1
|
Wang H, Chen Y. Protecting plants from pathogens through arbuscular mycorrhiza: Role of fungal diversity. Microbiol Res 2024; 289:127919. [PMID: 39342745 DOI: 10.1016/j.micres.2024.127919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in protecting host plants from pathogens. AM fungal taxa show varying abilities to hinder the development of plant pathogens with various underlying mechanisms of action, and plant defense through mycorrhization should be viewed to have a continuum of several possible mechanisms. However, an additive or synergistic effect is not always achieved. This review examines the potential mechanisms by which AM fungi enhance plant tolerance and defense against pathogens, as well as the possible interactive mechanisms among AM fungal traits that may lead to facilitative and antagonistic effect on plant defense outcomes. It also provides evidence demonstrating the benefits of AM fungal consortia used so far to protect crop plants from various pathogens. It concludes by proposing some biotechnological applications aimed at unraveling the connections between AM fungal diversity and their function to enhance efficacy of plant pathogen protection.
Collapse
Affiliation(s)
- Hao Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, and UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia.
| |
Collapse
|
2
|
Chen L, Zhang X, Li Q, Yang X, Huang Y, Zhang B, Ye L, Li X. Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. Int J Mol Sci 2024; 25:9491. [PMID: 39273439 PMCID: PMC11395649 DOI: 10.3390/ijms25179491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.
Collapse
Affiliation(s)
- Li Chen
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lei Ye
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
3
|
Delaeter M, Magnin-Robert M, Randoux B, Lounès-Hadj Sahraoui A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms 2024; 12:1281. [PMID: 39065050 PMCID: PMC11278648 DOI: 10.3390/microorganisms12071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are soil microorganisms living in symbiosis with most terrestrial plants. They are known to improve plant tolerance to numerous abiotic and biotic stresses through the systemic induction of resistance mechanisms. With the aim of developing more sustainable agriculture, reducing the use of chemical inputs is becoming a major concern. After providing an overview on AMF history, phylogeny, development cycle and symbiosis benefits, the current review aims to explore the potential of AMF as biostimulants and/or biocontrol agents. Nowadays, AMF inoculums are already increasingly used as biostimulants, improving mineral nutrient plant acquisition. However, their role as a promising tool in the biocontrol market, as an alternative to chemical phytosanitary products, is underexplored and underdiscussed. Thus, in the current review, we will address the mechanisms of mycorrhized plant resistance to biotic stresses induced by AMF, and highlight the various factors in favor of inoculum application, but also the challenges that remain to be overcome.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, 50 Rue Ferdinand Buisson, 62228 Calais, France
| |
Collapse
|
4
|
Hyder S, Gondal AS, Sehar A, Khan AR, Riaz N, Rizvi ZF, Iqbal R, Elshikh MS, Alarjani KM, Rahman MHU, Rizwan M. Use of ginger extract and bacterial inoculants for the suppression of Alternaria solani causing early blight disease in Tomato. BMC PLANT BIOLOGY 2024; 24:131. [PMID: 38383294 PMCID: PMC10880201 DOI: 10.1186/s12870-024-04789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.
Collapse
Affiliation(s)
- Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot, 51310, Pakistan.
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Anam Sehar
- Directorate of Student Affairs and Student Counselling Service - SA&C, Lahore Garrison University Lahore, Lahore, 54000, Pakistan
| | - Aimen Razzaq Khan
- Department of Botany, Government College Women University Sialkot, Sialkot, 51310, Pakistan
| | - Nadia Riaz
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University Sialkot, Sialkot, 51310, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Khaloud M Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Muhammed Habib Ur Rahman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn-53115, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan-66000, Pakistan
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn-53115, Germany.
| |
Collapse
|
5
|
Ilyas U, du Toit LJ, Hajibabaei M, McDonald MR. Influence of plant species, mycorrhizal inoculant, and soil phosphorus level on arbuscular mycorrhizal communities in onion and carrot roots. FRONTIERS IN PLANT SCIENCE 2024; 14:1324626. [PMID: 38288412 PMCID: PMC10823018 DOI: 10.3389/fpls.2023.1324626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ancient and ecologically important symbionts that colonize plant roots. These symbionts assist in the uptake of water and nutrients, particularly phosphorus, from the soil. This important role has led to the development of AMF inoculants for use as biofertilizers in agriculture. Commercial mycorrhizal inoculants are increasingly popular to produce onion and carrot, but their specific effects on native mycorrhizal communities under field conditions are not known. Furthermore, adequate availability of nutrients in soils, specifically phosphorus, can reduce the diversity and abundance of AMF communities in the roots. The type of crop grown can also influence the composition of AMF communities colonizing the plant roots. This study aimed to investigate how AMF inoculants, soil phosphorus levels, and plant species influence the diversity of AMF communities that colonize the roots of onion and carrot plants. Field trials were conducted on high organic matter (muck) soil in the Holland Marsh, Ontario, Canada. The treatments included AMF-coated seeds (three to five propagules of Rhizophagus irregularis per seed) and non-treated onion and carrot seeds grown in soil with low (~46 ppm) and high (~78 ppm) phosphorus levels. The mycorrhizal communities colonizing the onion and carrot roots were identified by Illumina sequencing. Five genera, Diversispora, Claroideoglomus, Funneliformis, Rhizophagus, and Glomus, were identified in roots of both plant species. AMF communities colonizing carrot roots were more diverse and richer than those colonizing onion roots. Diversispora and Funneliformis had a 1.3-fold and 2.9-fold greater abundance, respectively, in onion roots compared to carrots. Claroideoglomus was 1.4-fold more abundant in carrot roots than in onions. Inoculation with R. irregularis increased the abundance and richness of Rhizophagus in AMF communities of onion roots but not in carrot roots. The soil phosphorus level had no effect on the richness and diversity of AMF in the roots of either crop. In summary, AMF inoculant and soil phosphorus levels influenced the composition of AMF communities colonizing the roots of onion and carrot plants, but the effects varied between plant species.
Collapse
Affiliation(s)
- Umbrin Ilyas
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Lindsey J. du Toit
- Northwestern Washington Research and Extension Center, Department of Plant Pathology, Washington State University, Mount Vernon, WA, United States
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Enagbonma BJ, Fadiji AE, Ayangbenro AS, Babalola OO. Communication between Plants and Rhizosphere Microbiome: Exploring the Root Microbiome for Sustainable Agriculture. Microorganisms 2023; 11:2003. [PMID: 37630562 PMCID: PMC10458600 DOI: 10.3390/microorganisms11082003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Plant roots host numerous microorganisms around and inside their roots, forming a community known as the root microbiome. An increasing bulk of research is underlining the influences root-associated microbial communities can have on plant health and development. However, knowledge on how plant roots and their associated microbes interact to bring about crop growth and yield is limited. Here, we presented (i) the communication strategies between plant roots and root-associated microbes and (ii) the applications of plant root-associated microbes in enhancing plant growth and yield. This review has been divided into three main sections: communications between root microbiome and plant root; the mechanism employed by root-associated microbes; and the chemical communication mechanisms between plants and microbes and their application in plant growth and yield. Understanding how plant root and root-associated microbes communicate is vital in designing ecofriendly strategies for targeted disease suppression and improved plant growth that will help in sustainable agriculture. Ensuring that plants become healthy and productive entails keeping plants under surveillance around the roots to recognize disease-causing microbes and similarly exploit the services of beneficial microorganisms in nutrient acquisition, stress mitigation, and growth promotion.
