1
|
Jeong DH, Yun YB, Son HJ, Um Y, Song JH, Kim J. Correlation Analysis of Soil Microbial Communities and Physicochemical Properties with Growth Characteristics of Sageretia thea Across Different Habitats. PLANTS (BASEL, SWITZERLAND) 2024; 13:3310. [PMID: 39683103 DOI: 10.3390/plants13233310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
This study aimed to investigate the growth characteristics of Sageretia thea and analyze the correlations between soil physicochemical properties and microbial communities in its native habitats. Soil physicochemical properties were characterized by organic matter (0.37-36.43%), available phosphate (57.96-315.90 mg/kg), potassium (0.11-1.17 cmol+kg-1), calcium (1.23-25.97 cmol+kg-1), magnesium (0.43-15.01 cmol+kg-1), sodium (0.04-6.16 cmol+kg-1), and pH (4.68-7.05), indicating slightly acidic to neutral conditions. S. thea exhibited variable growth characteristics across habitats; leaf length and width were largest in Jangnam-ri and Hacka-ri, respectively, whereas Docheong-ri promoted higher fruit growth. The soil microbial community composition was dominated by Proteobacteria, Actinobacteria, and Acidobacteria at the phylum level (76.09%) and by Alphaproteobacteria, Actinobacteria_c, and Vicinamibacter_c at the class level (40%). Soil physicochemical properties were significantly correlated with Actinobacteria, Acidobacteria, and Chloroflexi at the phylum level, and all microbial groups except Spartobacteria at the class level. Furthermore, growth characteristics were significantly correlated with all microbial communities except Acidobacteria and Firmicutes at the phylum level, and Acidobacteria, Thermoleophilia, and Rubrobacteria at the class level. These findings provide a foundation for developing efficient cultivation techniques for S. thea based on its soil microbiome and habitat conditions.
Collapse
Affiliation(s)
- Dae-Hui Jeong
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea
| | - Yeong-Bae Yun
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea
| | - Ho-Jun Son
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea
| | - Yurry Um
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea
| | - Jeong-Ho Song
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea
| | - Jiah Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea
| |
Collapse
|
2
|
Tominaga T, Kaminaka H. In Vitro Hyphal Branching Assay Using Rhizophagus irregularis. Bio Protoc 2024; 14:e5054. [PMID: 39210954 PMCID: PMC11349495 DOI: 10.21769/bioprotoc.5054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Most terrestrial plants are associated with symbiotic Glomeromycotina fungi, commonly known as arbuscular mycorrhizal (AM) fungi. AM fungi increase plant biomass in phosphate-depleted conditions by allocating mineral nutrients to the host; therefore, host roots actively exude various specialized metabolites and orchestrate symbiotic partners. The hyphal branching activity induced by strigolactones (SLs), a category of plant hormones, was previously discovered using an in vitro assay system. For this bioassay, AM fungi of the Gigaspora genus (Gigasporaeae) are commonly used due to their linear hyphal elongation and because the simple branching pattern is convenient for microscopic observation. However, many researchers have also used Glomeraceae fungi, such as Rhizophagus species, as the symbiotic partner of host plants, although they often exhibit a complex hyphal branching pattern. Here, we describe a method to produce and quantify the hyphal branches of the popular model AM fungus Rhizophagus irregularis. In this system, R. irregularis spores are sandwiched between gels, and chemicals of interest are diffused from the surface of the gel to the germinating spores. This method enables the positive effect of a synthetic SL on R. irregularis hyphal branching to be reproduced. This method could thus be useful to quantify the physiological effects of synthesized chemicals or plant-derived specialized metabolites on R. irregularis. Key features • Development of an in vitro hyphal branching assay using germinating spores of Rhizophagus irregularis. • This in vitro assay system builds upon a method developed by Kameoka et al. [1] but modified to make it more applicable to hydrophilic compounds. • Optimized for R. irregularis to count the hyphal branches. • This bioassay requires at least 12 days to be done.
Collapse
Affiliation(s)
- Takaya Tominaga
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Koyama Minami, Tottori, Japan
| |
Collapse
|
3
|
Sun D, Rozmoš M, Kokkoris V, Kotianová M, Hršelová H, Bukovská P, Faghihinia M, Jansa J. Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes. MYCORRHIZA 2024; 34:303-316. [PMID: 38829432 PMCID: PMC11283409 DOI: 10.1007/s00572-024-01154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used 15N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of 15N to the plants than the passive transfer of 15N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater 15N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.
Collapse
Affiliation(s)
- Daquan Sun
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic.
| | - Martin Rozmoš
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Vasilis Kokkoris
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1108, Amsterdam, NL-1081HZ, The Netherlands
| | - Michala Kotianová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Hana Hršelová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Petra Bukovská
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Maede Faghihinia
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Dr, Ames, IA, 50011, US
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| |
Collapse
|
4
|
Lekberg Y, Jansa J, McLeod M, DuPre ME, Holben WE, Johnson D, Koide RT, Shaw A, Zabinski C, Aldrich-Wolfe L. Carbon and phosphorus exchange rates in arbuscular mycorrhizas depend on environmental context and differ among co-occurring plants. THE NEW PHYTOLOGIST 2024; 242:1576-1588. [PMID: 38173184 DOI: 10.1111/nph.19501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Phosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF-specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P-for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.
Collapse
Affiliation(s)
- Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Jan Jansa
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | | | | | - William E Holben
- Cellular, Molecular and Microbial Biology, University of Montana, Missoula, MT, 59812, USA
| | - David Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Alanna Shaw
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Catherine Zabinski
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
5
|
Tominaga T, Ueno K, Saito H, Egusa M, Yamaguchi K, Shigenobu S, Kaminaka H. Monoterpene glucosides in Eustoma grandiflorum roots promote hyphal branching in arbuscular mycorrhizal fungi. PLANT PHYSIOLOGY 2023; 193:2677-2690. [PMID: 37655911 PMCID: PMC10663111 DOI: 10.1093/plphys/kiad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Host plant-derived strigolactones trigger hyphal branching in arbuscular mycorrhizal (AM) fungi, initiating a symbiotic interaction between land plants and AM fungi. However, our previous studies revealed that gibberellin-treated lisianthus (Eustoma grandiflorum, Gentianaceae) activates rhizospheric hyphal branching in AM fungi using unidentified molecules other than strigolactones. In this study, we analyzed independent transcriptomic data of E. grandiflorum and found that the biosynthesis of gentiopicroside (GPS) and swertiamarin (SWM), characteristic monoterpene glucosides in Gentianaceae, was upregulated in gibberellin-treated E. grandiflorum roots. Moreover, these metabolites considerably promoted hyphal branching in the Glomeraceae AM fungi Rhizophagus irregularis and Rhizophagus clarus. GPS treatment also enhanced R. irregularis colonization of the monocotyledonous crop chive (Allium schoenoprasum). Interestingly, these metabolites did not provoke the germination of the root parasitic plant common broomrape (Orobanche minor). Altogether, our study unveiled the role of GPS and SWM in activating the symbiotic relationship between AM fungi and E. grandiflorum.
Collapse
Affiliation(s)
- Takaya Tominaga
- The United Graduate School of Agricultural Science, Tottori University, Tottori 680-8553, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Hikaru Saito
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori 680-8550, Japan
| |
Collapse
|
6
|
Scholz SS, Barth E, Clément G, Marmagne A, Ludwig-Müller J, Sakakibara H, Kiba T, Vicente-Carbajosa J, Pollmann S, Krapp A, Oelmüller R. The Root-Colonizing Endophyte Piriformospora indica Supports Nitrogen-Starved Arabidopsis thaliana Seedlings with Nitrogen Metabolites. Int J Mol Sci 2023; 24:15372. [PMID: 37895051 PMCID: PMC10607921 DOI: 10.3390/ijms242015372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The root-colonizing endophytic fungus Piriformospora indica promotes the root and shoot growth of its host plants. We show that the growth promotion of Arabidopsis thaliana leaves is abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither stimulated the total N content nor did it promote 15NO3- uptake from agar plates to the leaves of the host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with 15N-labelled P. indica, more labels were detected in the leaves of N-starved host plants but not in plants supplied with sufficient N. Amino acid and primary metabolite profiles, as well as the expression analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host from the N limitation condition. P. indica alters the expression of transporter genes, which participate in the relocation of NO3-, NH4+ and N metabolites from the roots to the leaves under N limitation. We propose that P. indica participates in the plant's metabolomic adaptation against N limitation by delivering reduced N metabolites to the host, thus alleviating metabolic N starvation responses and reprogramming the expression of N metabolism-related genes.
