1
|
Jin Z, Zhang Y, Hu H, Li Q, Zhang L, Zhao K, Liu W, Li L, Gao C. Closed-loop theranostic microgels for immune microenvironment modulation and microbiota remodeling in ulcerative colitis. Biomaterials 2025; 314:122834. [PMID: 39288617 DOI: 10.1016/j.biomaterials.2024.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by the upregulation of reactive oxygen species (ROS) and dysfunction of gut immune system, and microbiota. The conventional treatments mainly focus on symptom control with medication by overuse of drugs. There is an urgent need to develop a closed-loop strategy that combines in situ monitoring and precise treatment. Herein, we innovatively designed the 'cluster munition structure' theranostic microgels to realize the monitoring and therapy for ulcerative colitis (a subtype of IBD). The superoxide anion specific probe (tetraphenylethylene-coelenterazine, TPC) and ROS-responsive nanogels consisting of postbiotics urolithin A (UA) were loaded into alginate and ion-crosslinked to obtain the theranostic microgels. The theranostic microgels could be delivered to the inflammatory site, where the environment-triggered breakup of the microgels and release of the nanogels were achieved in sequence. The TPC-UA group had optimal results in reducing inflammation, repairing colonic epithelial tissue, and remodeling microbiota, leading to inflammation amelioration and recovery of tight junction between the colonic epithelium, and maintenance of gut microbiota. During the recovery process, the local chemiluminescence intensity, which is proportional to the degree of inflammation, was gradually inhibited. The cluster munition of theranostic microgels displayed promising outcomes in monitoring inflammation and precise therapy, and demonstrated the potential for inflammatory disease management.
Collapse
Affiliation(s)
- Zeyuan Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liwen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zhao Y, Xu L, Peng C, Deng J, Huang C, Lu L. Clinical and prognostic significance of Hec1 expression in patients with Cervical Cancer. Front Oncol 2024; 14:1438734. [PMID: 39544289 PMCID: PMC11560765 DOI: 10.3389/fonc.2024.1438734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
Objective Hec1 is a component of the Ndc80 kinetochore complex and is frequently upregulated in various cancers. However, the clinical significance of Hec1 in cervical cancer remains largely unknown. This study aimed to investigate the expression patterns of Hec1 in cervical cancer and its relationship with the clinicopathological characteristics of patients diagnosed with the disease. Methods Immunohistochemistry was used to assess the expression of Hec1 in 136 cervical cancer tissue samples and 82 normal cervical tissue samples. The relationship between Hec1 protein expression and the clinicopathological characteristics of cervical cancer patients was analyzed using the Chi-square test. Additionally, the association between Hec1 protein expression and patient survival was examined using Kaplan-Meier survival curves. Independent risk factors affecting the prognosis of cervical cancer patients were analyzed using the Cox proportional hazards regression model. Results The positive expression rate of Hec1 protein in cervical cancer tissues was 83.82%, significantly higher than the 7.31% in normal cervical tissues. Compared to patients with negative Hec1 expression, those with positive expression exhibited significantly higher FIGO staging, increased lymph node metastasis, greater depth of tumor stromal infiltration, and larger tumor diameter. Multivariable analysis using the Cox proportional hazards regression model indicated that Hec1 positive expression was an independent risk factor for both overall survival (HR = 2.79, 95% CI: 1.65-4.05, p = 0.012) and progression-free survival (HR = 1.81, 95% CI: 1.22-3.18, p = 0.002) in cervical cancer patients. Kaplan-Meier survival curve analysis showed that patients with positive Hec1 expression experienced a lower overall survival (HR: 2.72, 95% CI: 1.15-4.52, p = 0.004) and progression-free survival (HR: 3.12, 95% CI: 1.62-5.03, p = 0.002) when compared to those with negative Hec1 expression. Conclusion Hec1 is significantly upregulated in cervical cancer tissues and associated with poor prognosis in cervical cancer patients. Therefore, Hec1 could be a novel biomarker, not only for the diagnosis and treatment evaluation of cervical cancer but also as an indicator for predicting the prognosis of cervical cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Chaolin Huang
- Department of Gynaecology and Obstetrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ling Lu
- Department of Gynaecology and Obstetrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Yu Y, Ma S, Zhou J. Identification of Hub Genes for Psoriasis and Cancer by Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5058607. [PMID: 39045407 PMCID: PMC11265948 DOI: 10.1155/2024/5058607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Psoriasis increases the risk of developing various cancers, including colon cancer. The pathogenesis of the co-occurrence of psoriasis and cancer is not yet clear. This study is aimed at analyzing the pathogenesis of psoriasis combined with cancer by bioinformatic analysis. Skin tissue data from psoriasis (GSE117239) and intestinal tissue data from colon cancer (GSE44076) were downloaded from the GEO database. One thousand two hundred ninety-six common differentially expressed genes and 688 common shared genes for psoriasis and colon cancer were determined, respectively, using the limma R package and weighted gene coexpression network analysis (WGCNA) methods. The results of the GO and KEGG enrichment analyses were mainly related to the biological processes of the cell cycle. Thirteen hub genes were selected, including AURKA, DLGAP5, NCAPG, CCNB1, NDC80, BUB1B, TTK, CCNB2, AURKB, TOP2A, ASPM, BUB1, and KIF20A. These hub genes have high diagnostic value, and most of them are positively correlated with activated CD4 T cells. Three hub transcription factors (TFs) were also predicted: E2F1, E2F3, and BRCA1. These hub genes and hub TFs are highly expressed in various cancers. Furthermore, 251 drugs were predicted, and some of them overlap with existing therapeutic drugs for psoriasis or colon cancer. This study revealed some genetic mechanisms of psoriasis and cancer by bioinformatic analysis. These hub genes, hub TFs, and predicted drugs may provide new perspectives for further research on the mechanism and treatment.
Collapse
Affiliation(s)
- Yao Yu
- Department of DermatologyShanghai Putuo District Liqun Hospital, Shanghai 200333, China
| | - Shaoze Ma
- Department of Urology SurgeryBaoshan Branch of Shanghai Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Jinzhe Zhou
- Department of General SurgeryTongji HospitalTongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
4
|
Yu X, Pan M, Jiang L, Liu K. NDC80 Kinetochore Complex Serves as a Potential Prognostic Predictor and Correlates with Immune Infiltrates in Epithelial Ovarian Cancer Patients. Int J Gen Med 2024; 17:1789-1805. [PMID: 38711823 PMCID: PMC11073534 DOI: 10.2147/ijgm.s450976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose This study focuses on evaluating the prognostic value of the NDC80 kinetochore complex in ovarian cancer (OC) using the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database and reveals the relationship between the NDC80 complex and immune infiltrates in OC. Methods We collected data on NDC80 complex expression levels in both OC tissues and non-OC ovarian tissues from the University of California Santa Cruz Xena and GEO databases. The clinicopathological characteristics correlated with overall survival were analyzed using Cox regression and the Kaplan-Meier method. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, gene set enrichment analysis and CIBERSORT were performed using data from TCGA database. Immunohistochemical staining was used to verify the higher expression level of NUF2 protein in OC in vitro. Meanwhile, we utilized the Tumor Immune Estimation Resource to analyze the correlation between the NDC80 complex and immunocyte infiltration. Results The NDC80 complex expression level was prominently higher in OC tissues than in non-OC ovarian tissues and correlated with advanced histologic grade characteristics. Gene expression profiling interactive analysis and the Kaplan-Meier survival curve uncovered a close relationship between high expression of the NDC80 complex and poor overall survival in OC patients. The univariate Cox regression hazard model produced age, pathologic stage, tumor status, primary therapy outcome, SPC24 expression level, and Karnofsky performance score as prognostic factors for OC patients. NDC80 complex expression levels were highly associated with immune cell infiltration, showing NK CD56 bright cells and NK cells with a negative correlation and T helper 2 cells with a positive correlation (P<0.05). Conclusion These findings provide evidence that an increased expression level of the NDC80 complex is closely associated with the progression of OC and could also serve as a novel target of immunotherapy in OC.
Collapse
Affiliation(s)
- Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Meizhu Pan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
5
|
Gao X, Dan Q, Zhang C, Ding R, Gao E, Luo H, Liu W, Lu C. Pentachloronitrobenzene disturbed murine ventricular wall development by inhibiting cardiomyocyte proliferation via Hec1 downregulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168917. [PMID: 38030013 DOI: 10.1016/j.scitotenv.2023.168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Exposure to the organochlorine fungicide pentachloronitrobenzene (PCNB) causes developmental abnormalities, including cardiac malformation. However, the molecular mechanism of PCNB cardiotoxicity remains elusive. We found that oral administration of PCNB to pregnant mice induced a hypoplastic wall with significant thinning of the compact myocardium in the developing hearts. PCNB significantly downregulates the expression of Hec1, a member of the NDC80 kinetochore complex, resulting in aberrant spindles, chromosome missegregation and an arrest in cardiomyocyte proliferation. Cardiac-specific ablation of Hec1 sharply inhibits cardiomyocyte proliferation, leading to thinning of the compact myocardium and embryonic lethality. Mechanistically, we found that activating transcription factor 3 (ATF3) transactivates Hec1 expression. Either HEC1 or ATF3 overexpression significantly rescues mitotic defects and restore the decreased proliferative ability of cardiomyocytes caused by PCNB exposure. Our findings highlight that maternal PCNB exposure disrupts embryonic cardiac function by inhibiting cardiomyocyte proliferation and interfering with ventricular wall development, partially attributed to the downregulation of the Atf3-Hec1 axis.