Collapse
Affiliation(s)
| | | | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
7
|
Pazhamala LT, Giri J. Plant phosphate status influences root biotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2829-2844. [PMID: 36516418 DOI: 10.1093/jxb/erac491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 06/06/2023]
Abstract
Phosphorus (P) deficiency stress in combination with biotic stress(es) severely impacts crop yield. Plant responses to P deficiency overlapping with that of other stresses exhibit a high degree of complexity involving different signaling pathways. On the one hand, plants engage with rhizosphere microbiome/arbuscular mycorrhizal fungi for improved phosphate (Pi) acquisition and plant stress response upon Pi deficiency; on the other hand, this association is gets disturbed under Pi sufficiency. This nutrient-dependent response is highly regulated by the phosphate starvation response (PSR) mediated by the master regulator, PHR1, and its homolog, PHL. It is interesting to note that Pi status (deficiency/sufficiency) has a varying response (positive/negative) to different biotic encounters (beneficial microbes/opportunistic pathogens/insect herbivory) through a coupled PSR-PHR1 immune system. This also involves crosstalk among multiple players including transcription factors, defense hormones, miRNAs, and Pi transporters, among others influencing the plant-biotic-phosphate interactions. We provide a comprehensive view of these key players involved in maintaining a delicate balance between Pi homeostasis and plant immunity. Finally, we propose strategies to utilize this information to improve crop resilience to Pi deficiency in combination with biotic stresses.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
8
|
Daroodi Z, Taheri P, Tarighi S. Acrophialophora jodhpurensis: an endophytic plant growth promoting fungus with biocontrol effect against Alternaria alternata. FRONTIERS IN PLANT SCIENCE 2022; 13:984583. [PMID: 36212286 PMCID: PMC9540611 DOI: 10.3389/fpls.2022.984583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
In this study, efficiency of the endophytic fungal isolate Msh5 was evaluated on promoting tomato plant growth and controlling Alternaria alternata, the causal agent of early blight in tomatoes. Morphological and molecular (ITS and tub2 sequences) analyses revealed that the fungal isolate, Msh5, was Acrophialophora jodhpurensis (Chaetomium jodhpurense Lodha). This beneficial fungus was capable of producing indole-3-acetic acid (IAA), urease, siderophore, extracellular enzymes, and solubilized phosphate. Under laboratory conditions, the Msh5 isolate of A. jodhpurensis inhibited A. alternata growth in dual culture, volatile and non-volatile metabolites assays. The supernatant of this endophytic fungus was capable of reducing spore germination and altering the hyphal structure of A. alternata and the spores produced germ tubes showed vacuolization and abnormal structure compared to the control. Also, the effect of A. jodhpurensis on plant growth parameters (such as shoot and root weight and length) and suppressing A. alternata was investigated in vivo via seed inoculation with spores of A. jodhpurensis using 1% sugar, 0.5% carboxymethyl cellulose (CMC) or 0.5% molasses solution as stickers. Colonization of tomato roots by the endophytic fungus resulted in significant increasing plant growth parameters and reduction in the progress of the diseases caused by A. alternata compared to the controls. Among the different coating materials used as stickers, sugar was found to be the most effective for enhancing plant growth parameters and decreasing the disease progress. Therefore, A. jodhpurensis isolate Msh5 can be suggested as a potential biofertilizer and biocontrol agent for protecting tomato plants against A. alternata.
Collapse
Affiliation(s)
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
9
|
Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Genes and miRNAs Associated with the Cell Wall in Tomato Leaves. BIOLOGY 2022; 11:biology11060854. [PMID: 35741375 PMCID: PMC9219611 DOI: 10.3390/biology11060854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal symbiosis is an association that provides nutritional benefits to plants. Importantly, it induces a physiological state allowing plants to respond to a subsequent pathogen attack in a more rapid and intense manner. Consequently, mycorrhiza-colonized plants become less susceptible to root and shoot pathogens. This study aimed to identify some of the molecular players and potential mechanisms related to the onset of defense priming by mycorrhiza colonization, as well as miRNAs that may act as regulators of priming genes. The upregulation of cellulose synthases, pectinesterase inhibitors, and xyloglucan endotransglucosylase/hydrolase, as well as the downregulation of a pectinesterase, suggest that the modification and reinforcement of the cell wall may prime the leaves of mycorrhizal plants to react faster and stronger to subsequent pathogen attack. This was confirmed by the findings of miR164a-3p, miR164a-5p, miR171e-5p, and miR397, which target genes and are also related to the biosynthesis or modification of cell wall components. Our findings support the hypothesis that the reinforcement or remodeling of the cell wall and cuticle could participate in the priming mechanism triggered by mycorrhiza colonization, by strengthening the first physical barriers upstream of the pathogen encounter.
Collapse
|
10
|
Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch Microbiol 2022; 204:264. [DOI: 10.1007/s00203-022-02882-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
11
|
Fujita M, Kusajima M, Fukagawa M, Okumura Y, Nakajima M, Akiyama K, Asami T, Yoneyama K, Kato H, Nakashita H. Response of tomatoes primed by mycorrhizal colonization to virulent and avirulent bacterial pathogens. Sci Rep 2022; 12:4686. [PMID: 35304874 PMCID: PMC8933586 DOI: 10.1038/s41598-022-08395-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
Most plants interact with arbuscular mycorrhizal fungi, which enhance disease resistance in the host plant. Because the effects of resistance against bacterial pathogens are poorly understood, we investigated the effects of mycorrhizal colonization on virulent and avirulent pathogens using phytopathological and molecular biology techniques. Tomato plants colonized by Gigaspora margarita acquired resistance not only against the fungal pathogen, Botrytis cinerea, but also against a virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000 (Pst). In G. margarita-colonized tomato, salicylic acid (SA)- and jasmonic acid (JA)-related defense genes were expressed more rapidly and strongly compared to those in the control plants when challenged by Pst, indicating that the plant immunity system was primed by mycorrhizal colonization. Gene expression analysis indicated that primed tomato plants responded to the avirulent pathogen, Pseudomonas syringae pv. oryzae, more rapidly and strongly compared to the control plant, where the effect on the JA-mediated signals was stronger than in the case with Pst. We found that the resistance induced by mycorrhizal colonization was effective against both fungal and bacterial pathogens including virulent and avirulent pathogens. Moreover, the activation of both SA- and JA-mediated signaling pathways can be enhanced in the primed plant by mycorrhizal colonization.
Collapse
Affiliation(s)
- Moeka Fujita
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan
| | - Miyuki Kusajima
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatomo Fukagawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan
| | - Yasuko Okumura
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan
| | | | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Hisaharu Kato
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan
| | - Hideo Nakashita
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan.
| |
Collapse
|
12
|
Gagliardi S, Avelino J, Fulthorpe R, Virginio Filho EDM, Isaac ME. No evidence of foliar disease impact on crop root functional strategies and soil microbial communities: what does this mean for organic coffee? OIKOS 2022. [DOI: 10.1111/oik.08987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jacques Avelino
- CIRAD, UMR PHIM Montpellier France
- PHIM, Univ. Montpellier, CIRAD, INRAE, Inst. Agro, IRD Montpellier France
| | | | | | | |
Collapse
|
13
|
Pu C, Ge Y, Yang G, Zheng H, Guan W, Chao Z, Shen Y, Liu S, Chen M, Huang L. Arbuscular mycorrhizal fungi enhance disease resistance of Salvia miltiorrhiza to Fusarium wilt. FRONTIERS IN PLANT SCIENCE 2022; 13:975558. [PMID: 36531366 PMCID: PMC9753693 DOI: 10.3389/fpls.2022.975558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 05/04/2023]
Abstract
Salvia miltiorrhiza Bunge (Danshen in Chinese) is vulnerable to Fusarium wilt, which severely affects the quality of the crude drug. Mycorrhizal colonization enhances resistance to fungal pathogens in many plant species. In this study, pre-inoculation of S. miltiorrhiza with the arbuscular mycorrhizal fungi (AMF) Glomus versiforme significantly alleviated Fusarium wilt caused by Fusarium oxysporum. Mycorrhizal colonization protected S. miltiorrhiza from pathogen infection, thereby preventing a loss of biomass and photosynthesis. There were greater defense responses induced by pathogen infection in AMF pre-inoculated plants than those in non-treated plants. AMF pre-inoculation resulted in systemic responses upon pathogen inoculation, including significant increases in the protein content and activities of phenylalanine ammonia-lyase (PAL), chitinase, and β-1,3-glucanase in S. miltiorrhiza roots. In addition, mycorrhizal pre-inoculation caused upregulation of defense-related genes, and jasmonic acid (JA) and salicylic acid (SA) signaling pathway genes after pathogen infection. The above findings indicate that mycorrhizal colonization enhances S. miltiorrhiza resistance against F. oxysporum infection by enhancing photosynthesis, root structure, and inducing the expression of defense enzymes and defense-related genes on the other hand.