Collapse
Affiliation(s)
- Sandra S. Scholz
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Emanuel Barth
- Bioinformatics Core Facility, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01217 Dresden, Germany;
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.S.); (T.K.)
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.S.); (T.K.)
| | - Jesús Vicente-Carbajosa
- Centro de Biotechnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223 Madrid, Spain; (J.V.-C.); (S.P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotechnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223 Madrid, Spain; (J.V.-C.); (S.P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| |
Collapse
|
7
|
You Y, Ray R, Halitschke R, Baldwin G, Baldwin IT. Arbuscular mycorrhizal fungi-indicative blumenol-C-glucosides predict lipid accumulations and fitness in plants grown without competitors. THE NEW PHYTOLOGIST 2023; 238:2159-2174. [PMID: 36866959 DOI: 10.1111/nph.18858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 05/04/2023]
Abstract
Hydroxy- and carboxyblumenol C-glucosides specifically accumulate in roots and leaves of plants harboring arbuscular mycorrhizal fungi (AMF). To explore blumenol function in AMF relationships, we silenced an early key-gene in blumenol biosynthesis, CCD1 (carotenoid cleavage dioxygenase 1), in the ecological model plant, Nicotiana attenuata, and analyzed whole-plant performance in comparison with control and CCaMK-silenced plants, unable to form AMF associations. Root blumenol accumulations reflected a plant's Darwinian fitness, as estimated by capsule production, and were positively correlated with AMF-specific lipid accumulations in roots, with relationships that changed as plants matured when grown without competitors. When grown with wild-type competitors, transformed plants with decreased photosynthetic capacity or increased carbon flux to roots had blumenol accumulations that predicted plant fitness and genotype trends in AMF-specific lipids, but had similar levels of AMF-specific lipids between competing plants, likely reflecting AMF-networks. We propose that when grown in isolation, blumenol accumulations reflect AMF-specific lipid allocations and plant fitness. When grown with competitors, blumenol accumulations predict fitness outcomes, but not the more complicated AMF-specific lipid accumulations. RNA-seq analysis provided candidates for the final biosynthetic steps of these AMF-indicative blumenol C-glucosides; abrogation of these steps will provide valuable tools for understanding blumenol function in this context-dependent mutualism.
Collapse
Affiliation(s)
- Yanrong You
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
8
|
Bi Y, Wang X, Cai Y, Christie P. Arbuscular mycorrhizal colonization increases plant above-belowground feedback in a northwest Chinese coal mining-degraded soil by increasing photosynthetic carbon assimilation and allocation to maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72612-72627. [PMID: 35610456 DOI: 10.1007/s11356-022-19838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
A three-compartment culture system was used to study the mechanism by which the AM fungus Funneliformis mosseae influences host plant growth and soil organic carbon (SOC) content in a northwest China coal mining area. A 13CO2 pulse tracing technique was used to trace the allocation of maize photosynthetic C in shoots, roots, AM fungus, and soil. Carbon accumulation and allocation in mycorrhizal (inoculated with Funneliformis mosseae) and non-mycorrhizal treatments were detected. AM fungal inoculation significantly increased the 13C concentration and content in both above- and below-ground plant parts and also significantly enhanced anti-aging ability by increasing soluble sugars and catalase activity (CAT) in maize leaves while reducing foliar malondialdehyde content (MDA) and leaf temperature and promoted plant growth. AM fungi also increased P uptake to promote maize growth. Soil organic carbon (SOC), glomalin, microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly after inoculation. A mutually beneficial system was established involving maize, the AM fungus and the microbiome, and the AM fungus became an important regulator of C flux between the above- and below-ground parts of the system. Inoculation with the AM fungus promoted plant growth, C fixation and allocation belowground to enhance soil quality. A positive above-belowground feedback appeared to be established.
Collapse
Affiliation(s)
- Yinli Bi
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, 100083, China.
- Institute of Ecological Environmental Restoration in Mine Areas of West China, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Xiao Wang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yun Cai
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Peter Christie
- Institute of Ecological Environmental Restoration in Mine Areas of West China, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
9
|
Arbuscular Mycorrhizal Fungi and Glomalin Play a Crucial Role in Soil Aggregate Stability in Pb-Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095029. [PMID: 35564424 PMCID: PMC9099716 DOI: 10.3390/ijerph19095029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/14/2022]
Abstract
With the rapid development of industrialization and urbanization, soil contamination with heavy metal (HM) has gradually become a global environmental problem. Lead (Pb) is one of the most abundant toxic metals in soil and high concentrations of Pb can inhibit plant growth, harm human health, and damage soil properties, including quality and stability. Arbuscular mycorrhizal fungi (AMF) are a type of obligate symbiotic soil microorganism forming symbiotic associations with most terrestrial plants, which play an essential role in the remediation of HM-polluted soils. In this study, we investigated the effects of AMF on the stability of soil aggregates under Pb stress in a pot experiment. The results showed that the hyphal density (HLD) and spore density (SPD) of the AMF in the soil were significantly reduced at Pb stress levels of 1000 mg kg−1 and 2000 mg kg−1. AMF inoculation strongly improved the concentration of glomalin-related soil protein (GRSP). The percentage of soil particles >2 mm and 2−1 mm in the AMF-inoculation treatment was higher than that in the non-AMF-inoculation treatment, while the Pb stress increased the percentage of soil particles <0.053 mm and 0.25−0.53 mm. HLD, total glomalin-related soil protein (T-GRSP), and easily extractable glomalin-related soil protein (EE-GRSP) were the three dominant factors regulating the stability of the soil aggregates, based on the random forest model analysis. Furthermore, the structural equation modeling analysis indicated that the Pb stress exerted an indirect effect on the soil-aggregate stability by regulating the HLD or the GRSP, while only the GRSP had a direct effect on the mean weight diameter (MWD) and geometric mean diameter (GMD). The current study increases the understanding of the mechanism through which soil degradation is caused by Pb stress, and emphasizes the crucial importance of glomalin in maintaining the soil-aggregate stability in HM-contaminated ecosystems.
Collapse
|
10
|
Saia S, Jansa J. Editorial: Arbuscular Mycorrhizal Fungi: The Bridge Between Plants, Soils, and Humans. FRONTIERS IN PLANT SCIENCE 2022; 13:875958. [PMID: 35444670 PMCID: PMC9014169 DOI: 10.3389/fpls.2022.875958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Sergio Saia
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Jan Jansa
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czechia
| |
Collapse
|
11
|
Kaur S, Campbell BJ, Suseela V. Root metabolome of plant-arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. THE NEW PHYTOLOGIST 2022; 234:672-687. [PMID: 35088406 DOI: 10.1111/nph.17994] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The symbiosis of arbuscular mycorrhizal fungi (AMF) with plants, the most ancient and widespread association, exhibits phenotypes that range from mutualism to parasitism. However, we still lack an understanding of the cellular-level mechanisms that differentiate and regulate these phenotypes. We assessed the modulation in growth parameters and root metabolome of two sorghum accessions inoculated with two AMF species (Rhizophagus irregularis, Gigaspora gigantea), alone and in a mixture under phosphorus (P) limiting conditions. Rhizophagus irregularis exhibited a mutualistic phenotype with increased P uptake and plant growth. This positive outcome was associated with a facilitatory metabolic response including higher abundance of organic acids and specialized metabolites critical to maintaining a functional symbiosis. However, G. gigantea exhibited a parasitic phenotype that led to plant growth depression and resulted in inhibitory plant metabolic responses including the higher abundance of p-hydroxyphenylacetaldoxime with antifungal properties. These findings suggest that the differential outcome of plant-AMF symbiosis could be regulated by or reflected in changes in the root metabolome that arises from the interaction of the plant species with the specific AMF species. A mutualistic symbiotic association prevailed when the host plants were exposed to a mixture of AMF. Our results provide a metabolome-level landscape of plant-AMF symbiosis and highlight the importance of the identity of both AMF and crop genotypes in facilitating a mutualistic AMF symbiosis.