Collapse
Affiliation(s)
- Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruqian Ding
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Erer Gao
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Liu E, Sudha P, Becker N, Jaouadi O, Suvannasankha A, Lee K, Abonour R, Abu Zaid M, Walker BA. Identifying novel mechanisms of biallelic TP53 loss refines poor outcome for patients with multiple myeloma. Blood Cancer J 2023; 13:144. [PMID: 37696786 PMCID: PMC10495448 DOI: 10.1038/s41408-023-00919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Biallelic TP53 inactivation is the most important high-risk factor associated with poor survival in multiple myeloma. Classical biallelic TP53 inactivation has been defined as simultaneous mutation and copy number loss in most studies; however, numerous studies have demonstrated that other factors could lead to the inactivation of TP53. Here, we hypothesized that novel biallelic TP53 inactivated samples existed in the multiple myeloma population. A random forest regression model that exploited an expression signature of 16 differentially expressed genes between classical biallelic TP53 and TP53 wild-type samples was subsequently established and used to identify novel biallelic TP53 samples from monoallelic TP53 groups. The model reflected high accuracy and robust performance in newly diagnosed relapsed and refractory populations. Patient survival of classical and novel biallelic TP53 samples was consistently much worse than those with mono-allelic or wild-type TP53 status. We also demonstrated that some predicted biallelic TP53 samples simultaneously had copy number loss and aberrant splicing, resulting in overexpression of high-risk transcript variants, leading to biallelic inactivation. We discovered that splice site mutation and overexpression of the splicing factor MED18 were reasons for aberrant splicing. Taken together, our study unveiled the complex transcriptome of TP53, some of which might benefit future studies targeting abnormal TP53.
Collapse
Affiliation(s)
- Enze Liu
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Parvathi Sudha
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Nathan Becker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Oumaima Jaouadi
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Attaya Suvannasankha
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Kelvin Lee
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Rafat Abonour
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Mohammad Abu Zaid
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Liu Y, Cheng X, Xi P, Zhang Z, Sun T, Gong B. Bioinformatic analysis highlights SNHG6 as a putative prognostic biomarker for kidney renal papillary cell carcinoma. BMC Urol 2023; 23:54. [PMID: 37004005 PMCID: PMC10067223 DOI: 10.1186/s12894-023-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Kidney renal papillary cell carcinoma (KIRP) is a highly heterogeneous malignancy and current systemic therapeutic strategies are difficult to achieve a satisfactory outcome for advanced disease. Meanwhile, there is a lack of effective biomarkers to predict the prognosis of KIRP. METHODS Using TCGA, GTEx, UALCAN, TIMER, TIMER 2.0 and STRING databases, we analyzed the relationship of SNHG6 with KIRP subtypes, tumor-infiltrating immune cells and potential target mRNAs. Based on TCGA data, ROC curves, Kaplan-Meier survival analysis and COX regression analysis were performed to evaluate the diagnostic and prognostic value of SNHG6 in KIRP. Nomogram was used to predict 3- and 5-year disease-specific survival in KIRP patients. In addition, with the help of Genetic ontology and Gene set enrichment analysis, the biological processes and signalling pathways that SNHG6 may be involved in KIRP were initially explored. RESULTS In patients with KIRP, SNHG6 was significantly upregulated and associated with a more aggressive subtype (lymph node involvement, pathological stage IV, CIMP phenotype) and poor prognosis. The ROC curve showed good diagnostic efficacy (AUC value: 0.828) and the C-index of the Nomogram for predicting DSS at 3 and 5 years was 0.920 (0.898-0.941). In the immune microenvironment of KIRP, SNHG6 expression levels were negatively correlated with macrophage abundance and positively correlated with cancer-associated fibroblasts. Furthermore, SNHG6 may promote KIRP progression by regulating the expression of molecules such as AURKB, NDC80, UBE2C, NUF2, PTTG1, CENPH, SPC25, CDCA3, CENPM, BIRC5, TROAP, EZH2. Last, GSEA suggests that SNHG6 may be involved in the regulation of the PPAR signalling pathway and the SLIT/ROBO signalling pathway. CONCLUSIONS Our analysis suggests that a high SNHG6 expression status in KIRP is associated with a poorer prognosis for patients, and also elucidates some potential mechanisms contributing to this poorer outcome. This may provide new insights into the treatment and management of KIRP in the foreseeable future.
Collapse
Affiliation(s)
- Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Tong H, Liu X, Peng C, Shen B, Zhu Z. Silencing of KNTC1 inhibits hepatocellular carcinoma cells progression via suppressing PI3K/Akt pathway. Cell Signal 2023; 101:110498. [PMID: 36273753 DOI: 10.1016/j.cellsig.2022.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Kinetochore associated 1 (KNTC1) encodes a kinetochore component in Rod-Zwilch-ZW10 (RZZ) complex which is essential for the segregation of sister chromatids during mitosis and participates in the spindle checkpoint. Recent research demonstrated that kinetochore proteins may be potential biomarkers and may contribute to the development of human malignancies. Our immunohistochemistry experiment showed that KNTC1 was highly expressed in hepatocellular carcinoma (HCC) tissues and correlated with terrible prognosis, indicating that KNTC1 acts a pivotal role in HCC development. Furthermore, lentivirus delivered short hairpin RNA (shRNA) KNTC1 (Lv-shKNTC1) was applied to infect BEL-7404 and SK-HEP-1 to identify roles of KNTC1 on HCC. Lv-shKNTC1 cells showed reduced proliferation ability, increased apoptosis and decreased migration ability. In vivo experiments suggested that xenografts grow significantly slower upon the silencing of KNTC1. Mechanistically, the protein levels of PIK3CA, p-Akt, CCND1, CDK6 are all down-regulated in Lv-KNTC1 cells and the Lv-shKNTC1 tumor tissues of nude mice. Therefore, KNTC1 may affect the biological activity of HCC cells through PI3K/Akt signaling pathway. Further studies revealed that ZW10 is a pivotal protein that participates in KNTC1-induced regulation of PI3K/Akt signaling pathway. In summary, the key finding of this report highlighted the significance of KNTC1 in tumor regression of HCC, demonstrating KNTC1 as an innovative target for adjuvant treatment of HCC.
Collapse
Affiliation(s)
- Hui Tong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohui Liu
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenghong Peng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Baiyong Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhecheng Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
9
|
Chen X, He Q, Zeng S, Xu Z. Upregulation of nuclear division cycle 80 contributes to therapeutic resistance via the promotion of autophagy-related protein-7-dependent autophagy in lung cancer. Front Pharmacol 2022; 13:985601. [PMID: 36105209 PMCID: PMC9465246 DOI: 10.3389/fphar.2022.985601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Lung cancer remains the leading cause of malignant mortality worldwide. Hence, the discovery of novel targets that can improve therapeutic effects in lung cancer patients is an urgent need. In this study, we screened differentially expressed genes using isobaric tags for relative and absolute quantitation (iTRAQ) analysis and datasets from the cancer genome atlas database, and found that nuclear division cycle 80 (NDC80) might act as a novel prognostic indicator of lung cancer. The expression of NDC80 was significantly increased in lung cancer tissues, as compared to normal tissues, and high expression levels of NDC80 were correlated with unfavorable survival rates. Furthermore, an in vitro analysis showed that the stable knockdown of NDC80 decreased the cell viability and increased therapeutic sensitivity in two lung cancer cell lines, A549-IRR and H1246-IRR. Moreover, gene set enrichment analysis results showed that NDC80 was enriched in autophagy-related pathways. The downregulation of NDC80 inhibited the formation of autophagosomes, and reduced the expression of autophagy-related proteins such as LC3II, Beclin-1, and p62 in lung cancer cells. To further clarify the role of NDC80 as a downstream regulator of autophagy, we validated autophagic mediators through iTRAQ analysis and real-time polymerase chain reaction arrays. Autophagy-related protein7 (ATG7) was observed to be downregulated after the knockdown of NDC80 in lung cancer cells. Immunohistochemistry assay results revealed that both NDC80 and ATG7 were upregulated in an array of lung adenocarcinoma samples, compared to normal tissues, and the expression of NDC80 was identified to be positively associated with the levels of ATG7. Our findings suggest that NDC80 promotes the development of lung cancer by regulating autophagy, and might serve as a potential target for increasing the therapeutic sensitivity of lung cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Shuangshuang Zeng, ; Zhijie Xu,
| | - Zhijie Xu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Shuangshuang Zeng, ; Zhijie Xu,
| |
Collapse
|
10
|
Liu R, Liu R, Guo Z, Ren J, Huang J, Luo Q, Tan Q. shRNA‑mediated knockdown of KNTC1 inhibits non-small-cell lung cancer through regulating PSMB8. Cell Death Dis 2022; 13:685. [PMID: 35933405 PMCID: PMC9357013 DOI: 10.1038/s41419-022-05140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023]
Abstract
