:1489-501. [PMID: 26459448 PMCID: PMC11108374 DOI: 10.1007/s00018-015-2054-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/31/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022]
Abstract
The membrane-anchored glycoprotein RECK (reversion-inducing cysteine-rich protein with Kazal motifs) inhibits expression and activity of certain matrix metalloproteinases (MMPs), thereby suppressing tumor cell metastasis. However, RECK's role in physiological cell function is largely unknown. Human mesenchymal stem cells (hMSCs) are able to differentiate into various cell types and represent promising tools in multiple clinical applications including the regeneration of injured tissues by endogenous or transplanted hMSCs. RNA interference of RECK in hMSCs revealed that endogenous RECK suppresses the transcription and biosynthesis of tissue inhibitor of metalloproteinases (TIMP)-2 but does not influence the expression of MMP-2, MMP-9, membrane type (MT)1-MMP and TIMP-1 in these cells. Knockdown of RECK in hMSCs promoted monolayer regeneration and chemotactic migration of hMSCs, as demonstrated by scratch wound and chemotaxis assay analyses. Moreover, expression of endogenous RECK was upregulated upon osteogenic differentiation and diminished after adipogenic differentiation of hMSCs. RECK depletion in hMSCs reduced their capacity to differentiate into the osteogenic lineage whereas adipogenesis was increased, demonstrating that RECK functions as a master switch between both pathways. Furthermore, knockdown of RECK in hMSCs attenuated the Wnt/β-catenin signaling pathway as indicated by reduced stability and impaired transcriptional activity of β-catenin. The latter was determined by analysis of the β-catenin target genes Dickkopf1 (DKK1), axis inhibition protein 2 (AXIN2), runt-related transcription factor 2 (RUNX2) and a luciferase-based β-catenin-activated reporter (BAR) assay. Our findings demonstrate that RECK is a regulator of hMSC functions suggesting that modulation of RECK may improve the development of hMSC-based therapeutical approaches in regenerative medicine.
Collapse
Affiliation(s)
- Christian Mahl
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
| | - Virginia Egea
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Thomas Pitsch
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Ries
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany.
| |
Collapse
|
22
|
Increased EphB2 expression predicts cholangiocarcinoma metastasis. Tumour Biol 2014; 35:10031-41. [DOI: 10.1007/s13277-014-2295-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
|
23
|
Prasad NB, Fischer AC, Chuang AY, Wright JM, Yang T, Tsai HL, Westra WH, Liegeois NJ, Hess AD, Tufaro AP. Differential expression of degradome components in cutaneous squamous cell carcinomas. Mod Pathol 2014; 27:945-57. [PMID: 24356192 PMCID: PMC4251465 DOI: 10.1038/modpathol.2013.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/25/2013] [Indexed: 12/16/2022]
Abstract
Although the cure rate for cutaneous squamous cell carcinoma is high, the diverse spectrum of squamous cell carcinoma has made it difficult for early diagnosis, particularly the aggressive tumors that are highly associated with mortality. Therefore, molecular markers are needed as an adjunct to current staging methods for diagnosing high-risk lesions, and stratifying those patients with aggressive tumors. To identify such biomarkers, we have examined a comprehensive set of 200 histologically defined squamous cell carcinoma and normal skin samples by using a combination of microarray, QRT-PCR and immunohistochemistry analyses. A characteristic and distinguishable profile including matrix metalloproteinase (MMP) as well as other degradome components was differentially expressed in squamous cell carcinoma compared with normal skin samples. The expression levels of some of these genes including matrix metallopeptidase 1 (MMP1), matrix metallopeptidase 10 (MMP10), parathyroid hormone-like hormone (PTHLH), cyclin-dependent kinase inhibitor 2A (CDKN2A), A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), FBJ osteosarcoma oncogene (FOS), interleukin 6 (IL6) and reversion-inducing-cysteine-rich protein with kazal motifs (RECK) were significantly differentially expressed (P≤0.02) in squamous cell carcinoma compared with normal skin. Furthermore, based on receiver operating characteristic analyses, the mRNA and protein levels of MMP1 are significantly higher in aggressive tumors compared with non-aggressive tumors. Given that MMPs represent the most prominent family of proteinases associated with tumorigenesis, we believe that they may have an important role in modulating the tumor microenvironment of squamous cell carcinoma.