Collapse
Affiliation(s)
- Sukhmanpreet Kaur
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Vidya Suseela
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
12
|
Rupawalla Z, Robinson N, Schmidt S, Li S, Carruthers S, Buisset E, Roles J, Hankamer B, Wolf J. Algae biofertilisers promote sustainable food production and a circular nutrient economy - An integrated empirical-modelling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148913. [PMID: 34328895 DOI: 10.1016/j.scitotenv.2021.148913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Agriculture has radically changed the global nitrogen (N) cycle and is heavily dependent on synthetic N-fertiliser. However, the N-use efficiency of synthetic fertilisers is often only 50% with N-losses from crop systems polluting the biosphere, hydrosphere and atmosphere. To address the large carbon and energy footprint of N-fertiliser synthesis and curb N-pollution, new technologies are required to deliver enhanced energy efficiency, decarbonisation and a circular nutrient economy. Algae fertilisers (AF) are an alternative to synthetic N-fertiliser (SF). Here microalgae were used as biofertiliser for spinach production. AF production was evaluated using life-cycle analyses. Over 4 weeks, AF released 63.5% of N as bioavailable ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate; SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF's slower and linear N-release; SF exhibited 5-times higher N-leaching than AF. Optimised AF:SF blends yielded greater synchrony between N-release and crop-uptake, boosting crop yields and minimising N-loss. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity of the growth substrate. An integrated techno-economic and life-cycle-analysis of scaled-up microalgae systems (+/- wastewater) normalised to the application dose showed that replacing the most effective SF-dose with AF lowered the annual carbon footprint of fertiliser production from 3.644 kg CO2 m-2 (C-producing) to -6.039 kg CO2 m-2 (C-assimilation). N-loss from growth substrate was lowered by 54%. Embodied energy for AF:SF blends could be reduced by 29% when cultivating microalgae on wastewater. Conclusions: (i) microalgae offer a sustainable alternative to synthetic N-fertiliser for spinach production and potentially other crop systems, (ii) microalgae biofertilisers support the circular-nutrient-economy and several UN-Sustainable-Development-Goals.
Collapse
Affiliation(s)
- Zeenat Rupawalla
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole Robinson
- School of Agriculture and Food Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sijie Li
- School of Agriculture and Food Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Selina Carruthers
- School of Agriculture and Food Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elodie Buisset
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - John Roles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Juliane Wolf
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
13
|
Säle V, Palenzuela J, Azcón-Aguilar C, Sánchez-Castro I, da Silva GA, Seitz B, Sieverding E, van der Heijden MGA, Oehl F. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. MYCORRHIZA 2021; 31:559-576. [PMID: 34327560 PMCID: PMC8484173 DOI: 10.1007/s00572-021-01042-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Almost all land plants form symbiotic associations with arbuscular mycorrhizal fungi (AMF). Individual plants usually are colonized by a wide range of phylogenetically diverse AMF species. The impact that different AMF taxa have on plant growth is only partly understood. We screened 44 AMF isolates for their effect on growth promotion and nutrient uptake of leek plants (Allium porrum), including isolates that have not been tested previously. In particular, we aimed to test weather AMF lineages with an ancient evolutionary age differ from relatively recent lineages in their effects on leek plants. The AMF isolates that were tested covered 18 species from all five AMF orders, eight families, and 13 genera. The experiment was conducted in a greenhouse. A soil-sand mixture was used as substrate for the leek plants. Plant growth response to inoculation with AMF varied from - 19 to 232% and depended on isolate, species, and family identity. Species from the ancient families Archaeosporaceae and Paraglomeraceae tended to be less beneficial, in terms of stimulation plant growth and nutrient uptake, than species of Glomeraceae, Entrophosporaceae, and Diversisporaceae, which are considered phylogenetically more recent than those ancient families. Root colonization levels also depended on AMF family. This study indicates that plant benefit in the symbiosis between plants and AMF is linked to fungal identity and phylogeny and it shows that there are large differences in effectiveness of different AMF.
Collapse
Affiliation(s)
- Verena Säle
- Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland.
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
- Vegetable-Production Extension, Agroscope, Müller-Thurgau-Strasse 29, CH-8820, Wädenswil, Switzerland.
| | - Javier Palenzuela
- Departamento de Microbiología del Suelo Y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Concepción Azcón-Aguilar
- Departamento de Microbiología del Suelo Y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Iván Sánchez-Castro
- Departamento de Microbiología, Universidad de Granada, Campus Universitario de Fuentenueva, 18071, Granada, Spain
| | - Gladstone Alves da Silva
- Departamento de Micologia, CCB, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Cidade Universitária, Recife, PE, 50740-600, Brazil
| | - Benjamin Seitz
- Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Ewald Sieverding
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart-Hohenheim, Germany
| | - Marcel G A van der Heijden
- Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8057, Zürich, Switzerland
| | - Fritz Oehl
- Ecotoxicology, Agroscope, Müller-Thurgau-Strasse 29, CH-8820, Wädenswil, Switzerland
| |
Collapse
|
14
|
Watson M, Bushley K, Seabloom EW, May G. Response of fungal endophyte communities within Andropogon gerardii (Big bluestem) to nutrient addition and herbivore exclusion. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Berger F, Gutjahr C. Factors affecting plant responsiveness to arbuscular mycorrhiza. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101994. [PMID: 33450718 DOI: 10.1016/j.pbi.2020.101994] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhiza (AM) is an ancient, widespread symbiosis between most land plants and fungi of the Glomeromycotina, which receives increasing interest for agricultural application because it can promote plant growth and yield. The ability of plants to react to AM with changes in morphology and/or performance in terms of yield is called 'AM responsiveness'. Its amplitude depends on the plant- fungal genotype combination and the abiotic and biotic environment. A molecular understanding of AM responsiveness is key for enabling rational application of AM in agriculture, for example through targeted breeding of AM-optimised crops. However, the genetic and mechanistic underpinnings of AM responsiveness variation remain still unknown. Here, we review current knowledge on AM responsiveness, with a focus on agricultural crops, and speculate on mechanisms that may contribute to the variation in AM response.