In view of the important roles played by Kinetochore proteins in mitosis, we believed that they may contribute to the development and progression of human cancers, which has been reported recently elsewhere. Kinetochore-associated 1 (KNTC1) participates in the segregation of sister chromatids during mitosis, the effects of which on non-small-cell lung cancer (NSCLC) remain unclear. Here, we sought to identify the biological significance of KNTC1 in NSCLC. KNTC1 protein expression in NSCLC tissues was investigated by immunohistochemistry. Lentivirus delivered short hairpin RNA (shRNA) was utilized to establish KNTC1 silence NSCLC cell lines. The effects of KNTC1 depletion on NSCLC cell proliferation, migration, apoptosis, and tumor formation were analyzed by MTT assay, wound-healing assay, transwell assay, flow cytometry assay, and in nude mouse models in vivo. After KNTC1 reduction, NSCLC cell viability, proliferation, migration, and invasion were restrained. A xenograft tumor model was also provided to demonstrate the inhibited tumorigenesis in NSCLC. In addition, the downstream mechanism analysis indicated that KNTC1 depletion was positively associated with PSMB8. The findings of the present study suggested that KNTC1 may have a pivotal role in mediating NSCLC progression and may act as a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ruijun Liu
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ruili Liu
- Department of Stomatology, Ordos central hospital, Ordos, Inner Mongolia, 017000, P. R. China
| | - Zhiyi Guo
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jianghao Ren
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jia Huang
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Qingquan Luo
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Qiang Tan
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
11
|
Wang C, Wang Y, Liu C, Meng X, Hang Z. Kinetochore-associated protein 1 promotes the invasion and tumorigenicity of cervical cancer cells via matrix metalloproteinase-2 and matrix metalloproteinase-9. Bioengineered 2022; 13:9495-9507. [PMID: 35389773 PMCID: PMC9161993 DOI: 10.1080/21655979.2022.2061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer, a common cancer in women, has become a serious social burden. Kinetochore-associated protein 1 (KNTC1) that regulates the cell cycle by regulating mitosis is related to the malignant behavior of different types of tumors. However, its role in the development of cervical cancer remains unclear. In this study, we initially explored the role of KNTC1 in cervical cancer. KNTC1 expression and relevant information were downloaded from The Cancer Genome Atlas (TCGA) and dataset GSE63514 in the Gene Expression Omnibus (GEO) database for bioinformatics analyses. Cell proliferation was detected by cell counting kit-8 (CCK8) and colony formation assays. Wound healing and Transwell assays were used to evaluate cell migration and invasion abilities. Protein expression levels of matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMP9) were measured by western blotting. Nude mouse models of subcutaneous xenograft tumor were constructed to analyze tumor growth in vivo. CCK8 and colony formation assay results demonstrated that the proliferation rate of SiHa and C-33A cells decreased when KNTC1 was silenced. Western blot and Transwell assays indicated that KNTC1 knockdown weakened the invasion and migration abilities of SiHa and C-33A cells and decreased the expression of MMP-2 and MMP-9. In-vivo experiments suggested that the inhibition of KNTC1 reduced tumor growth. Taken together, our study showed that KNTC1 plays an important role in cervical cancer. Further, we verified the promotional effect of KNTC1 on cervical cancer through in-vivo and in-vitro experiments and speculated that KNTC1 might mediate tumor invasion via MMP9 and MMP2.
Collapse
Affiliation(s)
- Caimei Wang
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Yiyuan Wang
- Department of Stomatology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Congrong Liu
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Xiaoyu Meng
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Zhongxia Hang
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| |
Collapse
|
12
|
Sun C, Wei J, Long Z, Zhao W, Huangfu Q, Xie Q, Wang B, Wen J. Spindle pole body component 24 homolog potentiates tumor progression via regulation of SRY-box transcription factor 2 in clear cell renal cell carcinoma. FASEB J 2022; 36:e22086. [PMID: 35028983 DOI: 10.1096/fj.202101310r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common pathological subtype of human kidney cancer with a high probability of metastasis. To understand the molecular processing essential for ccRCC tumorigenicity, we conducted an integrative in silico analysis of The Cancer Genome Atlas (TCGA) ccRCC dataset and clustered randomly interspersed short palindromic repeats (CRISPR) screening dataset of ccRCC cell lines from Depmap. We identified spindle pole body component 24 homolog (SPC24) as an essential gene for ccRCC cell lines with prognostic significance in the TCGA database. Targeting SPC24 by CRISPR/Cas9-mediated gene knockout attenuated ccRCC proliferation, metastasis, and in vivo tumor growth. Furthermore, we found that SPC24 regulates metastasis genes expression in a SRY-box transcription factor 2 (SOX2)-dependent manner. The anti-proliferative effects of SPC24 knockout were strengthened with SOX2 knockdown. Collectively, our findings suggest SPC24 has a pivotal function in promoting ccRCC progression, providing a new insight for the treatment of ccRCC.
Collapse
Affiliation(s)
- Chengfang Sun
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingchao Wei
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhilin Long
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Weixi Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qi Huangfu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bohan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Wen
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Huang S, Pang L, Wei C. Identification of a Four-Gene Signature With Prognostic Significance in Endometrial Cancer Using Weighted-Gene Correlation Network Analysis. Front Genet 2021; 12:678780. [PMID: 34616422 PMCID: PMC8488359 DOI: 10.3389/fgene.2021.678780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Endometrial hyperplasia (EH) is a precursor for endometrial cancer (EC). However, biomarkers for the progression from EH to EC and standard prognostic biomarkers for EC have not been identified. In this study, we aimed to identify key genes with prognostic significance for the progression from EH to EC. Weighted-gene correlation network analysis (WGCNA) was used to identify hub genes utilizing microarray data (GSE106191) downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified from the Uterine Corpus Endometrial Carcinoma (UCEC) dataset of The Cancer Genome Atlas database. The Limma-Voom R package was applied to detect differentially expressed genes (DEGs; mRNAs) between cancer and normal samples. Genes with |log2 (fold change [FC])| > 1.0 and p < 0.05 were considered as DEGs. Univariate and multivariate Cox regression and survival analyses were performed to identify potential prognostic genes using hub genes overlapping in the two datasets. All analyses were conducted using R Bioconductor and related packages. Through WGCNA and overlapping genes in hub modules with DEGs in the UCEC dataset, we identified 42 hub genes. The results of the univariate and multivariate Cox regression analyses revealed that four hub genes, BUB1B, NDC80, TPX2, and TTK, were independently associated with the prognosis of EC (Hazard ratio [95% confidence interval]: 0.591 [0.382–0.912], p = 0.017; 0.605 [0.371–0.986], p = 0.044; 1.678 [1.132–2.488], p = 0.01; 2.428 [1.372–4.29], p = 0.02, respectively). A nomogram was established with a risk score calculated using the four genes’ coefficients in the multivariate analysis, and tumor grade and stage had a favorable predictive value for the prognosis of EC. The survival analysis showed that the high-risk group had an unfavorable prognosis compared with the low-risk group (p < 0.0001). The receiver operating characteristic curves also indicated that the risk model had a potential predictive value of prognosis with area under the curve 0.807 at 2 years, 0.783 at 3 years, and 0.786 at 5 years. We established a four-gene signature with prognostic significance in EC using WGCNA and established a nomogram to predict the prognosis of EC.
Collapse
Affiliation(s)
- Shijin Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lihong Pang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Changqiang Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
15
|
SLC6A3 as a potential circulating biomarker for gastric cancer detection and progression monitoring. Pathol Res Pract 2021; 221:153446. [PMID: 33887543 DOI: 10.1016/j.prp.2021.153446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gastric cancer is a malignant tumor originating from the gastric mucosal epithelium, with no obvious symptoms at the early stage. The dopamine transporter gene (SLC6A3) is involved in the metabolism of dopamine and catecholamine and is a potential gene for Parkinson's disease and alcoholism. But the role of SLC6A3 in gastric cancer is still unknown. The aim of our study is to investigate the potential diagnostic value of SLC6A3 on gastric cancer. METHODS Quantitative real-time PCR (RT-qPCR) was used to detect the expression of SLC6A3 in clinical samples and cells. A total of 246 samples were enrolled in this study (26 pairs of tissue samples; Serum of 113 patients with gastric cancer, 51 polyps patients and 56 healthy controls). The diagnostic value of SLC6A3 was evaluated by the ROC curve and analyzed the changes of SLC6A3 expression before and after surgery. The prognostic value, interacting proteins and related pathways of SLC6A3 were evaluated by TCGA analysis in UALCAN database (http://ualcan.path.uab.edu/). RESULTS The expression level of SLC6A3 in gastric cancer was significantly higher than that in controls. Further, the proportion under the ROC curve (AUC) for SLC6A3, CEA and CA19-9 was 0.818 (95 % confidence interval [CI]: 0.754 to 0.883, P < 0.001), and the expression level of SLC6A3 in the serum of patients with gastric cancer decreased significantly after surgery (P < 0.001). Bioinformatic enrichment analysis of SLC6A3 displayed the relevant metabolic pathways involved in its interacting proteins. CONCLUSION SLC6A3 is involved in the occurrence and development of gastric cancer and can be used as a potential diagnostic indicator for gastric cancer.