Collapse
Affiliation(s)
- Nijaguna B Prasad
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne C Fischer
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Alice Y Chuang
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jerry M Wright
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ting Yang
- Department of Biostatistics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hua-Ling Tsai
- Department of Biostatistics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H Westra
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Allan D Hess
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony P Tufaro
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
PGE2 signaling and its biosynthesis-related enzymes in cholangiocarcinoma progression. Tumour Biol 2014; 35:8051-64. [PMID: 24839005 DOI: 10.1007/s13277-014-2021-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/27/2014] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin E2 (PGE2) involves in progression of various chronic inflammation-related cancers including cholangiocarcinoma (CCA). This study aimed to determine the role of PGE2 signaling, its biosynthesis-related enzymes in a clinical prognosis, and their targeted inhibition in CCA progression. The immunohistochemical staining of cyclooxygenase (COX)-1, COX-2, mPGES-1, EP1, and EP4 was examined in CCA tissues, and their expressions were compared with clinicopathological parameters. The effect of PGE2 on levels of its signaling molecules was examined in CCA cell lines using proteome profiler array. The suppression of mPGES-1 using a small-molecule inhibitor (CAY10526) and small interfering RNA (siRNA) was determined for growth and migration ability in CCA cells. The results indicated that strong expressions of COX-1, COX-2, mPGES-1, EP1, and EP4 were found in CCA tissues as 87.5, 47.5, 52.5, 55, and 80 % of frequencies, respectively. High mPGES-1 expression was significantly correlated with tumor stages III-IV (p = 0.001), lymph node metastasis (p = 0.004), shorter survival (p = 0.009), and prognostic indicator of CCA patients (HR = 2.512, p = 0.041). Expressions of COX-1, COX-2, and EP receptors did not correlate with data tested from patients. PGE2 markedly enhanced protein levels of integrinα6, VE-cadherin, Jagged1, and Notch3, and CAY10526 suppressed those protein levels as well as PGE2 production in CCA cells. CAY10526 and siRNA mPGES-1 markedly suppressed mPGES-1 protein levels, growth, and migration abilities of CCA cell lines. In conclusion, PGE2 signaling strongly promotes CCA progression. Therefore, inhibition of PGE2 synthesis by suppression of its biosynthesis-related enzymes could be useful for prevention and treatment of CCA.
Collapse
|
25
|
Liang QX, Liang YC, Xu ZY, Chen WL, Xie HL, Zhang B. RECK overexpression reduces invasive ability in ameloblastoma cells. J Oral Pathol Med 2014; 43:613-8. [PMID: 24646032 DOI: 10.1111/jop.12179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Qi-xiang Liang
- Department of Oral and Maxillofacial Surgery; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou Guangdong China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes; Sun Yat-sen University; Guangzhou Guangdong China
| | - Yan-can Liang
- Department of Oral and Maxillofacial Surgery; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou Guangdong China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes; Sun Yat-sen University; Guangzhou Guangdong China
| | - Zhi-ying Xu
- Department of Stomatology; Peking University Shenzhen Hospital; Shenzhen Guangdong China
| | - Wei-liang Chen
- Department of Oral and Maxillofacial Surgery; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou Guangdong China
| | - Hong-liang Xie
- Department of Stomatology; Shenzhen People's Hospital; Shenzhen Guangdong China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou Guangdong China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes; Sun Yat-sen University; Guangzhou Guangdong China
| |
Collapse
|
26
|
New insights into the molecular pathogenesis of intrahepatic cholangiocarcinoma. J Gastroenterol 2014; 49:165-72. [PMID: 24145988 PMCID: PMC3944910 DOI: 10.1007/s00535-013-0894-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 02/04/2023]
Abstract
Intrahepatic cholangiocarcinoma is an aggressive malignancy and is one of the most devastating cancers of the gastrointestinal tract. The molecular mechanisms contributing to the pathogenesis of these cancers are not well understood. The recognition and distinction of these cancers from other tumors such as perihilar or extrahepatic distal cholangiocarcinoma and hepatocellular carcinoma are important in defining the pathogenesis. New insights into molecular mechanisms contributing to disease pathogenesis are emerging from recent epidemiological, genome-wide profiling and laboratory based studies. These have contributed to an improved understanding of risk factors, genetic mutations and pathophysiological mechanisms that are associated with these tumors. The contribution of well-established risk factors such as biliary tract inflammation and key signaling pathways involved in intrahepatic cholangiocarcinoma are being further defined. These new insights have several important implications for both molecular diagnosis and therapy of these cancers.
