1
|
Mbodj D, Diedhiou AG, Manneh B, Ndiaye C, Laplaze L, Kane A. AMF inoculation reduces yield losses in rice exposed to alternate wetting and drying and low fertilization. Sci Rep 2025; 15:12281. [PMID: 40210924 PMCID: PMC11986142 DOI: 10.1038/s41598-025-95528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) enhance the uptake of water and nutrients by host plants. In this study, we examined the response of six rice varieties from two ecotypes (three irrigated and three rainfed upland varieties) to AMF inoculation at five fertilizer levels, under continuous flooding (CF) and alternate wetting and drying (AWD) irrigation over two consecutive years in field conditions. Both irrigated and upland rice varieties experienced significant yield losses with AWD irrigation and reduced NPK fertilizer levels, with irrigated rice being more severely affected. Under AWD irrigation, AMF inoculation mitigated relative yield losses, especially when half of the recommended fertilizer dose was applied. In CF conditions, AMF inoculation often fully compensated for yield losses caused by reduced NPK levels. Furthermore, irrigation regime, fertilizer levels, and ecotype were significant sources of variation in the effects of AMF inoculation on several yield-related traits, such as total biomass, tiller number, panicle number, fertility, and maturity dates. Our findings suggest that AMF inoculation could be integrated with AWD irrigation and/or low NPK inputs to contribute to fertilizer and water savings in both irrigated and upland rice production systems.
Collapse
Affiliation(s)
- Daouda Mbodj
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel-Air, Dakar, Senegal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Senegal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
- Centre d'Excellence Africain « Environnement, Santé, Sociétés » (CEA-AGIR), UCAD, Dakar, Senegal
| | - Abdala Gamby Diedhiou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal.
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel-Air, Dakar, Senegal.
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Senegal.
- Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Senegal.
| | - Baboucarr Manneh
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel-Air, Dakar, Senegal.
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal.
| | - Cheikh Ndiaye
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel-Air, Dakar, Senegal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Senegal
| | - Laurent Laplaze
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel-Air, Dakar, Senegal.
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Senegal.
- Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Senegal.
- DIADE, IRD, CIRAD, Université de Montpellier, Montpellier, France.
| | - Aboubacry Kane
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal.
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel-Air, Dakar, Senegal.
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Senegal.
- Centre d'Excellence Africain « Environnement, Santé, Sociétés » (CEA-AGIR), UCAD, Dakar, Senegal.
| |
Collapse
|
2
|
Wang S, Ye H, Yang C, Zhang Y, Pu J, Ren Y, Xie K, Wang L, Zeng D, He H, Ji H, Herrera-Estrella LR, Xu G, Chen A. OsNLP3 and OsPHR2 orchestrate direct and mycorrhizal pathways for nitrate uptake by regulating NAR2.1-NRT2s complexes in rice. Proc Natl Acad Sci U S A 2025; 122:e2416345122. [PMID: 39964711 PMCID: PMC11874573 DOI: 10.1073/pnas.2416345122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Nitrogen (N) is the most important essential nutrient required by plants. Most land plants have evolved two N uptake pathways, a direct root pathway and a symbiotic pathway, via association with arbuscular mycorrhizal (AM) fungi. However, the interaction between the two pathways is ambiguous. Here, we report that OsNAR2.1-OsNRT2s, the nitrate (NO3-) transporter complexes with crucial roles in direct NO3- uptake, are also recruited for symbiotic NO3- uptake. OsNAR2.1 and OsNRT2.1/2.2 are coregulated by NIN-like protein 3 (OsNLP3), a key regulator in NO3- signaling, and OsPHR2, a major regulator of phosphate starvation responses. More importantly, AM symbiosis induces expression of OsNAR2.1-OsNRT2s, OsNLP3, and OsSPX4, encoding an intracellular Pi sensor, in arbuscular-containing cells, but weakens their expression in the epidermis. OsNAR2.1 and OsNLP3 can activate both mycorrhizal NO3- uptake and mycorrhization efficiency. Overall, we demonstrate that OsNLP3 and OsPHR2 orchestrate the direct and mycorrhizal NO3- uptake pathways by regulating the NAR2.1-NRT2s complexes in rice.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Hanghang Ye