Collapse
|
16
|
Luo Y, Yang Z, Chen Y, Lu X, Quan Y. Genomic and immunological features of microsatellite instability in colon cancer. Gene 2021; 781:145534. [PMID: 33636290 DOI: 10.1016/j.gene.2021.145534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Microsatellite instability (MSI) is closely related to the prognosis and therapy response of colon cancer. Colon cancer patients with MSI show resistance to 5-Fluorouracil (5-FU) but sensitivity to immunosuppressive checkpoint inhibitors (ICIs). The relevant mechanism behind the opposite response remains unclear. Multi-omics research data of colon cancer patients were acquired from The Cancer Genome Atlas (TCGA) database, GEO database, and DAFI dataset. Transcriptome data were normalized to gene expression data through the R software package "Limma". Somatic mutations data were analyzed and visualized through the R software package "maftools". CIBERSORT algorithm was used to estimate the relative proportion of 22 infiltrating immune cell types. We demonstrated MSI patients showed both overexpressed immune checkpoints (mRNA level) and activated tumor-infiltrating lymphocytes (TILs), which may explain the satisfying response of ICIs. The additionally, we also demonstrated MSI promoted the mRNA expression of thymidylate synthase (TYMS) through regulating its copy number variation. As a main target of 5-FU, overexpressed TYMS promoted the resistance of 5-FU. Furthermore, we demonstrated MSI patients showed significantly increased somatic mutations compared with microsatellite stability (MSS) patients, except APC, TP53, and KRAS mutations. The substitutions and location of somatic mutations in different genes were at variance between MSS and MSI patients. In conclusion, our research determined mechanisms of MSI associated treatment response, and may provide potential value for improving the survival of colon cancer patients.
Collapse
Affiliation(s)
- Yi Luo
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yusheng Chen
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yingjun Quan
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
17
|
Zhang B, Zhou Q, Xie Q, Lin X, Miao W, Wei Z, Zheng T, Pang Z, Liu H, Chen X. SPC25 overexpression promotes tumor proliferation and is prognostic of poor survival in hepatocellular carcinoma. Aging (Albany NY) 2020; 13:2803-2821. [PMID: 33408271 PMCID: PMC7880370 DOI: 10.18632/aging.202329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/08/2020] [Indexed: 12/29/2022]
Abstract
Background: The nuclear division cycle 80 (NDC80) complex assures proper chromosome segregation during the cell cycle progression. SPC25 is a crucial component of NDC80, and its role in hepatocellular carcinoma (HCC) has been explored recently. This study characterized the differential expression of SPC25 in HCC patients of different races and HBV infection status. Methods: Expression patterns of SPC25 were evaluated in TCGA and Chinese HCC patients. Kaplan-Meier analysis was applied to examine the predictive value of SPC25. In vitro and in vivo functional assays were conducted to explore the role of SPC25 in HCC. Bioinformatics methods were applied to investigate the regulatory mechanisms of SPC25. Findings: The mRNA levels of SPC25 were up-regulated in HCC. SPC25 has a significantly higher transcriptional level in Asian patients than Caucasian patients. SPC25 promoted HCC cell proliferation in vitro and tumor growth in vivo by accelerating the cell cycle. We identified transcription factors, miRNAs, and immune cells that may interact with SPC25. Interpretation: The findings suggest that increased expression of SPC25 is associated with poor prognosis of HCC and enhances the proliferative capacity of HCC cells. SPC25 could serve as a valuable prognostic marker and a novel treatment target for HCC.
Collapse
Affiliation(s)
- Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Qing Zhou
- Department of Core Facility, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Qiankun Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaohui Lin
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Wenqiang Miao
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Zhaoguang Wei
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Tingting Zheng
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Zuoliang Pang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Haosheng Liu
- Department of Core Facility, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Xi Chen
- Department of Core Facility, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| |
Collapse
|
18
|
Zhang J, Zhang W, Zhang Q. Ectopic expression of ROR1 prevents cochlear hair cell loss in guinea pigs with noise-induced hearing loss. J Cell Mol Med 2020; 24:9101-9113. [PMID: 34008309 PMCID: PMC7417695 DOI: 10.1111/jcmm.15545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the most frequent disabilities in industrialized countries. Evidence shows that hair cell loss in the auditory end organ is responsible for the majority of various ear pathological conditions. The functional roles of the receptor tyrosine kinase ROR1 have been underscored in various tumours. In this study, we evaluated the ability of ROR1 to influence cochlear hair cell loss of guinea pigs with NIHL. The NIHL model was developed in guinea pigs, with subsequent measurement of the auditory brainstem response (ABR). Gain-of-function experiments were employed to explore the role of ROR1 in NIHL. The interaction between ROR1 and Wnt5a and their functions in the cochlear hair cell loss were further analysed in response to alteration of ROR1 and Wnt5a. Guinea pigs with NIHL demonstrated elevated ABR threshold and down-regulated ROR1, Wnt5a and NF-κB p65. The up-regulation of ROR1 was shown to decrease the cochlear hair cell loss and the expression of pro-apoptotic gene (Bax, p53) in guinea pig cochlea, but promoted the expression of anti-apoptotic gene (Bcl-2) and the fluorescence intensity of cleaved-caspase-3. ROR1 interacted with Wnt5a to activate the NF-κB signalling pathway through inducing phosphorylation and translocation of p65. Furthermore, Wnt5a overexpression decreased the cochlear hair cell loss. Collectively, this study suggested the protection of overexpression of ROR1 against cochlear hair cell loss in guinea pigs with NIHL via the Wnt5a-dependent NF-κB signalling pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Children’s RehabilitationLinyi People’s HospitalLinyiChina
| | - Wei Zhang
- Electrocardiogram RoomLinyi People’s HospitalLinyiChina
| | - Qinliang Zhang
- Department of Children’s RehabilitationLinyi People’s HospitalLinyiChina
| |
Collapse
|
19
|
Ustinov NB, Korshunova AV, Gudimchuk NB. Protein Complex NDC80: Properties, Functions, and Possible Role in Pathophysiology of Cell Division. BIOCHEMISTRY (MOSCOW) 2020; 85:448-462. [PMID: 32569552 DOI: 10.1134/s0006297920040057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitotic division maintains genetic identity of any multicellular organism throughout an entire lifetime. Each time a parent cell divides, chromosomes are equally distributed between the daughter cells due to the action of mitotic spindle. Mitotic spindle is formed by the microtubules that represent dynamic polymers of tubulin protein. Spindle microtubules are attached end-on to kinetochores - large multi-protein complexes on chromosomes. This review focuses on the four-subunit NDC80 complex, one of the most important kinetochore elements that plays a major role in the attachment of assembling/disassembling microtubule ends to the chromosomes. Here, we summarize published data on the structure, properties, and regulation of the NDC80 complex and discuss possible relationship between changes in the expression of genes coding for the NDC80 complex components, mitotic disorders, and oncogenesis with special emphasis on the diagnostic and therapeutic potential of NDC80.
Collapse
Affiliation(s)
- N B Ustinov
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A V Korshunova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - N B Gudimchuk
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| |
Collapse
|
20
|
Sun ZY, Wang W, Gao H, Chen QF. Potential therapeutic targets of the nuclear division cycle 80 (NDC80) complexes genes in lung adenocarcinoma. J Cancer 2020; 11:2921-2934. [PMID: 32226507 PMCID: PMC7086257 DOI: 10.7150/jca.41834] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Lung cancer is the most common cancer worldwide, both in terms of the incidence and mortality. NDC80 complex comprising of NDC80, NUF2, SPC24, and SPC25 is a heterotetrameric protein complex located in the outer layer of the kinetochore and plays a critical role in mitosis. This study focuses on the effects of NDC80 complex genes on clinical features and prognosis in lung adenocarcinoma (LUAD). Materials and methods: Expression of NDC80 complex in LUAD and related clinical information was extracted from the TCGA website. NDC80 complex gene functional analysis and correlation analysis was conducted by using DAVID, BiNGO, Gene MANIA, STRING and GSEA. Survival probability was predicted by nomogram. Statistical analysis was used to predict NDC80 complex gene expression on clinical features and prognosis in patients with LUAD. Results: Expression of NDC80, NUF2, SPC24 and SPC25 was significantly elevated in LUAD tumors compared with normal tissues (P < 0.05). These genes showed diagnostic values for LUAD (P < 0.001 for each; area under the curve (AUC), 0.958, 0.968, 0.951, and 0.932 respectively); combinatorial analysis of these genes was more advantageous than single analysis alone (P < 0.001; AUC > 0.900 for each). Expression of both NDC80 and SPC25 correlated with the prognosis of LUAD (P < 0.001; AUC > 0.600 for each). Higher expression of NDC80, NUF2, SPC24 and SPC25 was associated with low overall survival (OS) in univariate analysis. Higher expression of NDC80 and SPC25 was associated with low OS in multivariate analysis. High expression of NDC80 combined with high expression of SPC25 was predictive of poor OS in LUAD in joint analysis. Conclusion: NDC80 complex gene might be an early indicator of diagnosis and prognosis of LUAD. The combined detection of NDC80, NUF2, SPC24 and SPC25 may become a new research direction in LUAD diagnosis and a new target for tumor targeted gene therapy.