Collapse
Affiliation(s)
- Florian Berger
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil-Ramann-Str. 4, 85354 Freising, Germany.
| |
Collapse
|
16
|
Zeng X, Diao H, Ni Z, Shao L, Jiang K, Hu C, Huang Q, Huang W. Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae). PLANTS (BASEL, SWITZERLAND) 2020; 10:E18. [PMID: 33374219 PMCID: PMC7824424 DOI: 10.3390/plants10010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Mycorrhizae are an important energy source for orchids that may replace or supplement photosynthesis. Most mature orchids rely on mycorrhizae throughout their life cycles. However, little is known about temporal variation in root endophytic fungal diversity and their trophic functions throughout whole growth periods of the orchids. In this study, the community composition of root endophytic fungi and trophic relationships between root endophytic fungi and orchids were investigated in Bletilla striata and B. ochracea at different phenological stages using stable isotope natural abundance analysis combined with molecular identification analysis. We identified 467 OTUs assigned to root-associated fungal endophytes, which belonged to 25 orders in 10 phyla. Most of these OTUs were assigned to saprotroph (143 OTUs), pathotroph-saprotroph (63 OTUs) and pathotroph-saprotroph-symbiotroph (18 OTUs) using FunGuild database. Among these OTUs, about 54 OTUs could be considered as putative species of orchid mycorrhizal fungi (OMF). For both Bletilla species, significant temporal variation was observed in the diversity of root endophytic fungi. The florescence and emergence periods had higher fungal community richness of total species and endemic species than did other periods. Both Bletilla species were dominated by Agaricomycetes and Basidiomycota fungi throughout the whole year; however, their abundances varied between two Bletilla species and among phenological stages. Meanwhile, the ranges of 13C and 15N natural abundance were also highly dynamic across all growth stages of Bletilla species. Compared with the surrounding autotrophic plants, significant 13C enrichments (ε13C) were found across all phenological stages, while significant 15N enrichment in the florescence period and strong 15N depletion during the fruiting period were found for both Bletilla species. We can deduce that both Bletilla species obtained carbon from root endophytic fungi during the whole year. Additionally, the temporal varying tendency of root endophytic fungal diversity was consistent with 13C enrichments, which was also accord with the nutritional requirement of plant.
Collapse
Affiliation(s)
- Xinhua Zeng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Haixin Diao
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Ziyi Ni
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Li Shao
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Kai Jiang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Chao Hu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Qingjun Huang
- Shanghai Institute of Technology, Shanghai 201418, China;
| | - Weichang Huang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Řezáčová V, Řezáč M, Gryndlerová H, Wilson GWT, Michalová T. Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae. Sci Rep 2020; 10:20287. [PMID: 33219310 PMCID: PMC7679399 DOI: 10.1038/s41598-020-77030-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/04/2022] Open
Abstract
In a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae. The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae, regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae, with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands.
Collapse
Affiliation(s)
- Veronika Řezáčová
- Crop Research Institute, Drnovská 507, Prague 6, Czech Republic.
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic.
| | - Milan Řezáč
- Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Hana Gryndlerová
- Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Gail W T Wilson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| |
Collapse
|
18
|
Aldrich-Wolfe L, Black KL, Hartmann EDL, Shivega WG, Schmaltz LC, McGlynn RD, Johnson PG, Asheim Keller RJ, Vink SN. Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. MYCORRHIZA 2020; 30:513-527. [PMID: 32500441 DOI: 10.1007/s00572-020-00967-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The composition of arbuscular mycorrhizal fungal (AMF) communities should reflect not only responses to host and soil environments, but also differences in functional roles and costs vs. benefits among arbuscular mycorrhizal fungi. The coffee agroecosystem allows exploration of the effects of both light and soil fertility on AMF communities, because of the variation in shade and soil nutrients farmers generate through field management. We used high-throughput ITS2 sequencing to characterize the AMF communities of coffee roots in 25 fields in Costa Rica that ranged from organic management with high shade and no chemical fertilizers to conventionally managed fields with minimal shade and high N fertilization, and examined relationships between AMF communities and soil and shade parameters with partial correlations, NMDS, PERMANOVA, and partial least squares analysis. Gigasporaceae and Acaulosporaceae dominated coffee AMF communities in terms of relative abundance and richness, respectively. Gigasporaceae richness was greatest in conventionally managed fields, while Glomeraceae richness was greatest in organic fields. While total AMF richness and root colonization did not differ between organic and conventionally managed fields, AMF community composition did; these differences were correlated with soil nitrate and shade. OTUs differing in relative abundance between conventionally managed and organic fields segregated into four groups: Gigasporaceae associated with high light and nitrate availability, Acaulosporaceae with high light and low nitrate availability, Acaulosporaceae and a single relative of Rhizophagus fasciculatus with shade and low nitrate availability, and Claroideoglomus/Glomus with conventionally managed fields but uncorrelated with shade and soil variables. The association of closely related taxa with similar shade and light availabilities is consistent with phylogenetic trait conservatism in AM fungi.
Collapse
Affiliation(s)
- Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Katie L Black
- Biology Department, Concordia College, Moorhead, MN, USA
| | | | - W Gaya Shivega
- Biology Department, Concordia College, Moorhead, MN, USA
| | | | | | | | | | - Stefanie N Vink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
Campo S, Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, Martínez-Eixarch M, San Segundo B. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2020; 13:42. [PMID: 32572623 PMCID: PMC7310045 DOI: 10.1186/s12284-020-00402-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi form symbiotic associations with roots in most land plants. AM symbiosis provides benefits to host plants by improving nutrition and fitness. AM symbiosis has also been associated with increased resistance to pathogen infection in several plant species. In rice, the effects of AM symbiosis is less studied, probably because rice is mostly cultivated in wetland areas, and plants in such ecosystems have traditionally been considered as non-mycorrhizal. In this study, we investigated the effect of AM inoculation on performance of elite rice cultivars (Oryza sativa, japonica subspecies) under greenhouse and field conditions, focusing on growth, resistance to the rice blast fungus Magnaporthe oryzae and productivity. RESULTS The response to inoculation with either Funneliformis mosseae or Rhizophagus irregularis was evaluated in a panel of 12 rice cultivars. Root colonization was confirmed in all rice varieties. Under controlled greenhouse conditions, R. irregularis showed higher levels of root colonization than F. mosseae. Compared to non-inoculated plants, the AM-inoculated plants had higher Pi content in leaves. Varietal differences were observed in the growth response of rice cultivars to inoculation with an AM fungus, which were also dependent on the identity of the fungus. Thus, positive, negligible, and negative responses to AM inoculation were observed among rice varieties. Inoculation with F. mosseae or R. irregularis also conferred protection to the rice blast fungus, but the level of mycorrhiza-induced blast resistance varied among host genotypes. Rice seedlings (Loto and Gines varieties) were pre-inoculated with R. irregularis, transplanted into flooded fields, and grown until maturity. A significant increase in grain yield was observed in mycorrhizal plants compared with non-mycorrhizal plants, which was related to an increase in the number of panicles. CONCLUSION Results here presented support that rice plants benefit from the AM symbiosis while illustrating the potential of using AM fungi to improve productivity and blast resistance in cultivated rice. Differences observed in the mycorrhizal responsiveness among the different rice cultivars in terms of growth promotion and blast resistance indicate that evaluation of benefits received by the AM symbiosis needs to be carefully evaluated on a case-by-case basis for efficient exploitation of AM fungi in rice cultivation.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Marta Olivé
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Eva Pla
- IRTA Institute of Agrifood Research and Technology, Field crops, Amposta, Spain
| | - Mar Catala-Forner
- IRTA Institute of Agrifood Research and Technology, Field crops, Amposta, Spain
| | - Maite Martínez-Eixarch
- IRTA Institute of Agrifood Research and Technology, Marine and Continental Waters, Sant Carles de la Ràpita, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
20
|
Charters MD, Sait SM, Field KJ. Aphid Herbivory Drives Asymmetry in Carbon for Nutrient Exchange between Plants and an Arbuscular Mycorrhizal Fungus. Curr Biol 2020; 30:1801-1808.e5. [PMID: 32275877 PMCID: PMC7237887 DOI: 10.1016/j.cub.2020.02.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Associations formed between plants and arbuscular mycorrhizal (AM) fungi are characterized by the bi-directional exchange of fungal-acquired soil nutrients for plant-fixed organic carbon compounds. Mycorrhizal-acquired nutrient assimilation by plants may be symmetrically linked to carbon (C) transfer from plant to fungus or governed by sink-source dynamics. Abiotic factors, including atmospheric CO2 concentration ([CO2]), can affect the relative cost of resources traded between mutualists, thereby influencing symbiotic function. Whether biotic factors, such as insect herbivores that represent external sinks for plant C, impact mycorrhizal function remains unstudied. By supplying 33P to an AM fungus (Rhizophagus irregularis) and 14CO2 to wheat, we tested the impact of increasing C sink strength (i.e., aphid herbivory) and increasing C source strength (i.e., elevated [CO2]) on resource exchange between mycorrhizal symbionts. Allocation of plant C to the AM fungus decreased dramatically following exposure to the bird cherry-oat aphid (Rhopalosiphum padi), with high [CO2] failing to alleviate the aphid-induced decline in plant C allocated to the AM fungus. Mycorrhizal-mediated uptake of 33P by plants was maintained regardless of aphid presence or elevated [CO2], meaning insect herbivory drove asymmetry in carbon for nutrient exchange between symbionts. Here, we provide direct evidence that external biotic C sinks can limit plant C allocation to an AM fungus without hindering mycorrhizal-acquired nutrient uptake. Our findings highlight the context dependency of resource exchange between plants and AM fungi and suggest biotic factors-individually and in combination with abiotic factors-should be considered as powerful regulators of symbiotic function.