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Congfan Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Jiawen Pu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Kun Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Lingxiao Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Dechao Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Haoqiang He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Haoyan Ji
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Luis Rafael Herrera-Estrella
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX79409
- Unidad de Genomica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanjautao36618, Mexico
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
3
|
Bunn RA, Corrêa A, Joshi J, Kaiser C, Lekberg Y, Prescott CE, Sala A, Karst J. What determines transfer of carbon from plants to mycorrhizal fungi? THE NEW PHYTOLOGIST 2024; 244:1199-1215. [PMID: 39352455 DOI: 10.1111/nph.20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/18/2024] [Indexed: 10/18/2024]
Abstract
Biological Market Models are common evolutionary frameworks to understand the maintenance of mutualism in mycorrhizas. 'Surplus C' hypotheses provide an alternative framework where stoichiometry and source-sink dynamics govern mycorrhizal function. A critical difference between these frameworks is whether carbon transfer from plants is regulated by nutrient transfer from fungi or through source-sink dynamics. In this review, we: provide a historical perspective; summarize studies that asked whether plants transfer more carbon to fungi that transfer more nutrients; conduct a meta-analysis to assess whether mycorrhizal plant growth suppressions are related to carbon transfer; and review literature on cellular mechanisms for carbon transfer. In sum, current knowledge does not indicate that carbon transfer from plants is directly regulated by nutrient delivery from fungi. Further, mycorrhizal plant growth responses were linked to nutrient uptake rather than carbon transfer. These findings are more consistent with 'Surplus C' hypotheses than Biological Market Models. However, we also identify research gaps, and future research may uncover a mechanism directly linking carbon and nutrient transfer. Until then, we urge caution when applying economic terminology to describe mycorrhizas. We present a synthesis of ideas, consider knowledge gaps, and suggest experiments to advance the field.
Collapse
Affiliation(s)
- Rebecca A Bunn
- Department of Environmental Sciences, Western Washington University, 516 HIgh Street, Bellingham, WA, 98225, USA
| | - Ana Corrêa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Jaya Joshi
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Cindy E Prescott
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| |
Collapse
|
4
|
Szada-Borzyszkowska A, Krzyżak J, Rusinowski S, Magurno F, Pogrzeba M. Inoculation with Arbuscular Mycorrhizal Fungi Supports the Uptake of Macronutrients and Promotes the Growth of Festuca ovina L. and Trifolium medium L., a Candidate Species for Green Urban Infrastructure. PLANTS (BASEL, SWITZERLAND) 2024; 13:2620. [PMID: 39339595 PMCID: PMC11434852 DOI: 10.3390/plants13182620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Green roofs and walls play an important role in promoting biodiversity, reducing the urban heat island effect and providing ecosystem services in urban areas. However, the conditions on green walls/roofs (low nutrient and organic matter content, drought, high temperatures) are often unfavorable for plant growth. Arbuscular mycorrhizal fungi (AMF) can improve the growth and development of plants under stress conditions as they can increase nutrient and water uptake. In a 6-month pot experiment, we investigated the effect of AMF inoculation on the growth and NPK uptake of Festuca ovina L. and Trifolium medium L., which are used for green roofs and walls. Two variants of mycorrhizal inoculation were used in the experiment: a commercial mycorrhizal inoculant AM Symbivit (Symbiom Ltd., Lanskroun, Czech Republic) and a mycorrhizal inoculant collected from calcareous grassland in the Silesia region (Poland). Funneliformis mosseae was the most abundant species in the roots of F. ovina and T. medium with IM inoculum. In the CM variant, a dominance of F. mosseae was observed in the roots of F. ovina. In contrast, Archaeosporaceae sp. node 317 dominated in the roots of T. medium. Both inoculations had a positive effect on the increase in dry weight of the shoots of T. medium, but only the commercial inoculum had a positive effect on the growth of F. ovina. Both inoculations improved the P uptake by the roots and the P and K uptake into the shoots of T. medium. In addition, both inoculations improved the K uptake by the roots of F. ovina and the N, P and K uptake into the shoots. In conclusion, both AMF communities included in the inoculations had a positive effect on plant growth and nutrient uptake, but the effect depends on the plant and the mycorrhizal fungus species.