Collapse
Affiliation(s)
- Zhong-Yi Sun
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei Wang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Han Gao
- Institute of respiratory disease, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Quan-Fang Chen
- Institute of respiratory disease, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
21
|
Chen W, Liao L, Lai H, Yi X, Wang D. Identification of core biomarkers associated with pathogenesis and prognostic outcomes of laryngeal squamous-cell cancer using bioinformatics analysis. Eur Arch Otorhinolaryngol 2020; 277:1397-1408. [PMID: 32067095 DOI: 10.1007/s00405-020-05856-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite advances in the treatment of laryngeal squamous-cell carcinoma (LSCC), the survival rate of LSCC remains poor. Thereby, it is urgent to identify novel diagnostic and prognostic biomarkers for LSCC. The study aimed to identify potential core genes associated with the pathogenesis and prognosis of LSCC. METHODS Differentially expressed genes between LSCC and normal laryngeal tissue samples were screened by an integrated analysis of data from GEO and TCGA databases. Core genes related to the pathogenesis and prognosis of LSCC were identified by employing protein-protein interaction network and Cox proportional hazards model analyses. RESULTS Ten hub genes (AURKA, AURKB, CDC45, KIF2C, NDC80, EXO1, TYMS, RAD51AP1, ITGA3, and UBE2T) that might be highly related to the pathogenesis of LSCC were identified. An eight-gene prognostic signature consisted of ZG16B, STATH, RTN4R, MSRA, CBX8, SLC5A1, EFNB1 and CNTFR was constructed with a good performance in predicting overall survivals. CONCLUSION Our findings might shed some new light on the pathogenesis of LSCC and help identify new therapeutic targets of LSCC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Lianming Liao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fujian, 350001, Fuzhou, China
| | - Haichun Lai
- Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Xuehan Yi
- Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Desheng Wang
- Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China.
| |
Collapse
|
22
|
Zhang H, Zou J, Yin Y, Zhang B, Hu Y, Wang J, Mu H. Bioinformatic analysis identifies potentially key differentially expressed genes in oncogenesis and progression of clear cell renal cell carcinoma. PeerJ 2019; 7:e8096. [PMID: 31788359 PMCID: PMC6883955 DOI: 10.7717/peerj.8096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal types of cancer within the urinary system. Great efforts have been made to elucidate the pathogeny. However, the molecular mechanism of ccRCC is still not well understood. The aim of this study is to identify key genes in the carcinogenesis and progression of ccRCC. The mRNA microarray dataset GSE53757 was downloaded from the Gene Expression Omnibus database. The GSE53757 dataset contains tumor and matched paracancerous specimens from 72 ccRCC patients with clinical stage I to IV. The linear model of microarray data (limma) package in R language was used to identify differentially expressed genes (DEGs). The protein–protein interaction (PPI) network of the DEGs was constructed using the search tool for the retrieval of interacting genes (STRING). Subsequently, we visualized molecular interaction networks by Cytoscape software and analyzed modules with MCODE. A total of 1,284, 1,416, 1,610 and 1,185 up-regulated genes, and 932, 1,236, 1,006 and 929 down-regulated genes were identified from clinical stage I to IV ccRCC patients, respectively. The overlapping DEGs among the four clinical stages contain 870 up-regulated and 645 down-regulated genes. The enrichment analysis of DEGs in the top module was carried out with DAVID. The results showed the DEGs of the top module were mainly enriched in microtubule-based movement, mitotic cytokinesis and mitotic chromosome condensation. Eleven up-regulated genes and one down-regulated gene were identified as hub genes. Survival analysis showed the high expression of CENPE, KIF20A, KIF4A, MELK, NCAPG, NDC80, NUF2, TOP2A, TPX2 and UBE2C, and low expression of ACADM gene could be involved in the carcinogenesis, invasion or recurrence of ccRCC. Literature retrieval results showed the hub gene NDC80, CENPE and ACADM might be novel targets for the diagnosis, clinical treatment and prognosis of ccRCC. In conclusion, the findings of present study may help us understand the molecular mechanisms underlying the carcinogenesis and progression of ccRCC, and provide potential diagnostic, therapeutic and prognostic biomarkers.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Derma Science Laboratory, Wuxi NO.2 People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Ying Yin
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Bo Zhang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Yaling Hu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Jingjing Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Huijun Mu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
23
|
Poola I, Yue Q, Gillespie JW, Sullivan PS, Aguilar-Jakthong J, Rao J, Shaaban AM, Sauter ER, Ricci AJ. Breast Hyperplasias, Risk Signature, and Breast Cancer. Cancer Prev Res (Phila) 2019; 12:471-480. [PMID: 31239263 DOI: 10.1158/1940-6207.capr-19-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/27/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022]
Abstract
We address the dilemma faced by oncologists in administering preventative measures to "at risk" patients diagnosed with atypical and nonatypical hyperplasias due to lack of any molecular means of risk stratification and identifying high-risk subjects. Our study purpose is to investigate a four marker risk signature, MMP-1, CEACAM6, HYAL1, and HEC1, using 440 hyperplastic tissues for identifying high-risk subjects who will benefit from preventative therapies. We assayed the markers by IHC and combined their expression levels to obtain a composite value from 0-10, which we called a "Cancer Risk Score." We demonstrate that the four marker-based risk scores predict subsequent cancer development with an accuracy of 91% and 86% for atypical and nonatypical subjects, respectively. We have established a correlation between risk scores and cancer rates by stratifying the samples into low risk (score ≤ 0.5); intermediate risk (score ≤ 5.4), and high risk (score >5.4) groups using Kaplan-Meier survival analysis. We have evaluated cancer rates at 5, 10, and 15 years. Our results show that the average cancer rates in the first 5 years among low- and intermediate-risk groups were 2% and 15%, respectively. Among high-risk group, the average cancer rates at 5 years were 73% and 34% for atypical and nonatypical subjects, respectively. The molecular risk stratification described here assesses a patient's tumor biology-based risk level as low, intermediate, or high and for making informed treatment decisions. The outcomes of our study in conjunction with the available prophylactic measures could prevent approximately 20%-25% of sporadic breast cancers.
Collapse
Affiliation(s)
| | - Qingqi Yue
- Silbiotech, Inc., Gaithersburg, Maryland
| | | | - Peggy S Sullivan
- Pathology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Josephine Aguilar-Jakthong
- Pathology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - JianYu Rao
- Pathology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | | | - Edward R Sauter
- Department of Surgery, Hartford Hospital, Hartford, Connecticut
| | - Andrew J Ricci
- Department of Pathology, Hartford Hospital, Hartford, Connecticut
| |
Collapse
|
24
|
Chen J, Wu F, Shi Y, Yang D, Xu M, Lai Y, Liu Y. Identification of key candidate genes involved in melanoma metastasis. Mol Med Rep 2019; 20:903-914. [PMID: 31173190 PMCID: PMC6625188 DOI: 10.3892/mmr.2019.10314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the most lethal stage of cancer progression. The present study aimed to investigate the underlying molecular mechanisms of melanoma metastasis using bioinformatics. Using the microarray dataset GSE8401 from the Gene Expression Omnibus database, which included 52 biopsy specimens from patients with melanoma metastasis and 31 biopsy specimens from patients with primary melanoma, differentially expressed genes (DEGs) were identified, subsequent to data preprocessing with the affy package, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A protein-protein interaction (PPI) network was constructed. Mutated genes were analyzed with 80 mutated cases with melanoma from The Cancer Genome Atlas. The overall survival of key candidate DEGs, which were within a filtering of degree >30 criteria in the PPI network and involved three or more KEGG signaling pathways, and genes with a high mutation frequency were delineated. The expression analysis of key candidate DEGs, mutant genes and their associated genes were performed on UALCAN. Of the 1,187 DEGs obtained, 505 were upregulated and 682 were downregulated. ‘Extracellular exosome’ processes, the ‘amoebiasis’ pathway, the ‘ECM-receptor interaction’ pathway and the ‘focal adhesion’ signaling pathway were significantly enriched and identified as important processes or signaling pathways. The overall survival analysis of phosphoinositide-3-kinase regulator subunit 3 (PIK3R3), centromere protein M (CENPM), aurora kinase A (AURKA), laminin subunit α 1 (LAMA1), proliferating cell nuclear antigen (PCNA), adenylate cyclase 1 (ADCY1), BUB1 mitotic checkpoint serine/threonine kinase (BUB1), NDC80 kinetochore complex component (NDC80) and protein kinase C α (PRKCA) in DEGs was statistically significant. Mutation gene analysis identified that BRCA1-associated protein 1 (BAP1) had a higher mutation frequency and survival analysis, and its associated genes in the BAP1-associated PPI network, including ASXL transcriptional regulator 1 (ASXL1), proteasome 26S subunit, non-ATPase 3 (PSMD3), proteasome 26S subunit, non ATPase 11 (PSMD11) and ubiquitin C (UBC), were statistically significantly associated with the overall survival of patients with melanoma. The expression levels of PRKCA, BUB1, BAP1 and ASXL1 were significantly different between primary melanoma and metastatic melanoma. Based on the present study, ‘extracellular exosome’ processes, ‘amoebiasis’ pathways, ‘ECM-receptor interaction’ pathways and ‘focal adhesion’ signaling pathways may be important in the formation of metastases from melanoma. The involved genes, including PIK3R3, CENPM, AURKA, LAMA1, PCNA, ADCY1, BUB1, NDC80 and PRKCA, and mutation associated genes, including BAP1, ASXL1, PSMD3, PSMD11 and UBC, may serve important roles in metastases of melanoma.