Collapse
Affiliation(s)
- Chunjuan Pu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Ge
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Zheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insert Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ye Shen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sha Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meilan Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Meilan Chen, ; Luqi Huang,
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Meilan Chen, ; Luqi Huang,
| |
Collapse
|
14
|
Gao T, Liu Y, Liu X, Zhao K, Shan L, Wu Q, Liu Y, Zhang Z, Ma F, Li C. Exogenous dopamine and overexpression of the dopamine synthase gene MdTYDC alleviated apple replant disease. TREE PHYSIOLOGY 2021; 41:1524-1541. [PMID: 33171491 DOI: 10.1093/treephys/tpaa154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2020] [Indexed: 05/25/2023]
Abstract
Apple replant disease (ARD) is a soil-borne disease that leads to economic losses due to reduced plant growth and diminished fruit yields. Dopamine is involved in interactions between plants and pathogens. However, it remains unclear whether dopamine can directly stimulate defense responses to ARD. In this study, an exogenous dopamine treatment and dopamine synthetase MdTYDC (tyrosine decarboxylase) transgenic plants were used to verify the role of dopamine in treating ARD. First, 2-year-old apple trees (Malus domestica cv. Fuji), grafted onto rootstock M26, were grown in replant soils. The addition of dopamine (100 μM) to the soil promoted seedling growth and changed the accumulation of mineral elements in plants in replant soils. Such supplementation improved the activity of invertase, urease, proteinase and phosphatase under replant conditions. Sequencing analysis of 16S rDNA and internal transcribed spacer (ITS) rDNA revealed that dopamine had a slight influence on bacterial diversity but had an obvious effect on the fungal diversity in replant soils. The application of dopamine to replant soil changed the composition of bacterial and fungal communities. Second, overexpression of MdTYDC in apple plants alleviated the effects of ARD. MdTYDC transgenic lines exhibited mitigated ARD through inhibited degradation of photosynthetic pigment, maintaining the stability of photosystems I and II and improving the antioxidant system. Furthermore, overexpression of MdTYDC improved arbuscular mycorrhizal fungi colonization by improving the accumulation of soluble sugars under replant conditions. Together, these results demonstrated that dopamine enhances the tolerance of apples to ARD.
Collapse
Affiliation(s)
- Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yusong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qian Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Parizad S, Bera S. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021:10.1007/s11356-021-15258-7. [PMID: 34235694 DOI: 10.1007/s11356-021-15258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Water is a fundamental necessity for people's well-being and the ecosystem's sustainability; however, its toxicity due to agrochemicals usage for food production leads to the deterioration of water quality. The poor water quality diminishes its reusability, thus limiting efficient water usage. Organic farming is one of the best ways that does not only reduce the deterioration of water quality but also decrease food toxicity. In organic farming, the crop is grown with no/less chemical usage. Besides, organic farming maintains biodiversity and reduces the anthropogenic footprint on soil, air, water, wildlife, and especially on the farming communities. Fields that are organically managed continuously for years have fewer pest populations and were attributed to increased biodiversity and abundance of multi-trophic interactions as well as to changes in plant metabolites. Fewer insect pests (pathogen vectors), in turn, would result in fewer crop diseases and increase crop production. This review highlights that organic farming may play a critical role in the reduction of pests and pathogens, which eventually would reduce the need for chemical reagents to protect crops, improving yield quality and water reusability.
Collapse
Affiliation(s)
- Shirin Parizad
- Department of Research and Development (Plant Probiotics), Nature Biotechnology Company (Biorun), Karaj, Iran.
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Differential Response of Mycorrhizal Plants to Tomato bushy stunt virus and Tomato mosaic virus Infection. Microorganisms 2020; 8:microorganisms8122038. [PMID: 33352781 PMCID: PMC7766492 DOI: 10.3390/microorganisms8122038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.
Collapse
|
17
|
Effiong Uko A, Bassey Effa E, Abraham Isong I, Eno Effiong J. Yield Performance and Leaf Nutrient Composition of Bambara Groundnut Under Arbuscular Mycorrhizal Inoculation in a Poultry Manure Amended Ultisol. Pak J Biol Sci 2020; 23:1397-1407. [PMID: 33274867 DOI: 10.3923/pjbs.2020.1397.1407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Researchers are now targeting the possibility of sustainably producing crops without polluting the soil and groundwater through the integrated use of Poultry Manure (PM) and Arbuscular Mycorrhizal Fungi (AMF). The present study was undertaken to investigate the yield response and leaf nutrient composition of Bambara groundnut under arbuscular mycorrhizal inoculation in poultry manure amended ultisol during the 2016 and 2017 cropping seasons. MATERIALS AND METHODS The study was a 4×5 factorial experiment consisting of four levels of poultry manure and four inoculums of arbuscular mycorrhizal fungi plus the un-inoculated control and was laid out in a Randomized Complete Block design (RCBD) with three replications to give 20 treatment combinations. RESULTS Sole applications of poultry manure and AMF inoculums significantly increased P, K, Ca and Mg contents in the leaves of Bambara groundnut over control plants in both years of study. Soil amended with 8 t ha-1 of poultry manure and at the same time inoculated with Gigaspora gigantea gave the highest pod yield in both years, while soil amended with 12 t ha-1 of PM and inoculated with Glomus clarum as well as soil amended with 8 t ha-1 of PM and inoculated with Gigaspora gigantea gave the highest seed yield. CONCLUSION The results of this study showed that soil inoculated with Glomus clarum and Gigaspora gigantea and amended with 8 and 12 tons ha-1 of poultry manure in single or combination were more efficient and consistent in the enhancement of growth on marginal soils.
Collapse
|
18
|
Kadam SB, Pable AA, Barvkar VT. Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:880-890. [PMID: 32586416 DOI: 10.1071/fp20035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Plants get phosphorus, water and other soil nutrients at the cost of sugar through mycorrhizal symbiotic association. A common mycorrhizal network (CMN) - a dense network of mycorrhizal hyphae - provides a passage for exchange of chemicals and signals between the plants sharing CMN. Mycorrhisation impact plants at hormonal, physiological and metabolic level and successful symbiosis also regulates ecology of the plant rhizosphere. Apart from nutritional benefits, mycorrhisation provides an induced resistance to the plants known as mycorrhiza induced resistance (MIR). MIR is effective against soil as well as foliar pathogens and pest insects. In this review, molecular mechanisms underlying MIR such as role of phytohormones, their cross talk and priming effect are discussed. Evidence of MIR against economically important pathogens and pest insects in different plants is summarised. Mycorrhiza induces many plant secondary metabolites, many of which have a role in plant defence. Involvement of these secondary metabolites in mycorrhisation and their putative role in MIR are further reviewed. Controversies about MIR are also briefly discussed in order to provide insights on the scope for research about MIR. We have further extended our review with an open ended discussion about the possibilities for transgenerational MIR.
Collapse
Affiliation(s)
- Swapnil B Kadam
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune-411007, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India; and Corresponding authors. ;
| |
Collapse
|
19
|
Kaushik S, Vashishtha A, Shweta S, Sharma KK, Lakhanpaul S. Essential amino acid profiling of the four lac hosts belonging to genus Flemingia: its implications on lac productivity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1867-1874. [PMID: 32943822 PMCID: PMC7468028 DOI: 10.1007/s12298-020-00860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/05/2019] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The Indian lac insect (Kerria lacca), a hemipteran, phloem sap sucking sedentary insect is an important bioresource which thrives on tender twigs of more than 400 plant species belonging to various genera and families. The most common commercial host plants for lac cultivation are big trees hence cultivation was concentrated mainly to dense forests across the country till last decade. Recently, a new bushy host plant belonging to the genus Flemingia has been introduced so that lac can be cultivated on farmlands like other cash crops. The insect is sedentary and feeds on the phloem sap of the host plants, the only source of its nutrition. Interestingly, the biological attributes of the insect as well as the qualitative and quantitative production of lac is influenced by the host plant on which the insect feeds upon. The present study was thus aimed at deciphering the effect of phloem sap constituents obtained from four plant host taxa belonging to the same genus Flemingia viz. F. semialata, F. macrophylla, F. bracteata and F. chapar (essential amino acids only-EAAs) on lac productivity. Moreover, a newer method for phloem sap collection i.e. Dot-blot in addition to the facilitated exudation using EDTA was also investigated. Dot-blot method for phloem sap collection also came out to be a promising method for field studies; although slightly higher concentration of EAAs were obtained from EDTA method, thus the later was used for further analysis. Phloem sap of four plant host taxa belonging to the same genus Flemingia were qualitatively and quantitatively analysed for seven EAAs (Arginine, Glycine, Leucine, Methionine, Phenylalanine Tyrosine and Valine). Amino acid concentration regime and further analysis done using statistical tools (ANOVA and PCA) points out the EAA concentration in the phloem sap is in congruency with the lac production data obtained through previous studies as F. semialata > F. macrophylla > F. chapar > F. bracteata. The present study thus scientifically points out that F. semialata can be a promising plant for lac cultivation on the basis of higher EAA content as compared to the rest three.