Collapse
Affiliation(s)
| | - Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
- CommLED Solution Sp. z.o.o., 149 Tarnogórska St., 44-100 Gliwice, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St., 40-032 Katowice, Poland
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
| |
Collapse
|
5
|
Cao M, Xiang Y, Huang L, Li M, Jin C, He C, Xin G. Winter forage crops influence soil properties through establishing different arbuscular mycorrhizal fungi communities in paddy field. ADVANCED BIOTECHNOLOGY 2024; 2:30. [PMID: 39883251 PMCID: PMC11740874 DOI: 10.1007/s44307-024-00037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 01/31/2025]
Abstract
Winter planting is promising for improving the utilization rate of fallow paddy fields in southern China by establishing arbuscular mycorrhizal fungi (AMF) communities. However, the effects of different winter forage crops on AMF community construction remain unknown. The AMF community establishment of different winter planting forage crops were conducted in oat, rye, Chinese milk vetch, and ryegrass, with winter fallow as a control. The AMF colonization rate, soil AMF spore density, community structure and diversity, and soil physicochemical properties were determined. The results showed that the total nitrogen and available nitrogen in winter Chinese milk vetch were 11.11% and 16.92% higher than those in winter fallow (P < 0.05). After planting winter forage crops, the AMF spore density in winter oat, rye, Chinese milk vetch, and ryegrass soil were 127.90%, 64.37%, 59.91%, and 73.62% higher than that before planting, respectively (P < 0.05). Claroideoglomus was the dominant AMF genus in the soil of winter planting oat, rye, and ryegrass. The average membership function value of winter Chinese milk vetch was the highest, indicating that it had the best comprehensive effect on soil physicochemical properties, AMF community structure and diversity, and fresh forage yield. Winter forage crops could increase the spore pool of soil AMF and improve the soil AMF community structure and diversity. Winter Chinese milk vetch in paddy field had the best comprehensive effect on soil physicochemical properties and soil AMF community according to the comprehensive evaluation. These findings provide a theoretical basis for sustainable development and utilization of the southern rice paddy ecosystem.
Collapse
Affiliation(s)
- Mengyan Cao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Xiang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Lingyue Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Menghao Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Cheng Jin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chuntao He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Guorong Xin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
6
|
Perotto S, Balestrini R. At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza. THE NEW PHYTOLOGIST 2024; 242:1408-1416. [PMID: 37884478 DOI: 10.1111/nph.19338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Arbuscular (AM) and orchid (OrM) mycorrhiza are the most widespread mycorrhizal symbioses among flowering plants, formed by distinct fungal and plant species. They are both endosymbioses because the fungal hyphae can enter inside the plant cell to develop intracellular fungal structures that are surrounded by the plant membrane. The symbiotic plant-fungus interface is considered to be the major site of nutrient transfer to the host plant. We summarize recent data on nutrient transfer in OrM and compare the development and function of the arbuscules formed in AM and the pelotons formed in OrM in order to outline differences and conserved traits. We further describe the unexpected similarities in the form and function of the intracellular mycorrhizal fungal structures observed in orchids and in the roots of mycoheterotrophic plants forming AM. We speculate that these similarities may be the result of convergent evolution of mycorrhizal types in mycoheterotrophic plants and highlight knowledge gaps and new research directions to explore this scenario.