Collapse
|
27
|
Wang L, Wang Q, Li HL, Han LY. Expression of MiR200a, miR93, metastasis-related gene RECK and MMP2/MMP9 in human cervical carcinoma--relationship with prognosis. Asian Pac J Cancer Prev 2014; 14:2113-8. [PMID: 23679328 DOI: 10.7314/apjcp.2013.14.3.2113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM AND BACKGROUND Cervical cancer remains the third most common cancer in women globally after breast and colorectal cancer. Well-characterized biomarkers are necessary for early diagnosis and to predict metastatic progression and effective therapy. MiRNAs can regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or degradation in tumor cells. The present study was conducted to assess expression of miR93, miR200a, RECK, MMP2, MMP9 in invasive cervical carcinoma, and analyze their clinical significance. METHOD A total of 116 patients with invasive cervical carcinoma and 100 patients undergoing hysterectomy for benign lesions were retrospectively examined. Quantitative real-time PCR was performed to determine expression of miR93 and miR200a while RECK, MMP2, MMP9 and MVD were assessed by immunohistochemical staining. RESULTS Cervical carcinoma patients demonstrated up-regulation of miR-93, miR-200a, MMP2 and MMP9, with down-regulation of RECK as compared to benign lesion tissues. RECK was significantly inversely related to invasion and lymphatic metastasis. The 5-year survival rate for patients with strong RECK expression was significantly higher than that with weakly expressing tumors. CONCLUSION MiR-93 and miR-200a are associated with metastasis and invasion of cervical carcinoma. Thus together with RECK they are potential prognostic markers for cervical carcinoma. RECK cooperating with MMP2, MMP9 expression is a significant prognostic factor correlated with long-term survival for patients with invasive cervical carcinoma.
Collapse
Affiliation(s)
- Ling Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | |
Collapse
|
28
|
Jo HJ, Shim HE, Han ME, Kim HJ, Kim KS, Baek S, Choi KU, Hur GY, Oh SO. WTAP regulates migration and invasion of cholangiocarcinoma cells. J Gastroenterol 2013; 48:1271-82. [PMID: 23354623 DOI: 10.1007/s00535-013-0748-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/25/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Wilms' tumor 1-associating protein (WTAP) is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Although its dynamic expression and physiological functions in vascular cells have been reported, its expression and roles in cholangiocarcinoma cells are poorly characterized. METHODS To examine the expression of WTAP in patient tissues, we performed immunohistochemistry. To examine motility of cholangiocarcinoma cells, we employed Boyden chamber, wound healing and Matrigel invasion assays, and a liver xenograft model. RESULTS Immunohistochemistry in patient tissues showed WTAP overexpression in cholangiocarcinoma tissues and correlation of WTAP expression with metastasis of cholangiocarcinoma cells. Overexpression or knockdown of WTAP significantly increased or decreased the motility of cholangiocarcinoma cells. Moreover, WTAP overexpression or knockdown significantly increased or decreased tumorigenicity of cholangiocarcinoma cells in an orthotopic xenograft model. Furthermore, microarray study showed that WTAP induce the expressions of MMP7, MMP28, cathepsin H and Muc1. CONCLUSION WTAP is overexpressed in cholangiocarcinoma and regulates motility of cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Hong-Jae Jo
- Departments of Surgery, School of Medicine, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ruys AT, Groot Koerkamp B, Wiggers JK, Klümpen HJ, ten Kate FJ, van Gulik TM. Prognostic Biomarkers in Patients with Resected Cholangiocarcinoma: A Systematic Review and Meta-analysis. Ann Surg Oncol 2013; 21:487-500. [DOI: 10.1245/s10434-013-3286-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Indexed: 12/11/2022]
|
30
|
Yothaisong S, Dokduang H, Techasen A, Namwat N, Yongvanit P, Bhudhisawasdi V, Puapairoj A, Riggins GJ, Loilome W. Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumour Biol 2013; 34:3637-48. [PMID: 23832540 DOI: 10.1007/s13277-013-0945-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/12/2013] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling plays a critical role in cholangiocarcinoma (CCA), as well as anti-cancer drug resistance and autophagy, the type II program cell death regulation. In this work, we aimed to: (1) determine the expression levels of several key components of PI3K signaling and (2) evaluate whether NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, could inhibit CCA cell growth. Immunohistochemistry for p85α, p110α, AKT, p-AKT (T308), mTOR, p-mTOR (S2448), GSK-3β, p-GSK-3β (S9), PTEN, and p-PTEN (S380, T382/383) was performed in 30 CCA patients. Western blotting was used to analyze PTEN and p-PTEN expression in the cell lines (KKU-OCA17, KKU-100, KKU-M055, KKU-M139, KKU-M156, KKU-M213, and KKU-M214). The effects of NVP-BEZ235 on CCA cells were evaluated using a growth inhibition assay, flow cytometer and migration assay. Increased activation of PI3K/AKT signaling was reproducibly observed in the CCA tissues. The expression of p85α, mTOR, and GSK-3β was significantly correlated with metastasis. Interestingly, PTEN suppression by loss of expression or inactivation by phosphorylation was observed in the majority of patients. Furthermore, NVP-BEZ235 effectively inhibited CCA cell growth and migration through reduced AKT and mTOR phosphorylation and significantly induced G1 arrest without apoptosis induction, although increase autophagy response was observed. In conclusion, the constitutive activation of PI3K/AKT pathway in CCA is mainly due to PTEN inactivation by either loss of expression or phosphorylation along with an increased expression in its pathway components heralding a poor prognosis for CCA patients. This work also indicates that inhibition of PI3K and mTOR activity by the inhibitor NVP-BEZ235 has anti-cancer activity against CCA cells which might be further tested for CCA treatment.