Collapse
Affiliation(s)
- Sandeep Kaushik
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887 India
| | - Amit Vashishtha
- Department of Botany, Sri Venkateswara College, University of Delhi, Delhi, 110021 India
| | - S. Shweta
- Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009 India
| | - K. K. Sharma
- Indian Institute of Natural Resins and Gums (IINRG), Namkum, Ranchi, 834010 India
| | | |
Collapse
|
20
|
Kowalska J, Tyburski J, Matysiak K, Tylkowski B, Malusá E. Field Exploitation of Multiple Functions of Beneficial Microorganisms for Plant Nutrition and Protection: Real Possibility or Just a Hope? Front Microbiol 2020; 11:1904. [PMID: 32849475 PMCID: PMC7419637 DOI: 10.3389/fmicb.2020.01904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023] Open
Abstract
Bioproducts, i.e., microbial based pesticides or fertilizers (biopesticides and biofertilizers), should be expected to play an ever-increasing role and application in agricultural practices world-wide in the effort to implement policies concerned with sustainable agriculture. However, several microbial strains have proven the capacity to augment plant productivity by enhancing crop nutrition and functioning as biopesticides, or vice-versa. This multifunctionality is an issue that is still not included as a concept and possibility in any legal provision regarding the placing on the market of bioproducts, and indicates difficulties in clearly classifying the purpose of their suitability. In this review, we overview the current understanding of the mechanisms in plant-microbe interactions underlining the dual function of microbial strains toward plant nutrition and protection. The prospects of market development for multifunctional bioproducts are then considered in view of the current regulatory approach in the European Union, in an effort that wants to stimulate a wider adoption of the new knowledge on the role played by microorganisms in crop production.
Collapse
Affiliation(s)
| | - Józef Tyburski
- Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | | - Eligio Malusá
- Research Institute of Horticulture, Skierniewice, Poland
| |
Collapse
|
21
|
Campo S, Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, Martínez-Eixarch M, San Segundo B. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2020; 13:42. [PMID: 32572623 PMCID: PMC7310045 DOI: 10.1186/s12284-020-00402-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi form symbiotic associations with roots in most land plants. AM symbiosis provides benefits to host plants by improving nutrition and fitness. AM symbiosis has also been associated with increased resistance to pathogen infection in several plant species. In rice, the effects of AM symbiosis is less studied, probably because rice is mostly cultivated in wetland areas, and plants in such ecosystems have traditionally been considered as non-mycorrhizal. In this study, we investigated the effect of AM inoculation on performance of elite rice cultivars (Oryza sativa, japonica subspecies) under greenhouse and field conditions, focusing on growth, resistance to the rice blast fungus Magnaporthe oryzae and productivity. RESULTS The response to inoculation with either Funneliformis mosseae or Rhizophagus irregularis was evaluated in a panel of 12 rice cultivars. Root colonization was confirmed in all rice varieties. Under controlled greenhouse conditions, R. irregularis showed higher levels of root colonization than F. mosseae. Compared to non-inoculated plants, the AM-inoculated plants had higher Pi content in leaves. Varietal differences were observed in the growth response of rice cultivars to inoculation with an AM fungus, which were also dependent on the identity of the fungus. Thus, positive, negligible, and negative responses to AM inoculation were observed among rice varieties. Inoculation with F. mosseae or R. irregularis also conferred protection to the rice blast fungus, but the level of mycorrhiza-induced blast resistance varied among host genotypes. Rice seedlings (Loto and Gines varieties) were pre-inoculated with R. irregularis, transplanted into flooded fields, and grown until maturity. A significant increase in grain yield was observed in mycorrhizal plants compared with non-mycorrhizal plants, which was related to an increase in the number of panicles. CONCLUSION Results here presented support that rice plants benefit from the AM symbiosis while illustrating the potential of using AM fungi to improve productivity and blast resistance in cultivated rice. Differences observed in the mycorrhizal responsiveness among the different rice cultivars in terms of growth promotion and blast resistance indicate that evaluation of benefits received by the AM symbiosis needs to be carefully evaluated on a case-by-case basis for efficient exploitation of AM fungi in rice cultivation.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Marta Olivé
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Eva Pla
- IRTA Institute of Agrifood Research and Technology, Field crops, Amposta, Spain
| | - Mar Catala-Forner
- IRTA Institute of Agrifood Research and Technology, Field crops, Amposta, Spain
| | - Maite Martínez-Eixarch
- IRTA Institute of Agrifood Research and Technology, Marine and Continental Waters, Sant Carles de la Ràpita, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
22
|
Ranjbar Sistani N, Desalegn G, Kaul HP, Wienkoop S. Seed Metabolism and Pathogen Resistance Enhancement in Pisum sativum During Colonization of Arbuscular Mycorrhizal Fungi: An Integrative Metabolomics-Proteomics Approach. FRONTIERS IN PLANT SCIENCE 2020; 11:872. [PMID: 32612631 PMCID: PMC7309134 DOI: 10.3389/fpls.2020.00872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Pulses are one of the most important categories of food plants, and Pea (Pisum sativum L.) as a member of pulses is considered a key crop for food and feed and sustainable agriculture. Integrative multi-omics and microsymbiont impact studies on the plant's immune system are important steps toward more productive and tolerant food plants and thus will help to find solutions against food poverty. Didymella pinodes is a main fungal pathogen of pea plants. Arbuscular mycorrhizal fungi (AMF) promote plant growth and alleviate various stresses. However, it remained unclear as to how the AMF effect on seed metabolism and how this influences resistance against the pathogen. This study assesses the AMF impacts on yield components and seed quality upon D. pinodes infection on two different P. sativum cultivars, susceptible versus tolerant, grown in pots through phenotypic and seed molecular analyses. We found that AMF symbiosis affects the majority of all tested yield components as well as a reduction of disease severity in both cultivars. Seeds of mycorrhizal pea plants showed strong responses of secondary metabolites with nutritional, medicinal, and pharmaceutical attributes, also involved in pathogen response. This is further supported by proteomic data, functionally determining those primary and secondary metabolic pathways, involved in pathogen response and induced upon AMF-colonization. The data also revealed cultivar specific effects of AMF symbiosis that increase understanding of genotype related differences. Additionally, a suite of proteins and secondary metabolites are presented, induced in seeds of P. sativum upon AMF-colonization and pathogen attack, and possibly involved in induced systemic resistance against D. pinodes, useful for modern breeding strategies implementing microsymbionts toward increased pathogen resistance.
Collapse
Affiliation(s)
- Nima Ranjbar Sistani
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Getinet Desalegn
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hans-Peter Kaul
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Singh J, Yadav AN. Natural Products as Fungicide and Their Role in Crop Protection. NATURAL BIOACTIVE PRODUCTS IN SUSTAINABLE AGRICULTURE 2020. [PMCID: PMC7212785 DOI: 10.1007/978-981-15-3024-1_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Seeking solutions from nature for solving one and all problems is the age-old practice for mankind, and natural products are proved to be the most effective one for keeping up the balance of development as well as the “healthy, wealthy, and well” condition of mother nature. Fungal pathogens are proved to be a common and popular contaminant of agroecosystem that approximately causes 70–80% of total microbial crop loss. To meet the proper global increasing need of food products as a result of population explosion, managing agricultural system in an eco-friendly and profitable manner is the prime target; thus the word “sustainable agriculture” plays it part, and this package is highly effective when coupled with nature-derived fungicidal products that can minimize the event of fungal infections in agrarian ecosystem. Present study enlists the most common and effective natural products that might be of plant or microbial origin, their mode of action, day-by-day development of phytopathogenic resistance against the prevailing fungicides, and also their role in maintenance of sustainability of agricultural practices with special emphasis on their acceptance over the synthetic or chemical one. A large number of bioactive compounds ranging from direct plant (both cryptogams algae and moss and phanerogams)-derived natural extracts, essential oil of aromatic plants, and low-molecular-weight antimicrobial compounds known as phytoalexins to secondary metabolites that are both volatile and nonvolatile organic compounds of microbes (fungal and actinobacterial members) residing inside the host tissue, called endophyte, are widely used as agricultural bioweapons. The rhizospheric partners of plant, mycorrhizae, are also a prime agent of this chemical warfare and protect their green partners from fungal invaders and emphasize the concept of “sustainable agriculture.”
Collapse
Affiliation(s)
- Joginder Singh
- grid.449005.cDepartment of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | - Ajar Nath Yadav
- grid.448698.f0000 0004 0462 8006Department of Biotechnology, Eternal University, Sirmour, Himachal Pradesh India
| |
Collapse
|
24
|
Blundell R, Schmidt JE, Igwe A, Cheung AL, Vannette RL, Gaudin ACM, Casteel CL. Organic management promotes natural pest control through altered plant resistance to insects. NATURE PLANTS 2020; 6:483-491. [PMID: 32415295 DOI: 10.1038/s41477-020-0656-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Reduced insect pest populations found on long-term organic farms have mostly been attributed to increased biodiversity and abundance of beneficial predators, as well as to changes in plant nutrient content. However, the role of plant resistance has largely been ignored. Here, we determine whether host plant resistance mediates decreased pest populations in organic systems and identify potential underpinning mechanisms. We demonstrate that fewer numbers of leafhoppers (Circulifer tenellus) settle on tomatoes (Solanum lycopersicum) grown using organic management as compared to conventional. We present multiple lines of evidence, including rhizosphere soil microbiome sequencing, chemical analysis and transgenic approaches, to demonstrate that changes in leafhopper settling between organically and conventionally grown tomatoes are dependent on salicylic acid accumulation in plants and mediated by rhizosphere microbial communities. These results suggest that organically managed soils and microbial communities may play an unappreciated role in reducing plant attractiveness to pests by increasing plant resistance.