Collapse
Affiliation(s)
- Michael D Charters
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Katie J Field
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
21
|
Chen E, Liao H, Chen B, Peng S. Arbuscular mycorrhizal fungi are a double-edged sword in plant invasion controlled by phosphorus concentration. THE NEW PHYTOLOGIST 2020; 226:295-300. [PMID: 31808168 DOI: 10.1111/nph.16359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Enjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huixuan Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baoming Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
22
|
Teste FP, Jones MD, Dickie IA. Dual-mycorrhizal plants: their ecology and relevance. THE NEW PHYTOLOGIST 2020; 225:1835-1851. [PMID: 31514244 DOI: 10.1111/nph.16190] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Dual-mycorrhizal plants are capable of associating with fungi that form characteristic arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) structures. Here, we address the following questions: (1) How many dual-mycorrhizal plant species are there? (2) What are the advantages for a plant to host two, rather than one, mycorrhizal types? (3) Which factors can provoke shifts in mycorrhizal dominance (i.e. mycorrhizal switching)? We identify a large number (89 genera within 32 families) of confirmed dual-mycorrhizal plants based on observing arbuscules or coils for AM status and Hartig net or similar structures for EM status within the same plant species. We then review the possible nutritional benefits and discuss the possible mechanisms leading to net costs and benefits. Cost and benefits of dual-mycorrhizal status appear to be context dependent, particularly with respect to the life stage of the host plant. Mycorrhizal switching occurs under a wide range of abiotic and biotic factors, including soil moisture and nutrient status. The relevance of dual-mycorrhizal plants in the ecological restoration of adverse sites where plants are not carbon limited is discussed. We conclude that dual-mycorrhizal plants are underutilized in ecophysiological-based experiments, yet are powerful model plant-fungal systems to better understand mycorrhizal symbioses without confounding host effects.
Collapse
Affiliation(s)
- François P Teste
- Grupo de Estudios Ambientales, IMASL-CONICET & Universidad Nacional de San Luis, Av. Ejercito de los Andes 950 (5700), San Luis, Argentina
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA, 6009, Australia
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
23
|
Konečný J, Hršelová H, Bukovská P, Hujslová M, Jansa J. Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula. PLoS One 2019; 14:e0224938. [PMID: 31710651 PMCID: PMC6844471 DOI: 10.1371/journal.pone.0224938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Abstract
Research efforts directed to elucidation of mechanisms behind trading of resources between the partners in the arbuscular mycorrhizal (AM) symbiosis have seen a considerable progress in the recent years. Yet, despite of the recent developments, some key questions still remain unanswered. For example, it is well established that the strictly biotrophic AM fungus releases phosphorus to- and receives carbon molecules from the plant symbiont, but the particular genes, and their products, responsible for facilitating this exchange, are still not fully described, nor are the principles and pathways of their regulation. Here, we made a de novo quest for genes involved in carbon transfer from the plant to the fungus using genome-wide gene expression array targeting whole root and whole shoot gene expression profiles of mycorrhizal and non-mycorrhizal Medicago truncatula plants grown in a glasshouse. Using physiological intervention of heavy shading (90% incoming light removed) and the correlation of expression levels of MtPT4, the mycorrhiza-inducible phosphate transporter operating at the symbiotic interface between the root cortical cells and the AM fungus, and our candidate genes, we demonstrate that several novel genes may be involved in resource tradings in the AM symbiosis established by M. truncatula. These include glucose-6-phosphate/phosphate translocator, polyol/monosaccharide transporter, DUR3-like, nucleotide-diphospho-sugar transferase or a putative membrane transporter. Besides, we also examined the expression of other M. truncatula phosphate transporters (MtPT1-3, MtPT5-6) to gain further insights in the balance between the "direct" and the "mycorrhizal" phosphate uptake pathways upon colonization of roots by the AM fungus, as affected by short-term carbon/energy deprivation. In addition, the role of the novel candidate genes in plant cell metabolism is discussed based on available literature.
Collapse
Affiliation(s)
- Jan Konečný
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
- * E-mail:
| | - Hana Hršelová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Petra Bukovská
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Martina Hujslová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| |
Collapse
|
24
|
Schneider KD, Thiessen Martens JR, Zvomuya F, Reid DK, Fraser TD, Lynch DH, O'Halloran IP, Wilson HF. Options for Improved Phosphorus Cycling and Use in Agriculture at the Field and Regional Scales. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1247-1264. [PMID: 31589712 DOI: 10.2134/jeq2019.02.0070] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soil phosphorus (P) cycling in agroecosystems is highly complex, with many chemical, physical, and biological processes affecting the availability of P to plants. Traditionally, P fertilizer recommendations have been made using an insurance-based approach, which has resulted in the accumulation of P in many intensively managed agricultural soils worldwide and contributed to the widespread water quality issue of eutrophication. To mitigate further environmental degradation and because future P fertilizer supplies are threatened due to finite phosphate rock resources and associated geopolitical and quality issues, there is an immediate need to increase P use efficiency (PUE) in agroecosystems. Through cultivar selection and improved cropping system design, contemporary research suggests that sufficient crop yields could be maintained at reduced soil test P (STP) concentrations. In addition, more efficient P cycling at the field scale can be achieved through agroecosystem management that increases soil organic matter and organic P mineralization and optimizes arbuscular mycorrhizal fungi (AMF) symbioses. This review paper provides a perspective on how agriculture has the potential to utilize plant and microbial traits to improve PUE at the field scale and accordingly, maintain crop yields at lower STP concentrations. It also links with the need to tighten the P cycle at the regional scale, including a discussion of P recovery and recycling technologies, with a particular focus on the use of struvite as a recycled P fertilizer. Guidance on directions for future research is provided.
Collapse
|
25
|
Montesinos-Navarro A, Valiente-Banuet A, Verdú M. Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Watts-Williams SJ, Emmett BD, Levesque-Tremblay V, MacLean AM, Sun X, Satterlee JW, Fei Z, Harrison MJ. Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. PLANT, CELL & ENVIRONMENT 2019; 42:1758-1774. [PMID: 30578745 DOI: 10.1111/pce.13509] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Sorghum is an important crop grown worldwide for feed and fibre. Like most plants, it has the capacity to benefit from symbioses with arbuscular mycorrhizal (AM) fungi, and its diverse genotypes likely vary in their responses. Currently, the genetic basis of mycorrhiza-responsiveness is largely unknown. Here, we investigated transcriptional and physiological responses of sorghum accessions, founders of a bioenergy nested association mapping panel, for their responses to four species of AM fungi. Transcriptome comparisons across four accessions identified mycorrhiza-inducible genes; stringent filtering criteria revealed 278 genes that show mycorrhiza-inducible expression independent of genotype and 55 genes whose expression varies with genotype. The latter suggests variation in phosphate transport and defence across these accessions. The mycorrhiza growth and nutrient responses of 18 sorghum accessions varied tremendously, ranging from mycorrhiza-dependent to negatively mycorrhiza-responsive. Additionally, accessions varied in the number of AM fungi to which they showed positive responses, from one to several fungal species. Mycorrhiza growth and phosphorus responses were positively correlated, whereas expression of two mycorrhiza-inducible phosphate transporters, SbPT8 and SbPT9, correlated negatively with mycorrhizal growth responses. AM fungi improve growth and mineral nutrition of sorghum, and the substantial variation between lines provides the potential to map loci influencing mycorrhiza responses.