Collapse
Affiliation(s)
- Jia Chen
- Department of Dermatopathology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Fei Wu
- Department of Dermatopathology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Yu Shi
- Department of Medical Cosmetology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Degang Yang
- Department of Treatment, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Mingyuan Xu
- Department of Dermatopathology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Yeqiang Liu
- Department of Dermatopathology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| |
Collapse
|
25
|
Liu L, Lin J, He H. Identification of Potential Crucial Genes Associated With the Pathogenesis and Prognosis of Endometrial Cancer. Front Genet 2019; 10:373. [PMID: 31105744 PMCID: PMC6499025 DOI: 10.3389/fgene.2019.00373] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Endometrial cancer (EC) is a common gynecological malignancy worldwide. Despite advances in the development of strategies for treating EC, prognosis of the disease remains unsatisfactory, especially for advanced EC. The aim of this study was to identify novel genes that can be used as potential biomarkers for identifying the prognosis of EC and to construct a novel risk stratification using these genes. Methods and Results An mRNA sequencing dataset, corresponding survival data and expression profiling of an array of EC patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Common differentially expressed genes (DEGs) were identified based on sequencing and expression as given in the profiling dataset. Pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction network was established using the string online database in order to identify hub genes. Univariate and multivariable Cox regression analyses were used to screen prognostic DEGs and to construct a prognostic signature. Survival analysis based on the prognostic signature was performed on TCGA EC dataset. A total of 255 common DEGs were found and 11 hub genes (TOP2A, CDK1, CCNB1, CCNB2, AURKA, PCNA, CCNA2, BIRC5, NDC80, CDC20, and BUB1BA) that may be closely related to the pathogenesis of EC were identified. A panel of 7 DEG signatures consisting of PHLDA2, GGH, ESPL1, FAM184A, KIAA1644, ESPL1, and TRPM4 were constructed. The signature performed well for prognosis prediction (p < 0.001) and time-dependent receiver-operating characteristic (ROC) analysis displayed an area under the curve (AUC) of 0.797, 0.734, 0.729, and 0.647 for 1, 3, 5, and 10-year overall survival (OS) prediction, respectively. Conclusion This study identified potential genes that may be involved in the pathophysiology of EC and constructed a novel gene expression signature for EC risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongying He
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
26
|
Pan J, Fan Z, Wang Z, Dai Q, Xiang Z, Yuan F, Yan M, Zhu Z, Liu B, Li C. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:52. [PMID: 30717785 PMCID: PMC6360779 DOI: 10.1186/s13046-019-1049-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Gastric cancer (GC) has a clear predilection for metastasis toward the omentum which is primarily composed of adipose tissue, indicating that fatty acids may contribute to this phenomenon. However their function remains poorly understood in GC. In this study, we investigated the role of palmitate acid (PA) and its cellular receptor CD36 in the progression of GC. METHODS Immunohistochemical (IHC) staining was performed to detect CD36 expression in GC tissues and its clinical significance was determined statistically. CD36 over-expression and knock-down expression cell models were developed and tested in vitro. Wound-healing assays, migration assays, and invasion assays were performed and peritoneal implants into nude mice were done to assess the biological effects of PA and CD36. The underlying mechanisms were investigated using western blot, immunofluorescence (IF), quantitative real-time PCR (qRT-PCR) and antibody blocking assays. RESULTS PA promoted the metastasis of GC by phosphorylation of AKT, which facilitated the nuclear localization of β-catenin through inactivation of GSK-3β via phosphorylation. This tumor-promoting effect of PA was mediated by CD36, a cell surface receptor of fatty acids (FAs). The higher the CD36 expression levels in GC tissues correlated with the poorer the prognosis of patients according to the TCGA database, the GEO database and our own clinical data. CONCLUSIONS Our experiments established CD36 as a key mediator of FA-induced metastasis of GC via the AKT/GSK-3β/β-catenin signaling pathway. CD36 might, therefore, constitute a potential therapeutic target for clinical intervention in GC.
Collapse
Affiliation(s)
- Jiaomeng Pan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhiyuan Fan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhenqiang Wang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qingqiang Dai
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhen Xiang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Min Yan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhenggang Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Bingya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Chen Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
27
|
Liu CT, Min L, Wang YJ, Li P, Wu YD, Zhang ST. shRNA‑mediated knockdown of KNTC1 suppresses cell viability and induces apoptosis in esophageal squamous cell carcinoma. Int J Oncol 2019; 54:1053-1060. [PMID: 30628654 DOI: 10.3892/ijo.2019.4672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/06/2018] [Indexed: 11/06/2022] Open
Abstract
Kinetochore‑associated proteins are critical components of mitotic checkpoints, which are essential for faithful chromosomal segregation and spindle assembly during cell division. Recent advances have demonstrated that kinetochore‑associated proteins are upregulated and serve significant roles in the carcinogenesis of numerous types of cancer. However, the effects of kinetochore‑associated protein 1 (KNTC1) on human cancer, particularly on esophageal squamous cell carcinoma (ESCC), remain unclear. The present study revealed that KNTC1 was highly expressed in ESCC cell lines. Subsequently, lentivirus‑mediated short hairpin RNAs were used to knockdown KNTC1 expression in human ESCC cell lines. Cell growth and viability were measured using multiparametric high‑content screening and the MTT assay, respectively. Cell apoptosis was assessed by staining cells with Annexin V‑allophycocyanin and was detected using FACScan flow cytometry. The results demonstrated that knockdown of KNTC1 effectively inhibited cell viability and increased apoptosis. In addition, a gene set enrichment analysis of online ESCC datasets indicated that KNTC1 overexpression was associated with increases in the mitotic spindle and hypoxia pathways, and decreases in the DNA repair and mismatch repair pathways. The findings of the present study suggested that KNTC1 may have an essential role in mediating cell viability and apoptosis in human ESCC cells and may serve as a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Chun-Tao Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing 100050, P.R. China
| | - Yong-Jun Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing 100050, P.R. China
| | - Yong-Dong Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing 100050, P.R. China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing 100050, P.R. China
| |
Collapse
|
28
|
Zhou J, Pei Y, Chen G, Cao C, Liu J, Ding C, Wang D, Sun L, Xu P, Niu G. SPC24 Regulates breast cancer progression by PI3K/AKT signaling. Gene 2018; 675:272-277. [PMID: 30180968 DOI: 10.1016/j.gene.2018.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer is a heterogeneous disease, presenting as several diverse clinical and histologic varieties and it is now the most frequently diagnosed cancer and is the sixth leading cause of cancer-related death in Chinese women. SPC24 is an important component of the mitotic checkpoint machinery and its carcinogenic roles have been shown in several cancers, including anaplastic thyroid cancer, hepatocellular carcinoma, and osteosarcoma. However, the role of SPC24 in breast cancer is still unclear. Here, we show SPC24 is highly expressed in breast cancer compared with the normal tissues. In addition, we observe that SPC24 knockdown can lead to attenuated cell growth, increased cell apoptosis and cell cycle progression. Consistent with the breast cancer cell results, the in vivo growth of the SPC24-knocking down cells was significantly inhibited. Interestingly, molecular analysis indicates that SPC24 regulates PI3K/AKT kinase pathway, indicating the important of SPC24 for clinical treatment. In aggregate, our results provide an oncogenic functionality of SPC24 in breast cancer progression.
Collapse
Affiliation(s)
- Juan Zhou
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China; Department of Medical Oncology, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Yunfeng Pei
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Geng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Chunping Cao
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Jia Liu
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Chen Ding
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Duping Wang
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Li Sun
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Peng Xu
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Guoping Niu
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China; Department of Medical Oncology, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China.
| |
Collapse
|
29
|
Yuan L, Qian G, Chen L, Wu CL, Dan HC, Xiao Y, Wang X. Co-expression Network Analysis of Biomarkers for Adrenocortical Carcinoma. Front Genet 2018; 9:328. [PMID: 30158955 PMCID: PMC6104177 DOI: 10.3389/fgene.2018.00328] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. And currently, there are no specific diagnostic biomarkers for ACC. In our study, we aimed to screen biomarkers for disease diagnosis, progression and prognosis. We firstly used the microarray data from public database Gene Expression Omnibus database to construct a weighted gene co-expression network, and then to identify gene modules associated with clinical features of ACC. Though this algorithm, a significant module with R2 = 0.64 (P = 9 × 10-5) was identified. Co-expression network and protein–protein interaction network were performed for screen the candidate hub genes. Checked by The Cancer Genome Atlas (TCGA) database, another independent dataset GSE19750, and GEPIA database, using one-way ANOVA, Pearson’s correlation, survival analysis, diagnostic capacity (ROC curve) and expression level revalidation, a total 12 real hub genes were identified. Gene ontology and KEGG pathway analysis of genes in the significant module revealed that the hub genes are significantly enriched in cell cycle regulation. Moreover, gene set enrichment analysis suggests that the samples with highly expressed hub genes are correlated with cell cycle. Taken together, our integrated analysis has identified 12 hub genes that are associated with the progression and prognosis of ACC; these hub genes might lead to poor outcomes by regulating the cell cycle.