Collapse
Affiliation(s)
- Robert Blundell
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Alexandria Igwe
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Andrea L Cheung
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | | | - Clare L Casteel
- Department of Plant Pathology, University of California, Davis, CA, USA.
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
25
|
Abstract
The phytohormone jasmonate (JA) modulates various defense and developmental responses of plants, and is implied in the integration of multiple environmental signals. Given its centrality in regulating plant physiology according to external stimuli, JA influences the establishment of interactions between plant roots and beneficial bacteria or fungi. In many cases, moderate JA signaling promotes the onset of mutualism, while massive JA signaling inhibits it. The output also depends on the compatibility between microbe and host plant and on nutritional or environmental cues. Also, JA biosynthesis and perception participate in the systemic regulation of mutualistic interactions and in microbe-induced resistance to biotic and abiotic stress. Here, we review our current knowledge of the role of JA biosynthesis, signaling, and responses during mutualistic root-microbe interactions.
Collapse
Affiliation(s)
- Veronica Basso
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France
| | - Claire Veneault-Fourrey
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France.
| |
Collapse
|
26
|
Liu X, Lu Y, Zhang Z, Zhou S. Foliar fungal diseases respond differently to nitrogen and phosphorus additions in Tibetan alpine meadows. Ecol Res 2019. [DOI: 10.1111/1440-1703.12064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University Xining PR China
- Ministry of Education Key Laboratory of Western China's Environmental Systems Lanzhou University Lanzhou PR China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering School of Life Sciences, Fudan University Shanghai PR China
| | - Yawen Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering School of Life Sciences, Fudan University Shanghai PR China
| | - Zhenhua Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining PR China
| | - Shurong Zhou
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University Xining PR China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering School of Life Sciences, Fudan University Shanghai PR China
| |
Collapse
|
27
|
Song Y, Wang M, Zeng R, Groten K, Baldwin IT. Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. PLANT, CELL & ENVIRONMENT 2019; 42:2945-2961. [PMID: 31348534 DOI: 10.1111/pce.13626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with a majority of terrestrial plants to form underground common mycorrhizal networks (CMNs) that connect neighbouring plants. Because Nicotiana attenuata plants do not respond to herbivory-elicited volatiles from neighbours, we used this ecological model system to evaluate if CMNs function in interplant transmission of herbivory-elicited responses. A mesocosm system was designed to establish and remove CMNs linking N. attenuata plants to examine the herbivory-elicited metabolic and hormone responses in CMNs-connected "receiver" plants after the elicitation of "donor" plants by wounding (W) treated with Manduca sexta larval oral secretions (OS). AMF colonization increased constitutive jasmonate (JA and JA-Ile) levels in N. attenuata roots but did not affect well-characterized JAs-regulated defensive metabolites in systemic leaves. Interestingly, larger JAs bursts, and higher levels of several amino acids and particular sectors of hydroxygeranyllinalool diterpene glycoside metabolism were elevated in the leaves of W + OS-elicited "receivers" with CMN connections with "donors" that had been W + OS-elicited 6 hr previously. Our results demonstrate that AMF colonization alone does not enhance systemic defence responses but that sectors of systemic responses in leaves can be primed by CMNs, suggesting that CMNs can transmit and even filter defence signalling among connected plants.
Collapse
Affiliation(s)
- Yuanyuan Song
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
28
|
Smigielski L, Laubach EM, Pesch L, Glock JML, Albrecht F, Slusarenko A, Panstruga R, Kuhn H. Nodulation Induces Systemic Resistance of Medicago truncatula and Pisum sativum Against Erysiphe pisi and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1243-1255. [PMID: 31025899 DOI: 10.1094/mpmi-11-18-0304-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plants encounter beneficial and detrimental microorganisms both above- and belowground and the health status of the plant depends on the composition of this pan-microbiome. Beneficial microorganisms contribute to plant nutrition or systemically or locally protect plants against pathogens, thus facilitating adaptation to a variety of environments. Induced systemic resistance, caused by root-associated microbes, manifests as aboveground resistance against necrotrophic pathogens and is mediated by jasmonic acid/ethylene-dependent signaling. By contrast, systemic acquired resistance relies on salicylic acid (SA) signaling and confers resistance against secondary infection by (hemi)biotrophic pathogens. To investigate whether symbiotic rhizobia that are ubiquitously found in natural ecosystems are able to modulate resistance against biotrophs, we tested the impact of preestablished nodulation of Medicago truncatula and pea (Pisum sativum) plants against infection by the powdery mildew fungus Erysiphe pisi. We found that root symbiosis interfered with fungal penetration of M. truncatula and reduced asexual spore formation on pea leaves independently of symbiotic nitrogen fixation. Improved resistance of nodulated plants correlated with elevated levels of free SA and SA-dependent marker gene expression upon powdery mildew infection. Our results suggest that nodulation primes the plants systemically for E. pisi-triggered SA accumulation and defense gene expression, resulting in increased resistance.
Collapse
Affiliation(s)
- Lara Smigielski
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Eva-Maria Laubach
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Lina Pesch
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Joanna Marie Leyva Glock
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Frank Albrecht
- Institute for Biology III, Department of Plant Physiology, RWTH Aachen University
| | - Alan Slusarenko
- Institute for Biology III, Department of Plant Physiology, RWTH Aachen University
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| |
Collapse
|
29
|
Miozzi L, Vaira AM, Catoni M, Fiorilli V, Accotto GP, Lanfranco L. Arbuscular Mycorrhizal Symbiosis: Plant Friend or Foe in the Fight Against Viruses? Front Microbiol 2019; 10:1238. [PMID: 31231333 PMCID: PMC6558290 DOI: 10.3389/fmicb.2019.01238] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
Plant roots establish interactions with several beneficial soil microorganisms including arbuscular mycorrhizal fungi (AMF). In addition to promoting plant nutrition and growth, AMF colonization can prime systemic plant defense and enhance tolerance to a wide range of environmental stresses and below-ground pathogens. A protective effect of the AMF against above-ground pathogens has also been described in different plant species, but it seems to largely rely on the type of attacker. Viruses are obligate biotrophic pathogens able to infect a large number of plant species, causing massive losses in crop yield worldwide. Despite their economic importance, information on the effect of the AM symbiosis on viral infection is limited and not conclusive. However, several experimental evidences, obtained under controlled conditions, show that AMF colonization may enhance viral infection, affecting susceptibility, symptomatology and viral replication, possibly related to the improved nutritional status and to the delayed induction of pathogenesis-related proteins in the mycorrhizal plants. In this review, we give an overview of the impact of the AMF colonization on plant infection by pathogenic viruses and summarize the current knowledge of the underlying mechanisms. For the cases where AMF colonization increases the susceptibility of plants to viruses, the term "mycorrhiza-induced susceptibility" (MIS) is proposed.
Collapse
Affiliation(s)
- Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Bacht M, Tarkka MT, López IF, Bönn M, Brandl R, Buscot F, Feldhahn L, Grams TEE, Herrmann S, Schädler M. Tree Response to Herbivory Is Affected by Endogenous Rhythmic Growth and Attenuated by Cotreatment With a Mycorrhizal Fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:770-781. [PMID: 30753106 DOI: 10.1094/mpmi-10-18-0290-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Herbivores and mycorrhizal fungi interactively influence growth, resource utilization, and plant defense responses. We studied these interactions in a tritrophic system comprising Quercus robur, the herbivore Lymantria dispar, and the ectomycorrhizal fungus Piloderma croceum under controlled laboratory conditions at the levels of gene expression and carbon and nitrogen (C/N) allocation. Taking advantage of the endogenous rhythmic growth displayed by oak, we thereby compared gene transcript abundances and resource shifts during shoot growth with those during the alternating root growth flushes. During root flush, herbivore feeding on oak leaves led to an increased expression of genes related to plant growth and enriched gene ontology terms related to cell wall, DNA replication, and defense. C/N-allocation analyses indicated an increased export of resources from aboveground plant parts to belowground. Accordingly, the expression of genes related to the transport of carbohydrates increased upon herbivore attack in leaves during the root flush stage. Inoculation with an ectomycorrhizal fungus attenuated these effects but, instead, caused an increased expression of genes related to the production of volatile organic compounds. We conclude that oak defense response against herbivory is strong in root flush at the transcriptomic level but this response is strongly inhibited by inoculation with ectomycorrhizal fungi and it is extremely weak at shoot flush.