Collapse
Affiliation(s)
| | - Bryan D Emmett
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| | | | - Allyson M MacLean
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| | - Xuepeng Sun
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| | - James W Satterlee
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
- Plant Biology Section, SIPs, Cornell University, Ithaca, 14853, NY, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| |
Collapse
|
27
|
Harnessing Soil Microbes to Improve Plant Phosphate Efficiency in Cropping Systems. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphorus is an essential macronutrient required for plant growth and development. It is central to many biological processes, including nucleic acid synthesis, respiration, and enzymatic activity. However, the strong adsorption of phosphorus by minerals in the soil decreases its availability to plants, thus reducing the productivity of agricultural and forestry ecosystems. This has resulted in a complete dependence on non-renewable chemical fertilizers that are environmentally damaging. Alternative strategies must be identified and implemented to help crops acquire phosphorus more sustainably. In this review, we highlight recent advances in our understanding and utilization of soil microbes to both solubilize inorganic phosphate from insoluble forms and allocate it directly to crop plants. Specifically, we focus on arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and phosphate-solubilizing bacteria. Each of these play a major role in natural and agroecosystems, and their use as bioinoculants is an increasing trend in agricultural practices.
Collapse
|
28
|
Salmon Y, Dietrich L, Sevanto S, Hölttä T, Dannoura M, Epron D. Drought impacts on tree phloem: from cell-level responses to ecological significance. TREE PHYSIOLOGY 2019; 39:173-191. [PMID: 30726983 DOI: 10.1093/treephys/tpy153] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.
Collapse
Affiliation(s)
- Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, Gustaf Hällströmin katu 2b, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Lars Dietrich
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, PO Box 1663 MA 495, Los Alamos, NM, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
29
|
Field KJ, Pressel S. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. THE NEW PHYTOLOGIST 2018; 220:996-1011. [PMID: 29696662 DOI: 10.1111/nph.15158] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Contents Summary 996 I. Introduction 996 II. An ancient, and diverse, symbiosis 998 III. Structural diversity in ancient plant-fungal partnerships 1000 IV. Mycorrhizal unity in host plant nutrition 1002 V. Plant-to-fungus carbon transfer 1003 VI. From individuals to networks 1003 VII. Diverse responses of mycorrhizal functioning to dynamic environments 1006 VIII. Summary of future research direction 1007 Acknowledgements 1006 References 1006 SUMMARY: Mycorrhizal symbiosis is an ancient and widespread mutualism between plants and fungi that facilitated plant terrestrialisation > 500 million years ago, with key roles in ecosystem functioning at multiple scales. Central to the symbiosis is the bidirectional exchange of plant-fixed carbon for fungal-acquired nutrients. Within this unifying role of mycorrhizas, considerable diversity in structure and function reflects the diversity of the partners involved. Early diverging plants form mutualisms not only with arbuscular mycorrhizal Glomeromycotina fungi, but also with poorly characterised Mucoromycotina, which may also colonise the roots of 'higher' plants as fine root endophytes. Functional diversity in these symbioses depends on both fungal and plant life histories and is influenced by the environment. Recent studies have highlighted the roles of lipids/fatty acids in plant-to-fungus carbon transport and potential contributions of Glomeromycotina fungi to plant nitrogen nutrition. Together with emerging appreciation of mycorrhizal networks as multi-species resource-sharing systems, these insights are broadening our views on mycorrhizas and their roles in nutrient cycling. It is crucial that the diverse array of biotic and abiotic factors that together shape the dynamics of carbon-for-nutrient exchange between plants and fungi are integrated, in addition to embracing the unfolding and potentially key role of Mucoromycotina fungi in these processes.
Collapse
Affiliation(s)
- Katie J Field
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
30
|
Meier AR, Hunter MD. Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Bachelot B, Lee CT. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence. Ecology 2017; 99:372-384. [PMID: 29121390 DOI: 10.1002/ecy.2080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/12/2022]
Abstract
Evidence accumulates about the role of arbuscular mycorrhizal (AM) fungi in shaping plant communities, but little is known about the factors determining the biomass and coexistence of several types of AM fungi in a plant community. Here, using a consumer-resource framework that treats the relationship between plants and fungi as simultaneous, reciprocal exploitation, we investigated what patterns of dynamic preferential plant carbon allocation to empirically-defined fungal types (on-going partner choice) would be optimal for plants, and how these patterns depend on successional dynamics. We found that ruderal AM fungi can dominate under low steady-state nutrient availability, and competitor AM fungi can dominate at higher steady-state nutrient availability; these are conditions characteristic of early and late succession, respectively. We also found that dynamic preferential allocation alone can maintain a diversity of mutualists, suggesting that on-going partner choice is a new coexistence mechanism for mutualists. Our model can therefore explain both mutualist coexistence and successional strategy, providing a powerful tool to derive testable predictions.
Collapse
Affiliation(s)
- Benedicte Bachelot
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas, 77096, USA
| | - Charlotte T Lee
- Department of Biology, Duke University, 130 Science Drive, Durham, North Carolina, 27708, USA
| |
Collapse
|
32
|
Slavíková R, Püschel D, Janoušková M, Hujslová M, Konvalinková T, Gryndlerová H, Gryndler M, Weiser M, Jansa J. Monitoring CO 2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. MYCORRHIZA 2017; 27:35-51. [PMID: 27549438 DOI: 10.1007/s00572-016-0731-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/15/2016] [Indexed: 05/23/2023]
Abstract
Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13CO2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO2 collection system is presented which allows assessment of gaseous CO2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13C allocation to mycorrhizal substrate) and 2.9% (reduction of 13C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO2 released belowground. These results advocate quantification of both above- and belowground CO2 emissions in future studies.
Collapse
Affiliation(s)
- Renata Slavíková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - David Püschel
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Martina Janoušková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Martina Hujslová
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Tereza Konvalinková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Hana Gryndlerová
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Milan Gryndler
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Martin Weiser
- Faculty of Science, Department of Botany, Charles University in Prague, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
33
|
Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol 2016; 6:4332-46. [PMID: 27386079 PMCID: PMC4930984 DOI: 10.1002/ece3.2207] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/02/2023] Open
Abstract
Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)-limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient-poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N-uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the R. irregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non-mycorrhizal plants across the entire range of nutrient supplies.
Collapse
Affiliation(s)
- David Püschel
- Laboratory of Fungal BiologyInstitute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
- Department of Mycorrhizal SymbiosesInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Martina Janoušková
- Laboratory of Fungal BiologyInstitute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
- Department of Mycorrhizal SymbiosesInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Martina Hujslová
- Laboratory of Fungal BiologyInstitute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
| | - Renata Slavíková
- Laboratory of Fungal BiologyInstitute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
| | - Hana Gryndlerová
- Laboratory of Fungal BiologyInstitute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
| | - Jan Jansa
- Laboratory of Fungal BiologyInstitute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
| |
Collapse
|
34
|
Konvalinková T, Jansa J. Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation. FRONTIERS IN PLANT SCIENCE 2016; 7:782. [PMID: 27375642 PMCID: PMC4893486 DOI: 10.3389/fpls.2016.00782] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/20/2016] [Indexed: 05/10/2023]
Abstract
Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases-on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore, these subjects deserve particular attention in the future.