Collapse
Affiliation(s)
- Supak Yothaisong
- Department of Biochemistry and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chusorn P, Namwat N, Loilome W, Techasen A, Pairojkul C, Khuntikeo N, Dechakhamphu A, Talabnin C, Chan-On W, Ong CK, Teh BT, Yongvanit P. Overexpression of microRNA-21 regulating PDCD4 during tumorigenesis of liver fluke-associated cholangiocarcinoma contributes to tumor growth and metastasis. Tumour Biol 2013; 34:1579-88. [PMID: 23417858 DOI: 10.1007/s13277-013-0688-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/03/2013] [Indexed: 12/17/2022] Open
Abstract
MicroRNA, an endogenous noncoding RNA modulating gene expression, is a key molecule that by its dysregulation plays roles in inflammatory-driven carcinogenesis. This study aimed to investigate the role of oncomiR miR-21 and its target, the programmed cell death 4 (PDCD4) in tumor growth and metastasis of the liver fluke Opisthorchis viverrini-associated cholangiocarcinoma (CCA). The expression levels of miR-21 and PDCD4 were analyzed using the TaqMan miRNA expression assay and immunohistochemistry in liver tissues of both O. viverrini plus N-nitrosodimethylamine (NDMA)-treated hamsters and human CCA samples (n=23 cases). The functional assay for miR-21 was performed in CCA cell lines by the anti-miR-21 and pre-miR-21 transfection procedures. The peak of miR-21 levels were reached at 2 (hyperplastic lesions) and 6 (CCA) months of the O. viverrini plus NDMA-induced group and had a reverse response with its target PDCD4 proteins. In human CCA, miR-21 was overexpressed in tumor tissues when compared with nontumor tissues (P=0.0034) and had a negative correlation with PDCD4 protein (P=0.026). It was also found that high expression of miR-21 was significantly correlated with shorter survival (P<0.05) and lymph node metastasis (P=0.037) of CCA patients. Transient transfection of pre-miR-21 reduced the PDCD4 level and resulted in an increase of M213 CCA cell growth and wound-induced migration ability. These results indicated that miR-21 plays a role in the carcinogenesis and metastasis of O. viverrini-associated CCA by suppressing the function of PDCD4. Modulation of aberrantly expressed miR-21 may be a useful strategy to inhibit tumor cell phenotypes or improve response to chemotherapy.
Collapse
Affiliation(s)
- P Chusorn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jung HM, Phillips BL, Patel RS, Cohen DM, Jakymiw A, Kong WW, Cheng JQ, Chan EKL. Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem 2012; 287:29261-72. [PMID: 22761427 DOI: 10.1074/jbc.m112.366518] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that posttranscriptionally regulate gene expression during many biological processes. Recently, the aberrant expressions of miRNAs have become a major focus in cancer research. The purpose of this study was to identify deregulated miRNAs in oral cancer and further focus on specific miRNAs that were related to patient survival. Here, we report that miRNA expression profiling provided more precise information when oral squamous cell carcinomas were subcategorized on the basis of clinicopathological parameters (tumor primary site, histological subtype, tumor stage, and HPV16 status). An innovative radar chart analysis method was developed to depict subcategories of cancers taking into consideration the expression patterns of multiple miRNAs combined with the clinicopathological parameters. Keratinization of tumors and the high expression of miR-21 were the major factors related to the poor prognosis of patients. Interestingly, a majority of the keratinized tumors expressed high levels of miR-21. Further investigations demonstrated the regulation of the tumor suppressor gene reversion-inducing cysteine-rich protein with kazal motifs (RECK) by two keratinization-associated miRNAs, miR-7 and miR-21. Transfection of miR-7 and miR-21-mimics reduced the expression of RECK through direct miRNA-mediated regulation, and these miRNAs were inversely correlated with RECK in CAL 27 orthotopic xenograft tumors. Furthermore, a similar inverse correlation was demonstrated in CAL 27 cells treated in vitro by different external stimuli such as trypsinization, cell density, and serum concentration. Taken together, our data show that keratinization is associated with poor prognosis of oral cancer patients and keratinization-associated miRNAs mediate deregulation of RECK which may contribute to the aggressiveness of tumors.