Collapse
Affiliation(s)
- Silvia Perotto
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, Torino, 10125, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche-Istituto per la Protezione Sostenibile delle Piante (IPSP), Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
7
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
8
|
Maniero RA, Koltun A, Vitti M, Factor BG, de Setta N, Câmara AS, Lima JE, Figueira A. Identification and functional characterization of the sugarcane ( Saccharum spp.) AMT2-type ammonium transporter ScAMT3;3 revealed a presumed role in shoot ammonium remobilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1299025. [PMID: 38098795 PMCID: PMC10720369 DOI: 10.3389/fpls.2023.1299025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Sugarcane (Saccharum spp.) is an important crop for sugar and bioethanol production worldwide. To maintain and increase sugarcane yields in marginal areas, the use of nitrogen (N) fertilizers is essential, but N overuse may result in the leaching of reactive N to the natural environment. Despite the importance of N in sugarcane production, little is known about the molecular mechanisms involved in N homeostasis in this crop, particularly regarding ammonium (NH4 +), the sugarcane's preferred source of N. Here, using a sugarcane bacterial artificial chromosome (BAC) library and a series of in silico analyses, we identified an AMMONIUM TRANSPORTER (AMT) from the AMT2 subfamily, sugarcane AMMONIUM TRANSPORTER 3;3 (ScAMT3;3), which is constitutively and highly expressed in young and mature leaves. To characterize its biochemical function, we ectopically expressed ScAMT3;3 in heterologous systems (Saccharomyces cerevisiae and Arabidopsis thaliana). The complementation of triple mep mutant yeast demonstrated that ScAMT3;3 is functional for NH3/H+ cotransport at high availability of NH4 + and under physiological pH conditions. The ectopic expression of ScAMT3;3 in the Arabidopsis quadruple AMT knockout mutant restored the transport capacity of 15N-NH4 + in roots and plant growth under specific N availability conditions, confirming the role of ScAMT3;3 in NH4 + transport in planta. Our results indicate that ScAMT3;3 belongs to the low-affinity transport system (Km 270.9 µM; Vmax 209.3 µmol g-1 root DW h-1). We were able to infer that ScAMT3;3 plays a presumed role in NH4 + source-sink remobilization in the shoots via phloem loading. These findings help to shed light on the functionality of a novel AMT2-type protein and provide bases for future research focusing on the improvement of sugarcane yield and N use efficiency.
Collapse
Affiliation(s)
- Rodolfo A. Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Alessandra Koltun
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marielle Vitti
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Bruna G. Factor
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Amanda S. Câmara
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Joni E. Lima
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
9
|
Sebastiana M, Serrazina S, Monteiro F, Wipf D, Fromentin J, Teixeira R, Malhó R, Courty PE. Nitrogen Acquisition and Transport in the Ectomycorrhizal Symbiosis-Insights from the Interaction between an Oak Tree and Pisolithus tinctorius. PLANTS (BASEL, SWITZERLAND) 2022; 12:10. [PMID: 36616139 PMCID: PMC9823632 DOI: 10.3390/plants12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In temperate forests, the roots of various tree species are colonized by ectomycorrhizal fungi, which have a key role in the nitrogen nutrition of their hosts. However, not much is known about the molecular mechanisms related to nitrogen metabolism in ectomycorrhizal plants. This study aimed to evaluate the nitrogen metabolic response of oak plants when inoculated with the ectomycorrhizal fungus Pisolithus tinctorius. The expression of candidate genes encoding proteins involved in nitrogen uptake and assimilation was investigated in ectomycorrhizal roots. We found that three oak ammonium transporters were over-expressed in root tissues after inoculation, while the expression of amino acid transporters was not modified, suggesting that inorganic nitrogen is the main form of nitrogen transferred by the symbiotic fungus into the roots of the host plant. Analysis by heterologous complementation of a yeast mutant defective in ammonium uptake and GFP subcellular protein localization clearly confirmed that two of these genes encode functional ammonium transporters. Structural similarities between the proteins encoded by these ectomycorrhizal upregulated ammonium transporters, and a well-characterized ammonium transporter from E. coli, suggest a similar transport mechanism, involving deprotonation of NH4+, followed by diffusion of uncharged NH3 into the cytosol. This view is supported by the lack of induction of NH4+ detoxifying mechanisms, such as the GS/GOGAT pathway, in the oak mycorrhizal roots.