Collapse
Affiliation(s)
- Tereza Konvalinková
- Laboratory of Fungal Biology, Institute of Microbiology, The Czech Academy of SciencesPrague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, The Czech Academy of SciencesPrague, Czech Republic
| |
Collapse
|
35
|
van der Heijden MGA, Walder F. Reply to 'Misconceptions on the application of biological market theory to the mycorrhizal symbiosis'. NATURE PLANTS 2016; 2:16062. [PMID: 27243655 DOI: 10.1038/nplants.2016.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Marcel G A van der Heijden
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046 Zürich, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
- Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Florian Walder
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046 Zürich, Switzerland
| |
Collapse
|
36
|
Schnepf A, Leitner D, Schweiger PF, Scholl P, Jansa J. L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots. J R Soc Interface 2016; 13:20160129. [PMID: 27097653 PMCID: PMC4874435 DOI: 10.1098/rsif.2016.0129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/30/2016] [Indexed: 11/12/2022] Open
Abstract
Development of arbuscular mycorrhizal fungal colonization of roots and the surrounding soil is the central process of mycorrhizal symbiosis, important for ecosystem functioning and commercial inoculum applications. To improve mechanistic understanding of this highly spatially and temporarily dynamic process, we developed a three-dimensional model taking into account growth of the roots and hyphae. It is for the first time that infection within the root system is simulated dynamically and in a spatially resolved way. Comparison between data measured in a calibration experiment and simulated results showed a good fit. Our simulations showed that the position of the fungal inoculum affects the sensitivity of hyphal growth parameters. Variation in speed of secondary infection and hyphal lifetime had a different effect on root infection and hyphal length, respectively, depending on whether the inoculum was concentrated or dispersed. For other parameters (branching rate, distance between entry points), the relative effect was the same independent of inoculum placement. The model also indicated that maximum root colonization levels well below 100%, often observed experimentally, may be a result of differential spread of roots and hyphae, besides intrinsic plant control, particularly upon localized placement of inoculum and slow secondary infection.
Collapse
Affiliation(s)
- A Schnepf
- Forschungszentrum Juelich GmbH, Institute of Bio- and Geosciences, IBG-3: Agrosphere, 52425 Juelich, Germany
| | - D Leitner
- Computational Science Center, University of Vienna, Oskar Morgenstern-Platz 1, 1090 Vienna, Austria
| | - P F Schweiger
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - P Scholl
- Institute of Hydraulics and Rural Water Management, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - J Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Praha 4 - Krč, 142 20, Czech Republic
| |
Collapse
|
37
|
Molecular diversity and distribution of indigenous arbuscular mycorrhizal communities colonizing roots of two different winter cover crops in response to their root proliferation. J Microbiol 2016; 54:86-97. [PMID: 26832664 DOI: 10.1007/s12275-016-5379-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 12/07/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.
Collapse
|
38
|
Varga S, Kytöviita M. Faster acquisition of symbiotic partner by common mycorrhizal networks in early plant life stage. Ecosphere 2016. [DOI: 10.1002/ecs2.1222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Sandra Varga
- Department of Biological and Environmental ScienceUniversity of Jyvaskyla P.O. Box 35 FI‐40014 Jyvaskyla Finland
| | - Minna‐Maarit Kytöviita
- Department of Biological and Environmental ScienceUniversity of Jyvaskyla P.O. Box 35 FI‐40014 Jyvaskyla Finland
| |
Collapse
|
39
|
|
40
|
Walder F, van der Heijden MGA. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. NATURE PLANTS 2015; 1:15159. [PMID: 27251530 DOI: 10.1038/nplants.2015.159] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/25/2015] [Indexed: 05/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are one of the most important groups of plant symbionts. These fungi provide mineral nutrients to plants in exchange for carbon. Although substantial amounts of resources are exchanged, the factors that regulate trade in the AM symbiosis are poorly understood. Recent evidence for the reciprocally regulated exchange of resources by AM fungi and plants has led to the suggestion that these symbioses operate according to biological market dynamics, in which interactions are viewed from an economic perspective, and the most beneficial partners are favoured. Here we present five arguments that challenge the importance of reciprocally regulated exchange, and thereby market dynamics, for resource exchange in the AM symbiosis, and suggest that such reciprocity is only found in a subset of symbionts, under specific conditions. We instead propose that resource exchange in the AM symbiosis is determined by competition for surplus resources, functional diversity and sink strength.
Collapse
Affiliation(s)
- Florian Walder
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046 Zürich, Switzerland
| | - Marcel G A van der Heijden
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046 Zürich, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
- Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
41
|
Sýkorová Z, Rydlová J, Slavíková R, Ness T, Kohout P, Püschel D. Forest reclamation of fly ash deposit: a field study on appraisal of mycorrhizal inoculation. Restor Ecol 2015. [DOI: 10.1111/rec.12301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Zuzana Sýkorová
- Institute of Botany; Academy of Sciences of the Czech Republic; Zámek 1 Průhonice 252 43 Czech Republic
| | - Jana Rydlová
- Institute of Botany; Academy of Sciences of the Czech Republic; Zámek 1 Průhonice 252 43 Czech Republic
| | - Renata Slavíková
- Institute of Botany; Academy of Sciences of the Czech Republic; Zámek 1 Průhonice 252 43 Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic; Vídeňská, 1083 Praha 4-Krč, 142 20 Czech Republic
| | - Tara Ness
- Institute of Botany; Academy of Sciences of the Czech Republic; Zámek 1 Průhonice 252 43 Czech Republic
- Present address: 4718, 11th Avenue NE Apt 16, Seattle, WA 98115; U.S.A
| | - Petr Kohout
- Institute of Botany; Academy of Sciences of the Czech Republic; Zámek 1 Průhonice 252 43 Czech Republic
| | - David Püschel
- Institute of Botany; Academy of Sciences of the Czech Republic; Zámek 1 Průhonice 252 43 Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic; Vídeňská, 1083 Praha 4-Krč, 142 20 Czech Republic
| |
Collapse
|
42
|
Bárzana G, Aroca R, Ruiz-Lozano JM. Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. PLANT, CELL & ENVIRONMENT 2015; 38:1613-27. [PMID: 25630435 DOI: 10.1111/pce.12507] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 05/20/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis alters host plant physiology under drought stress, but no information is available on whether or not the AM affects respond to drought locally or systemically. A split-root system was used to obtain AM plants with total or only half root system colonized as well as to induce physiological drought affecting the whole plant or non-physiological drought affecting only the half root system. We analysed the local and/or systemic nature of the AM effects on accumulation of osmoregulatory compounds and aquaporins and on antioxidant systems. Maize plants accumulated proline both, locally in roots affected by drought and systemically when the drought affected the whole root system, being the last effect ampler in AM plants. PIPs (plasma membrane intrinsic proteins) aquaporins were also differently regulated by drought in AM and non-AM root compartments. When the drought affected only the AM root compartment, the rise of lipid peroxidation was restricted to such compartment. On the contrary, when the drought affected the non-AM root fraction, the rise of lipid peroxidation was similar in both root compartments. Thus, the benefits of the AM symbiosis not only rely in a lower oxidative stress in the host plant, but it also restricts locally such oxidative stress.
Collapse
Affiliation(s)
- Gloria Bárzana
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| |
Collapse
|
43
|
Tomè E, Tagliavini M, Scandellari F. Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:83-9. [PMID: 25841208 DOI: 10.1016/j.jplph.2015.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 05/14/2023]
Abstract
Most crop species form a symbiotic association with arbuscular mycorrhizal (AM) fungi, receiving plant photosynthate and exchanging nutrients from the soil. The plant carbon (C) allocation to AM fungi and the nitrogen feedback are rarely studied together. In this study, a dual (13)CO2 and (15)NH4(15)NO3 pulse labeling experiment was carried out to determine the allocation of recent photosynthates to mycorrhizal hyphae and the translocation of N absorbed by hyphae to strawberry plants. Plants were grown in pots in which a 50 μm mesh net allowed the physical separation of the mycorrhizal hyphae from the roots in one portion of the pot. An inorganic source of (15)N was added to the hyphal compartment at the same time of the (13)CO2 pulse labeling. One and seven days after pulse labeling, the plants were destructively harvested and the amount of the recently fixed carbon (C) and of the absorbed N was determined. (13)C allocated to belowground organs such as roots and mycorrhizal hyphae accounted for an average of 10%, with 4.3% allocated to mycorrhizal hyphae within the first 24h after the pulse labeling. Mycorrhizae absorbed labeled inorganic nitrogen, of which almost 23% was retained in the fungal mycelium. The N uptake was linearly correlated with the (13)C fixed by the plants suggesting a positive correlation between a plant photosynthetic rate and the hyphal absorption capacity.