Collapse
Affiliation(s)
- Michael Bacht
- 1 Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Mika T Tarkka
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Iván Fernández López
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Markus Bönn
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Roland Brandl
- 1 Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - François Buscot
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Lasse Feldhahn
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Thorsten E E Grams
- 4 Ecophysiology of Plants, Technical University Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Sylvie Herrmann
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Martin Schädler
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- 5 Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| |
Collapse
|
31
|
Schoenherr AP, Rizzo E, Jackson N, Manosalva P, Gomez SK. Mycorrhiza-Induced Resistance in Potato Involves Priming of Defense Responses Against Cabbage Looper (Noctuidae: Lepidoptera). ENVIRONMENTAL ENTOMOLOGY 2019; 48:370-381. [PMID: 30715218 DOI: 10.1093/ee/nvy195] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Indexed: 05/27/2023]
Abstract
Most plants form mutualistic associations with arbuscular mycorrhizal (AM) fungi that are ubiquitous in soils. Through this symbiosis, plants can withstand abiotic and biotic stresses. The underlying molecular mechanisms involved in mediating mycorrhiza-induced resistance against insects needs further research, and this is particularly true for potato (Solanum tuberosum L. (Solanales: Solanaceae)), which is the fourth most important crop worldwide. In this study, the tripartite interaction between potato, the AM fungus Rhizophagus irregularis (Glomerales: Glomeraceae), and cabbage looper (Trichoplusia ni Hübner) (Lepidoptera: Noctuidae) was examined to determine whether potato exhibits mycorrhiza-induced resistance against this insect. Plant growth, insect fitness, AM fungal colonization of roots, and transcript levels of defense-related genes were measured in shoots and roots after 5 and 8 d of herbivory on mycorrhizal and nonmycorrhizal plants. AM fungal colonization of roots did not have an effect on potato growth, but root colonization levels increased by herbivory. Larval weight gain was reduced after 8 d of feeding on mycorrhizal plants compared with nonmycorrhizal plants. Systemic upregulation of Allene Oxide Synthase 1 (AOS1), 12-Oxo-Phytodienoate Reductase 3 (OPR3) (jasmonic acid pathway), Protease Inhibitor Type I (PI-I) (anti-herbivore defense), and Phenylalanine Ammonia Lyase (PAL) transcripts (phenylpropanoid pathway) was found during the tripartite interaction. Together, these findings suggest that potato may exhibit mycorrhiza-induced resistance to cabbage looper by priming anti-herbivore defenses aboveground. This study illustrates how mycorrhizal potato responds to herbivory by a generalist-chewing insect and serves as the basis for future studies involving tripartite interactions with other pests.
Collapse
Affiliation(s)
| | - Eric Rizzo
- School of Biological Sciences, University of Northern Colorado, Greeley, CO
| | - Natasha Jackson
- Microbiology and Plant Pathology Department, University of California, Riverside, University Avenue, Riverside, CA
| | - Patricia Manosalva
- Microbiology and Plant Pathology Department, University of California, Riverside, University Avenue, Riverside, CA
| | - S Karen Gomez
- School of Biological Sciences, University of Northern Colorado, Greeley, CO
| |
Collapse
|
32
|
Mycorrhizal Fungi Enhance Resistance to Herbivores in Tomato Plants with Reduced Jasmonic Acid Production. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi favor plant growth by improving nutrient acquisition, but also by increasing their resistance against abiotic and biotic stressors, including herbivory. Mechanisms of AM fungal mediated increased resistance include a direct effect of AM fungi on plant vigor, but also a manipulation of the hormonal cascades, such as the systemic activation of jasmonic acid (JA) dependent defenses. However, how AM fungal inoculation and variation in the endogenous JA production interact to produce increased resistance against insect herbivores remains to be further elucidated. To address this question, three genotypes of Solanum lycopersicum L., a JA-biosynthesis deficient mutant, a JA over-accumulating mutant, and their wild-type were either inoculated with AM fungi or left un-inoculated. Plant growth-related traits and resistance against Spodoptera littoralis (Boisduval) caterpillars, a major crop pest, were measured. Overall, we found that deficiency in JA production reduced plant development and were the least resistant against S. littoralis. Moreover, AM fungi increased plant resistance against S. littoralis, but such beneficial effect was more pronounced in JA-deficient plant than on JA over-accumulating plants. These results highlight that AM fungi-driven increased plant resistance is negatively affected by the ability of plants to produce JA and that AM fungi complement JA-mediated endogenous plant defenses in this system.
Collapse
|
33
|
Ceustermans A, Van Hemelrijck W, Van Campenhout J, Bylemans D. Effect of Arbuscular Mycorrhizal Fungi on Pratylenchus penetrans Infestation in Apple Seedlings under Greenhouse Conditions. Pathogens 2018; 7:E76. [PMID: 30241406 PMCID: PMC6313298 DOI: 10.3390/pathogens7040076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
A major problem in fruit cultivation in Flanders is replant disease due to a lack of uncultivated soils available for new plantings. Replant disease can cause poor growth and affect time to full production, however Arbuscular Mycorrhizal Fungi (AMF) can prove their usefulness with regard to these problems. To further investigate the effect of AMF on nematodes, different AMF species were amended to potted apple seedlings in the presence of the nematode Pratylenchus penetrans. Generally, apple seedlings grew better in the presence of nematodes when mycorrhiza were inoculated into the soil. Moreover, a positive correlation (R² ≥ 0.88) was found between the percentage root length colonization of the roots of apple seedlings, by AMF species, and nematode reduction in the soil of the seedlings. Indigenous AMF could colonize the roots of apple seedlings the most efficiently, resulting in a higher biocontrol effect. Besides, a synergistic effect was observed when two AMF strains were applied together leading to a significant growth response of the seedlings.
Collapse
Affiliation(s)
- An Ceustermans
- Research Station for Fruit Cultivation, B-3800 Sint-Truiden, Belgium.
| | | | | | - Dany Bylemans
- Research Station for Fruit Cultivation, B-3800 Sint-Truiden, Belgium.
- Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium.
| |
Collapse
|
34
|
Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M, Novero M, Domingo G, Terzi V, Morcia C, Bagnaresi P, Moulin L, Bracale M, Bonfante P. Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci Rep 2018; 8:9625. [PMID: 29941972 PMCID: PMC6018116 DOI: 10.1038/s41598-018-27622-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/29/2018] [Indexed: 01/27/2023] Open
Abstract
Besides improved mineral nutrition, plants colonised by arbuscular mycorrhizal (AM) fungi often display increased biomass and higher tolerance to biotic and abiotic stresses. Notwithstanding the global importance of wheat as an agricultural crop, its response to AM symbiosis has been poorly investigated. We focused on the role of an AM fungus on mineral nutrition of wheat, and on its potential protective effect against Xanthomonas translucens. To address these issues, phenotypical, molecular and metabolomic approaches were combined. Morphological observations highlighted that AM wheat plants displayed an increased biomass and grain yield, as well as a reduction in lesion area following pathogen infection. To elucidate the molecular mechanisms underlying the mycorrhizal phenotype, we investigated changes of transcripts and proteins in roots and leaves during the double (wheat-AM fungus) and tripartite (wheat-AM fungus-pathogen) interaction. Transcriptomic and proteomic profiling identified the main pathways involved in enhancing plant biomass, mineral nutrition and in promoting the bio-protective effect against the leaf pathogen. Mineral and amino acid contents in roots, leaves and seeds, and protein oxidation profiles in leaves, supported the omics data, providing new insight into the mechanisms exerted by AM symbiosis to confer stronger productivity and enhanced resistance to X. translucens in wheat.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy.