Collapse
Affiliation(s)
- Lushun Yuan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Han C Dan
- Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Jeong J, Keum S, Kim D, You E, Ko P, Lee J, Kim J, Kim JW, Rhee S. Spindle pole body component 25 homolog expressed by ECM stiffening is required for lung cancer cell proliferation. Biochem Biophys Res Commun 2018; 500:937-943. [PMID: 29709477 DOI: 10.1016/j.bbrc.2018.04.205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has shown that matrix stiffening in cancer tissue by the deposition of extracellular matrix (ECM) is closely related with severe tumor progression. However, much less is known about the genes affected by matrix stiffness and its signaling for cancer progression. In the current research, we investigated the differential gene expression of a non-small lung adenocarcinoma cell line, H1299, cultured under the conditions of soft (∼0.5 kPa) and stiff (∼40 kPa) matrices, mimicking the mechanical environments of normal and cancerous tissues, respectively. For integrated transcriptome analysis, the genes identified by ECM stiffening were compared with 8248 genes retrieved from The Cancer Genome Atlas Lung Adenocarcinoma (TCGA). In stiff matrix, 29 genes were significantly upregulated, while 75 genes were downregulated. The screening of hazard ratios for these genes using the Kaplan-Meier Plotter identified 8 genes most closely associated with cancer progression under the condition of matrix stiffening. Among these genes, spindle pole body component 25 homolog (SPC25) was one of the most up-regulated genes in stiff matrix and tumor tissue. Knockdown of SPC25 in H1299 cells using shRNA significantly inhibited cell proliferation with downregulation of the expression of checkpoint protein, Cyclin B1, under the condition of stiff matrix whereas the proliferation rate in soft matrix was not affected by SPC25 silencing. Thus, our findings provide novel key molecules for studying the relationship of extracellular matrix stiffening and cancer progression.
Collapse
Affiliation(s)
- Jangho Jeong
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seula Keum
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daehwan Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunae You
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jieun Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaegu Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
32
|
Bai G, Zheng W, Ma W. Identification and functional analysis of a core gene module associated with hepatitis C virus-induced human hepatocellular carcinoma progression. Oncol Lett 2018; 15:6815-6824. [PMID: 29725417 PMCID: PMC5920388 DOI: 10.3892/ol.2018.8221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/27/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV)-induced human hepatocellular carcinoma (HCC) progression may be due to a complex multi-step processes. The developmental mechanism of these processes is worth investigating for the prevention, diagnosis and therapy of HCC. The aim of the present study was to investigate the molecular mechanism underlying the progression of HCV-induced hepatocarcinogenesis. First, the dynamic gene module, consisting of key genes associated with progression between the normal stage and HCC, was identified using the Weighted Gene Co-expression Network Analysis tool from R language. By defining those genes in the module as seeds, the change of co-expression in differentially expressed gene sets in two consecutive stages of pathological progression was examined. Finally, interaction pairs of HCV viral proteins and their directly targeted proteins in the identified module were extracted from the literature and a comprehensive interaction dataset from yeast two-hybrid experiments. By combining the interactions between HCV and their targets, and protein-protein interactions in the Search Tool for the Retrieval of Interacting Genes database (STRING), the HCV-key genes interaction network was constructed and visualized using Cytoscape software 3.2. As a result, a module containing 44 key genes was identified to be associated with HCC progression, due to the dynamic features and functions of those genes in the module. Several important differentially co-expressed gene pairs were identified between non-HCC and HCC stages. In the key genes, cyclin dependent kinase 1 (CDK1), NDC80, cyclin A2 (CCNA2) and rac GTPase activating protein 1 (RACGAP1) were shown to be targeted by the HCV nonstructural proteins NS5A, NS3 and NS5B, respectively. The four genes perform an intermediary role between the HCV viral proteins and the dysfunctional module in the HCV key genes interaction network. These findings provided valuable information for understanding the mechanism of HCV-induced HCC progression and for seeking drug targets for the therapy and prevention of HCC.
Collapse
Affiliation(s)
- Gaobo Bai
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenling Zheng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenli Ma
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
33
|
Yan X, Huang L, Liu L, Qin H, Song Z. Nuclear division cycle 80 promotes malignant progression and predicts clinical outcome in colorectal cancer. Cancer Med 2018; 7:420-432. [PMID: 29341479 PMCID: PMC5806104 DOI: 10.1002/cam4.1284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common human malignancy worldwide and increasing studies have attributed its malignant progression to abnormal molecular changes in cancer cells. Nuclear division cycle 80 (NDC80) is a newly discovered oncoprotein that regulates cell proliferation and cycle in numerous malignancies. However, its clinical significance and biological role in CRC remain unclear. Therefore, in this study, we firstly analyze its expression in a retrospective cohort enrolling 224 CRC patients and find its overexpression is significantly correlated with advanced tumor stage and poor prognosis in CRC patients. In addition, our result reveals it is an independent adverse prognostic factor affecting CRC-specific and disease-free survival. The subgroup analysis indicates NDC80 expression can stratify the clinical outcome in stage II and III patients, but fails in stage I and IV patients. In cellular assays, we find knockdown of NDC80 dramatically inhibits the proliferative ability, apoptosis resistance, cell cycle progression, and clone formation of CRC cells in vitro. Using xenograft model, we further prove knockdown of NDC80 also inhibits the tumorigenic ability of CRC cells in vivo. Finally, the microarray analysis is utilized to preliminarily clarify the oncogenic molecular mechanisms regulated by NDC80 and the results suggest it may promote CRC progression partly by downregulating tumor suppressors such as dual specificity phosphatase 5 and Forkhead box O1. Taken together, our study provides novel evidences to support that NDC80 is not only a promising clinical biomarker but also a potential therapeutical target for CRC precise medicine.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
| | - Linsheng Huang
- Anhui Medical UniversityNo. 81, Mei‐shan RoadHefei230032China
| | - Liguo Liu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalNo. 600, Yi‐shan RoadShanghai200233China
| | - Huanlong Qin
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
- Anhui Medical UniversityNo. 81, Mei‐shan RoadHefei230032China
| | - Zhenshun Song
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
| |
Collapse
|
34
|
Makita Y, Murata S, Katou Y, Kikuchi K, Uejima H, Teratani M, Hoashi Y, Kenjo E, Matsumoto S, Nogami M, Otake K, Kawamata Y. Anti-tumor activity of KNTC2 siRNA in orthotopic tumor model mice of hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 493:800-806. [PMID: 28843857 DOI: 10.1016/j.bbrc.2017.08.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is still one of the major causes of cancer-related death. Kinetochore-associated protein 2 (KNTC2) is specifically upregulated in tumor tissues of HCC patients and recognized as a potential candidate target for the treatment of HCC. However, the relationship between KNTC2 and in vivo tumor growth of HCC is not yet fully understood. Here we encapsulated KNTC2 siRNAs into a lipid nanoparticle (LNP) and investigated their knockdown activity, target engagement marker, anti-tumor activity and hepatotoxicity in an orthotopic HCC model mice of Hep3B-luc cells. Single i.v. administration of KNTC2 siRNA-LNP specifically suppressed the expression levels of both human KNTC2 mRNA and mouse Kntc2 mRNA in tumor tissues. Phosphorylation levels of histone H3 (HH3) at serine 10 in tumor tissues were increased by KNTC2 siRNA-LNP. Repeated administration of KNTC2 siRNA-LNP (twice a week) specifically inhibited the growth of tumor tissues without increasing the plasma AST and ALT levels. Their growth inhibitory activities were consistent with knockdown activities. These data strongly indicated that KNTC2 is a promising target for the treatment of HCC and that phosphorylated HH3 at serine 10 is one of the target engagement markers for KNTC2.
Collapse
Affiliation(s)
- Yukimasa Makita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan.
| | - Shumpei Murata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yoshiki Katou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kuniko Kikuchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Hiroshi Uejima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Mika Teratani
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yasutaka Hoashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Eriya Kenjo
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Satoru Matsumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Masahiro Nogami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kentaro Otake
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yuji Kawamata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
35
|
Ju LL, Chen L, Li JH, Wang YF, Lu RJ, Bian ZL, Shao JG. Effect of NDC80 in human hepatocellular carcinoma. World J Gastroenterol 2017; 23:3675-3683. [PMID: 28611520 PMCID: PMC5449424 DOI: 10.3748/wjg.v23.i20.3675] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/23/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of nuclear division cycle (NDC)80 in human hepatocellular carcinogenesis.
METHODS NDC80 gene expression was analyzed by real-time reverse transcription polymerase chain reaction in 47 paired hepatocellular carcinoma (HCC) and adjacent tissues. The HCC cell line SMMC-7721 was transfected with lentivirus to silence endogenous NDC80 gene expression, which was confirmed by real-time polymerase chain reaction and western blotting. The effects of NDC80 silencing on SMMC-7721 cell proliferation were evaluated by Cellomics ArrayScan VTI imaging. Cell cycle analysis and apoptosis were detected with flow cytometry. Colony formation was assessed by fluorescence microscopy.
RESULTS NDC80 expression levels in HCC tissues were significantly higher than those in the adjacent tissues. Functional studies demonstrated that NDC80 silencing significantly reduced SMMC-7721 cell proliferation and colony formation. Knockdown of NDC80 resulted in increased apoptosis and cell cycle arrest at S-phase. NDC80 contributed to HCC progression by reducing apoptosis and overcoming cell cycle arrest.
CONCLUSION Elevated expression of NDC80 may play a role in promoting the development of HCC.