Collapse
Affiliation(s)
- Mónica Sebastiana
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Susana Serrazina
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Filipa Monteiro
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jérome Fromentin
- Agroécologie, INRAE, Institut Agro, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Rita Teixeira
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rui Malhó
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pierre-Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, University Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
10
|
Hui J, An X, Li Z, Neuhäuser B, Ludewig U, Wu X, Schulze WX, Chen F, Feng G, Lambers H, Zhang F, Yuan L. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. THE PLANT CELL 2022; 34:4066-4087. [PMID: 35880836 PMCID: PMC9516061 DOI: 10.1093/plcell/koac225] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Hui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Xia An
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhibo Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Benjamin Neuhäuser
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Hans Lambers
- School of Biological Science and Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
11
|
LjAMT2;2 Promotes Ammonium Nitrogen Transport during Arbuscular Mycorrhizal Fungi Symbiosis in Lotus japonicus. Int J Mol Sci 2022; 23:ijms23179522. [PMID: 36076919 PMCID: PMC9455674 DOI: 10.3390/ijms23179522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are important symbiotic microorganisms in soil that engage in symbiotic relationships with legumes, resulting in mycorrhizal symbiosis. Establishment of strong symbiotic relationships between AMF and legumes promotes the absorption of nitrogen by plants. Ammonium nitrogen can be directly utilised by plants following ammonium transport, but there are few reports on ammonium transporters (AMTs) promoting ammonium nitrogen transport during AM symbiosis. Lotus japonicus is a typical legume model plant that hosts AMF. In this study, we analysed the characteristics of the Lotus japonicus ammonium transporter LjAMT2;2, and found that it is a typical ammonium transporter with mycorrhizal-induced and ammonium nitrogen transport-related cis-acting elements in its promoter region. LjAMT2;2 facilitated ammonium transfer in yeast mutant supplement experiments. In the presence of different nitrogen concentrations, the LjAMT2;2 gene was significantly upregulated following inoculation with AMF, and induced by low nitrogen. Overexpression of LjAMT2;2 increased the absorption of ammonium nitrogen, resulting in doubling of nitrogen content in leaves and roots, thus alleviating nitrogen stress and promoting plant growth.
Collapse
|
12
|
Ganugi P, Fiorini A, Rocchetti G, Bonini P, Tabaglio V, Lucini L. A response surface methodology approach to improve nitrogen use efficiency in maize by an optimal mycorrhiza-to- Bacillus co-inoculation rate. FRONTIERS IN PLANT SCIENCE 2022; 13:956391. [PMID: 36035726 PMCID: PMC9404334 DOI: 10.3389/fpls.2022.956391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Co-inoculation of arbuscular mycorrhizal fungi (AMF) and bacteria can synergically and potentially increase nitrogen use efficiency (NUE) in plants, thus, reducing nitrogen (N) fertilizers use and their environmental impact. However, limited research is available on AMF-bacteria interaction, and the definition of synergisms or antagonistic effects is unexplored. In this study, we adopted a response surface methodology (RSM) to assess the optimal combination of AMF (Rhizoglomus irregulare and Funneliformis mosseae) and Bacillus megaterium (a PGPR-plant growth promoting rhizobacteria) formulations to maximize agronomical and chemical parameters linked to N utilization in maize (Zea mays L.). The fitted mathematical models, and also 3D response surface and contour plots, allowed us to determine the optimal AMF and bacterial doses, which are approximately accorded to 2.1 kg ha-1 of both formulations. These levels provided the maximum values of SPAD, aspartate, and glutamate. On the contrary, agronomic parameters were not affected, except for the nitrogen harvest index (NHI), which was slightly affected (p-value of < 0.10) and indicated a higher N accumulation in grain following inoculation with 4.1 and 0.1 kg ha-1 of AMF and B. megaterium, respectively. Nonetheless, the identification of the saddle points for asparagine and the tendency to differently allocate N when AMF or PGPR were used alone, pointed out the complexity of microorganism interaction and suggests the need for further investigations aimed at unraveling the mechanisms underlying this symbiosis.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
13
|
Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction. SUSTAINABILITY 2022. [DOI: 10.3390/su14137840] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with plants; a symbiotic relationship is one in which both partners benefit from each other. Fungi benefit plants by improving uptake of water and nutrients, especially phosphorous, while plants provide 10–20% of their photosynthates to fungus. AMF tend to make associations with 85% of plant families and play a significant role in the sustainability of an ecosystem. Plants’ growth and productivity are negatively affected by various biotic and abiotic stresses. AMF proved to enhance plants’ tolerance against various stresses, such as drought, salinity, high temperature, and heavy metals. There are some obstacles impeding the beneficial formation of AMF communities, such as heavy tillage practices, high fertilizer rates, unchecked pesticide application, and monocultures. Keeping in view the stress-extenuation potential of AMF, the present review sheds light on their role in reducing erosion, nutrient leaching, and tolerance to abiotic stresses. In addition, recent advances in commercial production of AMF are discussed.