Collapse
Affiliation(s)
- Elisabetta Tomè
- Faculty of Science and Technology, Free University of Bozen-Bolzano Piazza Università 5, 39100 Bolzano, BZ, Italy.
| | - Massimo Tagliavini
- Faculty of Science and Technology, Free University of Bozen-Bolzano Piazza Università 5, 39100 Bolzano, BZ, Italy.
| | - Francesca Scandellari
- Faculty of Science and Technology, Free University of Bozen-Bolzano Piazza Università 5, 39100 Bolzano, BZ, Italy.
| |
Collapse
|
44
|
Kohout P, Doubková P, Bahram M, Suda J, Tedersoo L, Voříšková J, Sudová R. Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Mol Ecol 2015; 24:1831-43. [DOI: 10.1111/mec.13147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Petr Kohout
- Institute of Botany; The Czech Academy of Science; CZ-252 43 Průhonice Czech Republic
- Department of Botany; Institute of Ecology and Earth Sciences; University of Tartu; EE-510 05 Tartu Estonia
- Department of Experimental Plant Biology; Faculty of Science; Charles University in Prague; CZ-128 44 Prague 2 Czech Republic
| | - Pavla Doubková
- Institute of Botany; The Czech Academy of Science; CZ-252 43 Průhonice Czech Republic
- Department of Experimental Plant Biology; Faculty of Science; Charles University in Prague; CZ-128 44 Prague 2 Czech Republic
| | - Mohammad Bahram
- Department of Botany; Institute of Ecology and Earth Sciences; University of Tartu; EE-510 05 Tartu Estonia
| | - Jan Suda
- Institute of Botany; The Czech Academy of Science; CZ-252 43 Průhonice Czech Republic
- Department of Botany; Faculty of Science; Charles University in Prague; CZ-128 01 Prague 2 Czech Republic
| | - Leho Tedersoo
- Department of Botany; Institute of Ecology and Earth Sciences; University of Tartu; EE-510 05 Tartu Estonia
| | - Jana Voříšková
- Institute of Microbiology; The Czech Academy of Science; CZ-142 20 Prague 4 Czech Republic
| | - Radka Sudová
- Institute of Botany; The Czech Academy of Science; CZ-252 43 Průhonice Czech Republic
| |
Collapse
|
45
|
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. THE NEW PHYTOLOGIST 2015; 205:1406-1423. [PMID: 25639293 DOI: 10.1111/nph.13288] [Citation(s) in RCA: 793] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/30/2014] [Indexed: 05/04/2023]
Abstract
Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Marcel G A van der Heijden
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046, Zürich, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057, Zürich, Switzerland
- Plant-microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Francis M Martin
- INRA, Lab of Excellence ARBRE, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, 54280, Champenoux, France
| | - Marc-André Selosse
- Département Systématique et Evolution (UMR 7205 ISYEB), Muséum national d'Histoire naturelle, CP 50, 45 rue Buffon, 75005, Paris, France
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
46
|
Konvalinková T, Püschel D, Janoušková M, Gryndler M, Jansa J. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2015; 6:65. [PMID: 25763002 PMCID: PMC4327418 DOI: 10.3389/fpls.2015.00065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/25/2015] [Indexed: 05/22/2023]
Abstract
Plant and fungal partners in arbuscular mycorrhizal symbiosis trade mineral nutrients for carbon, with the outcome of this relationship for plant growth and nutrition being highly context-dependent and changing with the availability of resources as well as with the specific requirements of the different partners. Here we studied how the model legume Medicago truncatula, inoculated or not with a mycorrhizal fungus Rhizophagus irregularis, responded to a gradient of light intensities applied over different periods of time, in terms of growth, phosphorus nutrition and the levels of root colonization by the mycorrhizal fungus. Short-term (6 d) shading, depending on its intensity, resulted in a rapid decline of phosphorus uptake to the shoots of mycorrhizal plants and simultaneous accumulation of phosphorus in the roots (most likely in the fungal tissues), as compared to the non-mycorrhizal controls. There was, however, no significant change in the levels of mycorrhizal colonization of roots due to short-term shading. Long-term (38 d) shading, depending on its intensity, provoked a multitude of plant compensatory mechanisms, which were further boosted by the mycorrhizal symbiosis. Mycorrhizal growth- and phosphorus uptake benefits, however, vanished at 10% of the full light intensity applied over a long-term. Levels of root colonization by the mycorrhizal fungus were significantly reduced by long-term shading. Our results indicate that even short periods of shade could have important consequences for the functioning of mycorrhizal symbiosis in terms of phosphorus transfer between the fungus and the plants, without any apparent changes in root colonization parameters or mycorrhizal growth response, and call for more focused research on temporal dynamics of mycorrhizal functioning under changing environmental conditions.
Collapse
Affiliation(s)
- Tereza Konvalinková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - David Püschel
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Department of Mycorrhizal Symbioses, Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czech Republic
| | - Martina Janoušková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Department of Mycorrhizal Symbioses, Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czech Republic
| | - Milan Gryndler
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
47
|
Adolfsson L, Solymosi K, Andersson MX, Keresztes Á, Uddling J, Schoefs B, Spetea C. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production. PLoS One 2015; 10:e0115314. [PMID: 25615871 PMCID: PMC4304716 DOI: 10.1371/journal.pone.0115314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/22/2014] [Indexed: 11/29/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with P(i) fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i) fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i) supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i)-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i) fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i)-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.
Collapse
Affiliation(s)
- Lisa Adolfsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Mats X. Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Áron Keresztes
- Department of Plant Anatomy, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Benoît Schoefs
- Mer, Molécules, Santé, MicroMar—EA2160, LUNAM Université, IUML – FR 3473 CNRS, University of Le Mans, 72085 Le Mans Cedex 9, France
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| |
Collapse
|
48
|
|
49
|
Varga S, Kytöviita MM. Variable mycorrhizal benefits on the reproductive output of Geranium sylvaticum, with special emphasis on the intermediate phenotype. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:306-314. [PMID: 23870051 DOI: 10.1111/plb.12050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function--seed production--did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites.
Collapse
Affiliation(s)
- S Varga
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | |
Collapse
|
50
|
Massenssini AM, Bonduki VHA, Tótola MR, Ferreira FA, Costa MD. Arbuscular mycorrhizal associations and occurrence of dark septate endophytes in the roots of Brazilian weed plants. MYCORRHIZA 2014; 24:153-9. [PMID: 23912812 DOI: 10.1007/s00572-013-0519-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/15/2013] [Indexed: 05/22/2023]
Abstract
The ecology of weed plants includes their interactions with soil microorganisms, such as mutualistic partners that may contribute to their adaptation and competitive success in the agricultural fields. Despite the importance of microorganisms to plant growth, knowledge on weed-symbiont associations is still incipient compared to crops. Thus, a survey for the presence of arbuscular mycorrhiza (AM) and dark septate endophyte (DSE) associations in the roots of 50 weed species was done in three distinct areas during the dry and rainy seasons. We found that 41 and 29 out of the 50 species were associated with AM fungi and DSE, respectively, and 27 species presented both associations. All the plant species not forming AM belong to families thought to be nonmycorrhizal, such as Amaranthaceae, Commelinaceae, Brassicaceae, and Cyperaceae. The most common morphotype of AM observed was the Arum-type. No significant differences were found in root length colonization between the areas or seasons. For 19 species surveyed, this is the first report on their mycorrhizal status.
Collapse
|