Collapse
|
36
|
Global gene regulation during activation of immunoglobulin class switching in human B cells. Sci Rep 2016; 6:37988. [PMID: 27897229 PMCID: PMC5126563 DOI: 10.1038/srep37988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin class switch recombination (CSR) to IgE is a tightly regulated process central to atopic disease. To profile the B-cell transcriptional responses underlying the activation of the germinal centre activities leading to the generation of IgE, naïve human B-cells were stimulated with IL-4 and anti-CD40. Gene expression and alternative splicing were profiled over 12 days using the Affymetrix Human Exon 1.0 ST Array. A total of 1,399 genes, forming 13 temporal profiles were differentially expressed. CCL22 and CCL17 were dramatically induced but followed a temporal trajectory distinct from classical mediators of isotype switching. AICDA, NFIL3, IRF4, XBP1 and BATF3 shared a profile with several genes involved in innate immunity, but with no recognised role in CSR. A transcription factor BHLHE40 was identified at the core of this profile. B-cell activation was also accompanied by variation in exon retention affecting >200 genes including CCL17. The data indicate a circadian component and central roles for the Th2 chemokines CCL22 and CCL17 in the activation of CSR.
Collapse
|
37
|
Zhou Q, Wang X, Yu Z, Wu X, Chen X, Li J, Zhu Z, Liu B, Su L. Transducin (β)-like 1 X-linked receptor 1 promotes gastric cancer progression via the ERK1/2 pathway. Oncogene 2016; 36:1873-1886. [PMID: 27694893 PMCID: PMC5378934 DOI: 10.1038/onc.2016.352] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is one of the most common types of cancer worldwide, and it involves extensive local tumour invasion, metastasis and poor prognosis. Understanding the mechanisms regulating the progression of GC is necessary for the development of effective therapeutic strategies. Transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) is an important regulator controlling gene activation and repression, which has been thought to be involved in tumorigenesis. However, the role of TBL1XR1 in human GC remains largely unknown. Here, we find that TBL1XR1 is aberrantly expressed in human GC tissues, and TBL1XR1 levels are highly correlated with local tumour invasion, late tumor, lymph node, metastasis (TNM) stage and poor prognosis. Knockdown of TBL1XR1 by shRNA inhibits GC cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) in vitro, as well as tumorigenesis and peritoneal metastasis in vivo, whereas overexpression of TBL1XR1 produces the opposite effects. These effects are mediated by activation of the ERK1/2 signalling pathway, and inhibition of this pathway with a specific ERK1/2 inhibitor (U0126) significantly impairs the tumour-promoting effects induced by TBL1XR1. Moreover, TBL1XR1 mediated ERK1/2 activation is dependent on the β-catenin/MMP7/EGFR signalling pathway. In conclusion, TBL1XR1 contributes to GC tumorigenesis and progression through the activation of the β-catenin/MMP7/EGFR/ERK signalling pathway and may act as a new therapeutic target for GC.
Collapse
Affiliation(s)
- Q Zhou
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - X Wang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Z Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - X Wu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - X Chen
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - J Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Z Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - B Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - L Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
38
|
The mitotic regulator Hec1 is a critical modulator of prostate cancer through the long non-coding RNA BX647187 in vitro. Biosci Rep 2015; 35:BSR20150003. [PMID: 26612002 PMCID: PMC4660581 DOI: 10.1042/bsr20150003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022] Open
Abstract
The mitotic regulator Hec1 (highly expressed in cancer), is a member of a conserved Ndc80 (nuclear division cycle 80) complex that regulates mitotic processes. We find that Hec1 is consistently overexpressed in human prostate cancer and Hec1 is closely linked with human prostate cancer progression through the meditator LncRNA BX647187. Our studies may contribute to understand the molecular mechanism of PCa pathogenesis and clinical therapy. Hec1 (highly expressed in cancer) is a member of a conserved Ndc80 (nuclear division cycle 80) complex that regulates mitotic processes. Its overexpression is seen in various tumours and is associated with cancer progression. However, its expression pattern and role inhuman prostate cancer (PCa) still not clear. The aim of our study is to investigate the expression and functional role of Hec1 in human PCa. Hec1 expression was measured in 10 pairs of PCa cancerous and non-cancerous tissue samples by quantitative real-time (qRT)-PCR. The effects of Hec1 on PCa cells were studied by RNAi approach. Apoptosis and cell cycle were analysed by flow cytometry. Cells viability was evaluated using cell counting Kit-8. Cyclin B1–Cdc2 (cell division cycle 2) activity was measured by ELISA assay. Long non-coding (Lnc)RNAs regulated by Hec1 were gained from bioinformatics analysis. The role of LncRNA BX647187, regulated by Hec1, was finally characterized in PCa cells by siRNA. Our results showed that Hec1 mRNA and protein were significantly overexpressed in Human PCa tissues and several PCa cell lines. Silencing Hec1 markedly suppressed proliferation, promoted apoptosis and induced cell-cycle arrest in G2/M-phase in PCa cells. Through bioinformatics analysis and knockdown Hec1 in PCa cells, we found LncRNA BX647187 was positively regulated by Hec1. We further demonstrated that suppression of BX647187 in PCa cells significantly reduced cell proliferation and promoted apoptosis. Thus, we conclude that Hec1 is consistently overexpressed in human PCa and Hec1 is closely linked with human PCa progression through the meditator LncRNA BX647187. Our studies may contribute to understand the molecular mechanism of PCa pathogenesis and clinical therapy.
Collapse
|
39
|
Inhibition of Hec1 as a novel approach for treatment of primary liver cancer. Cancer Chemother Pharmacol 2014; 74:511-20. [PMID: 25038613 DOI: 10.1007/s00280-014-2540-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Highly expressed in cancer protein 1 (Hec1) is an oncogene and a promising molecular target for novel anticancer drugs. The purpose of this study was to evaluate the potential of a Hec1 inhibitor, TAI-95, as a treatment for primary liver cancer. METHODS In vitro and in vivo methods were used to test the activity of TAI-95. Gene expression analysis was used to evaluate clinical correlation of the target. RESULTS In vitro growth inhibition results showed that TAI-95 has excellent potency on a wide range of primary liver cancer cell lines (hepatoblastoma or hepatocellular carcinoma) (GI(50) 30-70 nM), which was superior to sorafenib and other cytotoxic agents. TAI-95 was relatively inactive in non-cancerous cell lines (GI(50) > 10 μM). TAI-95 disrupts the interaction between Hec1 and Nek2 and leads to degradation of Nek2, chromosomal misalignment, and apoptotic cell death. TAI-95 showed synergistic activity in selected cancer cell lines with doxorubicin, paclitaxel, and topotecan, but not with sorafenib. TAI-95 shows excellent potency in a Huh-7 xenograft mouse model when administered orally. Gene expression analysis of clinical samples demonstrated increased expression of Hec1/NDC80 and associated genes (Nek2, SMC1A, and SMC2) in 27 % of patients, highlighting the potential for using this therapeutic approach to target patients with high Hec1 expression. CONCLUSION Inhibition of Hec1 using small molecule approach may represent a promising novel approach for the treatment of primary liver cancers.
Collapse
|
40
|
Du T, Qu Y, Li J, Li H, Su L, Zhou Q, Yan M, Li C, Zhu Z, Liu B. Maternal embryonic leucine zipper kinase enhances gastric cancer progression via the FAK/Paxillin pathway. Mol Cancer 2014; 13:100. [PMID: 24885567 PMCID: PMC4113179 DOI: 10.1186/1476-4598-13-100] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/28/2014] [Indexed: 12/15/2022] Open
Abstract
Background Elevated MELK expression is featured in multiple tumors and correlated with tumorigenesis and tumor development. This study is aimed to investigate the mechanisms of MELK-mediated development of gastric cancer. Methods MELK expression levels in human gastric cancer were determined by quantitative-PCR and immunohistochemistry. The effect of MELK on cell activity was explored by knockdown and overexpression experiments. Cell growth was measured using the CCK-8 assay. Apoptosis and cell cycle distributions were analyzed by flow cytometry. Migration and invasion were tested using a transwell migration assay. Cytoskeletal changes were analyzed by immunofluorescence. To explore the molecular mechanism and effect of MELK on migration and invasion, Western blotting was used to analyze the FAK/Paxillin pathway and pull down assays for the activity of small Rho GTPases. In vivo tumorigenicity and peritoneal metastasis experiments were performed by tumor cell engraftment into nude mice. Results MELK mRNA and protein expression were both elevated in human gastric cancer, and this was associated with chemoresistance to 5-fluorouracil (5-FU). Knockdown of MELK significantly suppressed cell proliferation, migration and invasion of gastric cancer both in vitro and in vivo, decreased the percentages of cells in the G1/G0 phase and increased those in the G2/M and S phases. Moreover, knockdown of MELK decreased the amount of actin stress fibers and inhibited RhoA activity. Finally, knockdown of MELK decreased the phosphorylation of the FAK and paxillin, and prevented gastrin-stimulated FAK/paxillin phosphorylation. By contrast, MELK overexpression had the opposite effect. Conclusions MELK promotes cell migration and invasion via the FAK/Paxillin pathway, and plays an important role in the occurrence and development of gastric cancer. MELK may be a potential target for treatment against gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bingya Liu
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Ruijin er Road, Shanghai 200025, China.
| |
Collapse
|