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Francesca Ortolani
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Daniel Garcia-Seco
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
| | - Marco Chiapello
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Valeria Terzi
- CREA-GB, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Caterina Morcia
- CREA-GB, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Paolo Bagnaresi
- CREA-GB, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Lionel Moulin
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| |
Collapse
|
35
|
The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci Rep 2017; 7:16409. [PMID: 29180695 PMCID: PMC5703727 DOI: 10.1038/s41598-017-16697-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/13/2017] [Indexed: 11/08/2022] Open
Abstract
Belowground interactions between plant roots, mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) can improve plant health via enhanced nutrient acquisition and priming of the plant immune system. Two wheat cultivars differing in their ability to form mycorrhiza were (co)inoculated with the mycorrhizal fungus Rhizophagus irregularis and the rhizobacterial strain Pseudomonas putida KT2440. The cultivar with high mycorrhizal compatibility supported higher levels of rhizobacterial colonization than the low compatibility cultivar. Those levels were augmented by mycorrhizal infection. Conversely, rhizobacterial colonization of the low compatibility cultivar was reduced by mycorrhizal arbuscule formation. Single inoculations with R. irregularis or P. putida had differential growth effects on both cultivars. Furthermore, while both cultivars developed systemic priming of chitosan-induced callose after single inoculations with R. irregularis or P. putida, only the cultivar with high mycorrhizal compatibility showed a synergistic increase in callose responsiveness following co-inoculation with both microbes. Our results show that multilateral interactions between roots, mycorrhizal fungi and PGPR can have synergistic effects on growth and systemic priming of wheat.
Collapse
|
36
|
Pérez-de-Luque A, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci Rep 2017. [PMID: 29180695 DOI: 10.1038/s41598‐017‐16697‐4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Belowground interactions between plant roots, mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) can improve plant health via enhanced nutrient acquisition and priming of the plant immune system. Two wheat cultivars differing in their ability to form mycorrhiza were (co)inoculated with the mycorrhizal fungus Rhizophagus irregularis and the rhizobacterial strain Pseudomonas putida KT2440. The cultivar with high mycorrhizal compatibility supported higher levels of rhizobacterial colonization than the low compatibility cultivar. Those levels were augmented by mycorrhizal infection. Conversely, rhizobacterial colonization of the low compatibility cultivar was reduced by mycorrhizal arbuscule formation. Single inoculations with R. irregularis or P. putida had differential growth effects on both cultivars. Furthermore, while both cultivars developed systemic priming of chitosan-induced callose after single inoculations with R. irregularis or P. putida, only the cultivar with high mycorrhizal compatibility showed a synergistic increase in callose responsiveness following co-inoculation with both microbes. Our results show that multilateral interactions between roots, mycorrhizal fungi and PGPR can have synergistic effects on growth and systemic priming of wheat.
Collapse
Affiliation(s)
- Alejandro Pérez-de-Luque
- Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK. .,IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menédez Pidal s/n, Apdo. 3092, 14004, Córdoba, Spain.
| | - Stefanie Tille
- Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Irene Johnson
- Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - David Pascual-Pardo
- Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
37
|
Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7040075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
French KE. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health. Front Microbiol 2017; 8:1403. [PMID: 28785256 PMCID: PMC5519612 DOI: 10.3389/fmicb.2017.01403] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to ensure this important agricultural and biotechnological resource for the future.
Collapse
|
39
|
Delavaux CS, Smith‐Ramesh LM, Kuebbing SE. Beyond nutrients: a meta‐analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 2017; 98:2111-2119. [DOI: 10.1002/ecy.1892] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/26/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Camille S. Delavaux
- School of Forestry and Environmental Studies Yale University 195 Prospect Street New Haven Connecticut 06511 USA
- Ecology and Evolutionary Biology University of Kansas 2101 Constant Avenue Lawrence Kansas 66047 USA
| | - Lauren M. Smith‐Ramesh
- School of Forestry and Environmental Studies Yale University 195 Prospect Street New Haven Connecticut 06511 USA
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee 37996 USA
| | - Sara E. Kuebbing
- School of Forestry and Environmental Studies Yale University 195 Prospect Street New Haven Connecticut 06511 USA
| |
Collapse
|
40
|
Mustafa G, Khong NG, Tisserant B, Randoux B, Fontaine J, Magnin-Robert M, Reignault P, Sahraoui ALH. Defence mechanisms associated with mycorrhiza-induced resistance in wheat against powdery mildew. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:443-454. [PMID: 32480577 DOI: 10.1071/fp16206] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/12/2016] [Indexed: 05/21/2023]
Abstract
To develop a more sustainable agriculture using alternative control strategies, mechanisms involved in the biocontrol ability of the arbuscular mycorrhizal fungus Funneliformis mosseae to protect wheat against the foliar biotrophic pathogen Blumeria graminis f. sp. tritici were investigated under controlled conditions. B. graminis infection on wheat leaves was reduced by 78% in mycorrhizal plants compared with non-mycorrhizal ones (control). Wheat roots inoculated with F. mosseae revealed a systemic resistance in leaves to B. graminis, after a 6-week co-culture. Accordingly, this resistance was associated with a significant reduction of B. graminis haustorium formation in epidermal leaf cells of mycorrhizal wheat and an accumulation of phenolic compounds and H2O2 at B. graminis penetration sites. Moreover, gene expression analysis demonstrated upregulation of genes encoding for several defence markers, such as peroxidase, phenylalanine ammonia lyase, chitinase 1 and nonexpressor of pathogenesis-related proteins 1 in mycorrhizal wheat only in the absence of the pathogen. This study showed that protection of wheat obtained against B. graminis in response to mycorrhizal inoculation by F. mosseae could be interpreted as a mycorrhiza-induced resistance (MIR). Our findings also suggest that MIR-associated mechanisms impaired the B. graminis development process and corresponded to a systemic elicitation of plant defences rather than a primed state in wheat leaves.
Collapse
Affiliation(s)
- Ghalia Mustafa
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France
| | - Ngan Giang Khong
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France
| | - Benoît Tisserant
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France
| | - Béatrice Randoux
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France
| | - Joël Fontaine
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France
| | - Maryline Magnin-Robert
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France
| | - Philippe Reignault
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France
| | - Anissa Lounès-Hadj Sahraoui
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France
| |
Collapse
|
41
|
Bruisson S, Maillot P, Schellenbaum P, Walter B, Gindro K, Deglène-Benbrahim L. Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. PHYTOCHEMISTRY 2016; 131:92-99. [PMID: 27623505 DOI: 10.1016/j.phytochem.2016.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 05/08/2023]
Abstract
Grapevine (Vitis spp) is susceptible to serious fungal diseases usually controlled by chemical treatments. Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts which can stimulate plant defences. We investigated the effect of mycorrhization on grapevine stilbenoid defences. Vitis vinifera cvs Chasselas, Pinot noir and the interspecific hybrid Divico, on the rootstock 41B, were mycorrhized with Rhizophagus irregularis before leaf infection by Plasmopara viticola or Botrytis cinerea. Gene expression analysis showed an up-regulation of PAL, STS, and ROMT, involved in the stilbenoid biosynthesis pathway, in plant leaves, 48 h after pathogen inoculation. This defense response could be potentiated under AMF colonization, with an intensity level depending on the gene, the plant cultivar and/or the pathogen. We also showed that higher amounts of active forms of stilbenoids (i.e trans-form of resveratrol, ε- and δ-viniferins and pterostilbene) were produced in mycorrhized plants of the three genotypes in comparison with non-mycorrhized ones, 10 days post-inoculation with either pathogen. These results support the hypothesis that AMF root colonization enhances defence reactions against a biotrophic and a necrotrophic pathogen, in the aerial parts of grapevine.
Collapse
Affiliation(s)
- Sébastien Bruisson
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France
| | - Pascale Maillot
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France
| | - Paul Schellenbaum
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France
| | - Bernard Walter
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France
| | - Katia Gindro
- Agroscope, Institute for Plant Production Sciences IPS, Mycology and Biotechnology, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Laurence Deglène-Benbrahim
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France.
| |
Collapse
|
42
|
Mustafa G, Randoux B, Tisserant B, Fontaine J, Magnin-Robert M, Lounès-Hadj Sahraoui A, Reignault P. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. MYCORRHIZA 2016; 26:685-697. [PMID: 27130314 DOI: 10.1007/s00572-016-0698-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents.
Collapse
Affiliation(s)
- G Mustafa
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - B Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - B Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - J Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - M Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - A Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France.
| | - Ph Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| |
Collapse
|
43
|
Upscaling Arbuscular Mycorrhizal Symbiosis and Related Agroecosystems Services in Smallholder Farming Systems. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4376240. [PMID: 26942194 PMCID: PMC4749795 DOI: 10.1155/2016/4376240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
Abstract
Smallholder farming systems form unique ecosystems that can protect beneficial soil biota and form an important source of useful genetic resources. They are characterized by high level of agricultural diversity mainly focused on meeting farmers' needs. Unfortunately, these systems often experience poor crop production mainly associated with poor planning and resource scarcity. Soil fertility is among the primary challenges faced by smallholder farmers, which necessitate the need to come up with affordable and innovative ways of replenishing soils. One such way is the use of microbial symbionts such as arbuscular mycorrhizal fungi (AMF), a beneficial group of soil microbiota that form symbiotic associations with majority of cultivated crops and play a vital role in biological soil fertility, plant nutrition, and protection. AMF can be incorporated in smallholder farming systems to help better exploit chemical fertilizers inputs which are often unaffordable to many smallholder farmers. The present review highlights smallholder farming practices that could be innovatively redesigned to increase AMF symbiosis and related agroecosystem services. Indeed, the future of global food security depends on the success of smallholder farming systems, whose crop productivity depends on the services provided by well-functioning ecosystems, including soil fertility.