Collapse
Affiliation(s)
- Hyun Min Jung
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang C, Ling Y, Zhang C, Xu Y, Gao L, Li R, Zhu J, Fan L, Wei L. The silencing of RECK gene is associated with promoter hypermethylation and poor survival in hepatocellular carcinoma. Int J Biol Sci 2012; 8:451-8. [PMID: 22419890 PMCID: PMC3303171 DOI: 10.7150/ijbs.4038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/28/2012] [Indexed: 12/22/2022] Open
Abstract
Background: To evaluate the promoter methylation status of RECK gene and mRNA expression in patients with hepatocellular carcinoma (HCC). Methods: We analyzed RECK methylation by MSP, and RECK mRNA by real-time PCR in 74 HCC. The liver cell lines (7721, Chang and Hep-G2) were treated with 5-Aza-CdR and TSA. Results: RECK mRNA were lower in HCC tissues (Mean -∆Ct = -3.29) than that in Non-Hcc tissues (Mean -∆Ct = -2.42). Expression of RECK was elevated in only 24 (32.43%) of the 74 HCC patients but decreased (-∆∆Ct<0) in 50 (67.57%) of the patients. RECK promoter was hypermethylated in 55.4% (41/74) of HCCs, and in only 17.6% (13/74) of Non-Hcc samples. RECK mRNA were lower in HCC patients with hypermethylation (∆MI>=0.5) (Mean -∆∆Ct = -1.75) than those with demethylation (∆MI<0.5) (Mean -∆∆Ct = 0.05), and there is a decreased tendency for RECK mRNA in HCC patients with promoter hypermethylation (p = 0.002). There was a significantly correlation found between RECK mRNA and poor survival after surgery. After treated by 5-Aza-CdR and TSA, we found that RECK mRNA induced different changes in 7721, Chang and Hep-G2 cells. And RECK demethylation also induced by epigenetic inhibitors. Conclusion: The results suggested that the hypermethylation may lead to promoter silencing of RECK mRNA and associated with poor survival in HCC.
Collapse
Affiliation(s)
- Changsong Zhang
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Soochow University, Changzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Correlation of matrix metalloproteinases and their inhibitors with hypoxia and angiogenesis in premenopausal patients with adenocarcinoma of the breast. Clin Biochem 2011; 44:969-74. [PMID: 21620816 DOI: 10.1016/j.clinbiochem.2011.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 02/03/2023]
Abstract
OBJECTIVES The present study was designed to correlate the expression of proteins regulating invasion and angiogenesis in patients with adenocarcinoma of the breast. DESIGN AND METHOD Seventy-five premenopausal breast cancer patients histologically categorized as grades I, II and III were chosen for the study. We analyzed the expression of MMP-2, and -9 and their inhibitors TIMP-2 and RECK together with HIF-1α and VEGF in tumor, adjacent tissues and serum samples by immunohistochemical and Western blot analysis. RESULTS The breast tumors analyzed in the present study were characterized by increased expression of MMP-2, -9, HIF-1α and VEGF with differential expression patterns of TIMP-2 and downregulation of RECK. CONCLUSIONS The simultaneous analysis of the expression of these molecular markers is important to understand the intricate network between key molecules involved in invasion and angiogenesis that eventually determines the clinical course of the disease.
Collapse
|
35
|
Abstract
Over the past 25 years, an expanding set of metastasis-suppressor genes (MSGs) has been identified that specifically regulate metastasis formation without affecting primary growth. MSGs are involved in diverse molecular processes in multiple tumor types. Given the wealth of metastasis biology that underlies their functions, treatment strategies based on MSGs have an unparalleled potential to improve patient care. Using NM23 as a prime example, we discuss how specific MSGs have been used as prognostic markers, tools for predicting response to treatment, and targets for the development of novel therapies. Barriers specific to the translation of MSG biology into clinical practice are reviewed and future research directions necessary for clinical advances are delineated. Although to date the impact of MSGs on patient care is limited, it is an expanding field with vast potential to help develop new treatments and identify patients who will most benefit from them.
Collapse
|