Collapse
|
44
|
Schouteden N, De Waele D, Panis B, Vos CM. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front Microbiol 2015; 6:1280. [PMID: 26635750 PMCID: PMC4646980 DOI: 10.3389/fmicb.2015.01280] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.
Collapse
Affiliation(s)
- Nele Schouteden
- Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Dirk De Waele
- Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Bart Panis
- Bioversity International, Heverlee, Belgium
| | - Christine M. Vos
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Gent, Belgium
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| |
Collapse
|
45
|
Song Y, Chen D, Lu K, Sun Z, Zeng R. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. FRONTIERS IN PLANT SCIENCE 2015; 6:786. [PMID: 26442091 PMCID: PMC4585261 DOI: 10.3389/fpls.2015.00786] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/11/2015] [Indexed: 05/18/2023]
Abstract
Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza-primed disease resistance.
Collapse
Affiliation(s)
- Yuanyuan Song
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, GuangzhouChina
| | - Dongmei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Zhongxiang Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Rensen Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, GuangzhouChina
| |
Collapse
|
46
|
Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 2015. [DOI: 10.1007/s13199-015-0334-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Gerlach N, Schmitz J, Polatajko A, Schlüter U, Fahnenstich H, Witt S, Fernie AR, Uroic K, Scholz U, Sonnewald U, Bucher M. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. PLANT, CELL & ENVIRONMENT 2015; 38:1591-612. [PMID: 25630535 DOI: 10.1111/pce.12508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/12/2015] [Indexed: 05/20/2023]
Abstract
Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential.
Collapse
Affiliation(s)
- Nina Gerlach
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Jessica Schmitz
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Aleksandra Polatajko
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Urte Schlüter
- Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91058, Germany
| | | | - Sandra Witt
- Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kalle Uroic
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, OT Gatersleben, 06466, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
48
|
Akhter A, Hage-Ahmed K, Soja G, Steinkellner S. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. FRONTIERS IN PLANT SCIENCE 2015; 6:529. [PMID: 26217373 PMCID: PMC4498038 DOI: 10.3389/fpls.2015.00529] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/29/2015] [Indexed: 05/21/2023]
Abstract
Soil amendments like compost and biochar are known to affect soil properties, plant growth as well as soil borne plant pathogens. Complex interactions based on microbial activity and abiotic characteristics are supposed to be responsible for suppressive properties of certain substrates, however, the specific mechanisms of action are still widely unknown. In the present study, the main focus was on the development of the soil borne pathogen, Fusarium oxysporum f.sp. lycopersici (Fol) in tomato (Solanum lycopersicum L.) and changes in root exudates of tomato plants grown in different soil substrate compositions, such as compost (Comp) alone at application rate of 20% (v/v), and in combination with wood biochar (WB; made from beech wood chips) or green waste biochar (GWB; made from garden waste residues) at application rate of 3% (v/v), and/or with additional arbuscular mycorrhizal fungi (AMF). The association of GWB and AMF had a positive effect on tomato plants growth unlike to the plants grown in WB containing a soil substrate. The AMF root colonization was not enhanced by the addition of WB or GWB in the soil substrate, though a bio-protective effect of mycorrhization was evident in both biochar amended treatments against Fol. Compost and biochars altered root exudates differently, which is evident from variable response of in vitro growth and development of Fol. The microconidia germination was highest in root exudates from plants grown in the soil containing compost and GWB, whereas root exudates of plants from a substrate containing WB suppressed the mycelial growth and development of Fol. In conclusion, the plant growth response and disease suppression in biochar containing substrates with additional AMF was affected by the feedstock type. Moreover, application of compost and biochars in the soil influence the quality and composition of root exudates with respect to their effects on soil-dwelling fungi.
Collapse
Affiliation(s)
- Adnan Akhter
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences ViennaTulln, Austria
| | - Karin Hage-Ahmed
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences ViennaTulln, Austria
| | - Gerhard Soja
- Department of Health and Environment, Austrian Institute of TechnologyTulln, Austria
| | - Siegrid Steinkellner
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences ViennaTulln, Austria
| |
Collapse
|
49
|
Rivero J, Gamir J, Aroca R, Pozo MJ, Flors V. Metabolic transition in mycorrhizal tomato roots. Front Microbiol 2015; 6:598. [PMID: 26157423 PMCID: PMC4477175 DOI: 10.3389/fmicb.2015.00598] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Beneficial plant-microorganism interactions are widespread in nature. Among them, the symbiosis between plant roots and arbuscular mycorrhizal fungi (AMF) is of major importance, commonly improving host nutrition and tolerance against environmental and biotic challenges. Metabolic changes were observed in a well-established symbiosis between tomato and two common AMF: Rhizophagus irregularis and Funneliformis mosseae. Principal component analysis of metabolites, determined by non-targeted liquid chromatography-mass spectrometry, showed a strong metabolic rearrangement in mycorrhizal roots. There was generally a negative impact of mycorrhizal symbiosis on amino acid content, mainly on those involved in the biosynthesis of phenylpropanoids. On the other hand, many intermediaries in amino acid and sugar metabolism and the oxylipin pathway were among the compounds accumulating more in mycorrhizal roots. The metabolic reprogramming also affected other pathways in the secondary metabolism, mainly phenyl alcohols (lignins and lignans) and vitamins. The results showed that source metabolites of these pathways decreased in mycorrhizal roots, whilst the products derived from α-linolenic and amino acids presented higher concentrations in AMF-colonized roots. Mycorrhization therefore increased the flux into those pathways. Venn-diagram analysis showed that there are many induced signals shared by both mycorrhizal interactions, pointing to general mycorrhiza-associated changes in the tomato metabolome. Moreover, fungus-specific fingerprints were also found, suggesting that specific molecular alterations may underlie the reported functional diversity of the symbiosis. Since most positively regulated pathways were related to stress response mechanisms, their potential contribution to improved host stress tolerance is discussed.
Collapse
Affiliation(s)
- Javier Rivero
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Jordi Gamir
- Metabolic Integration and Cell Signaling Laboratory, Associated Unit UJI-CSIC, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume ICastellón, Spain
- Unit of Plant Biology, Department of Biology, University of FribourgFribourg, Switzerland
| | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, Associated Unit UJI-CSIC, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume ICastellón, Spain
| |
Collapse
|
50
|
Nair A, Kolet SP, Thulasiram HV, Bhargava S. Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:625-31. [PMID: 25327848 DOI: 10.1111/plb.12277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/13/2014] [Indexed: 05/08/2023]
Abstract
Tomato plants colonised with the arbuscular mycorrhizal (AM) fungus Glomus fasciculatum show systemic induced resistance to the foliar pathogen Alternaria alternata, as observed in interactions of other AM-colonised plants with a range of pathogens. The role of jasmonic (JA) and salicylic (SA) acid in expression of this mycorrhiza-induced resistance (MIR) against A. alternata was studied by measuring: (i) activity of enzymes reported to be involved in their biosynthesis, namely lipoxygenase (LOX) and phenylammonia lyase (PAL); and (ii) levels of methyl jasmonate (MeJA) and SA. Transcript abundance of some defence genes associated with JA and SA response pathways were also studied. Both LOX and PAL activity increased twofold in response to pathogen application to control plants. AM-colonised plants had three-fold higher LOX activity compared to control plants, but unlike controls, this did not increase further in response to pathogen application. Higher LOX activity in AM-colonised plants correlated with four-fold higher MeJA in leaves of AM-colonised plants compared to controls. Treatment of plants with the JA biosynthesis inhibitor salicylhydroxamic acid (SHAM) led to 50% lower MeJA in both control and AM-colonised plants and correlated with increased susceptibility to A. alternata, suggesting a causal role for JA in expression of MIR against the pathogen. Genes involved in JA biosynthesis (OPR3) and response (COI1) showed six- and 42-fold higher expression, respectively, in leaves of AM-colonised plants compared to controls. AM-colonised plants also showed increased expression of the SA response gene PR1 and that of the wound-inducible polypeptide prosystemin. Our results suggest that the systemic increase in JA in response to AM colonisation plays a key role in expression of MIR against A. alternata.
Collapse
Affiliation(s)
- A Nair
- Department of Botany, University of Pune, Pune, India
| | | | | | | |
Collapse
|