Collapse
|
14
|
Cheng K, Wei M, Jin X, Tang M, Zhang H. LbAMT3-1, an ammonium transporter induced by arbuscular mycorrhizal in Lycium barbarum, confers tobacco with higher mycorrhizal levels and nutrient uptake. PLANT CELL REPORTS 2022; 41:1477-1480. [PMID: 35201412 DOI: 10.1007/s00299-022-02847-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE An ammonium transporter LbAMT3-1 overexpression increases the arbuscular abundance of mycorrhizal that opens the possibility of using LbAMT3-1 in breeding programs to improve symbiotic nutrient uptake in Lycium barbarum. Nitrogen (N) is one of the most essential nutrients required by plants and limits net primary production much of the time in most terrestrial ecosystems. Arbuscular mycorrhizal (AM) fungi can enhance plant nutrient uptake and improve plant productivity in nutrient limit ecosystems. Here, we identified an ammonia transporter, LbAMT3-1, specifically induced by AM fungi in Lycium barbarum. To understand the expression characteristics and biological functions, LbAMT3-1 was cloned, characterized, and overexpressed in Nicotiana tabacum (tobacco). A BLAST search identified the coding sequence for LbAMT3-1 with an open-reading frame of 1473 bp. Reverse transcription polymerase chain reaction (RT-PCR) analysis indicated that, besides mycorrhizal roots, LbAMT3-1 were barely detectable in other tissues, including stems and leaves. Promoter-GUS assay showed that GUS staining was detected in mycorrhizal roots, and GUS activity driven by the LbAMT3-1 promoter was exclusively confined to root cells containing arbuscules. LbAMT3-1 functionally complemented the yeast mutant efficiently, and yeast expressing LbAMT3-1 showed well growth on the agar medium with 0.02, 0.2, and 2 mM NH4+ supply. Moreover, overexpression of LbAMT3-1 in N. tabacum resulted a significant increase in arbuscular abundance and enhanced the nutrient acquisition capacity of mycorrhizal plants. Based on the results of our study, we propose that overexpression of LbAMT3-1 can promote P and N uptake of host plants through the mycorrhizal pathway, and increase the colonization intensity and arbuscular abundance, which opens the possibility of using LbAMT3-1 in breeding programs.
Collapse
Affiliation(s)
- Kang Cheng
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Man Wei
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoxia Jin
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Xie K, Ren Y, Chen A, Yang C, Zheng Q, Chen J, Wang D, Li Y, Hu S, Xu G. Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153591. [PMID: 34936969 DOI: 10.1016/j.jplph.2021.153591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is the most abundant mineral nutrient required by plants, and crop productivity depends heavily on N fertilization in many soils. Production and application of N fertilizers consume huge amounts of energy and substantially increase the costs of agricultural production. Excess N compounds released from agricultural systems are also detrimental to the environment. Thus, increasing plant N uptake efficiency is essential for the development of sustainable agriculture. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most terrestrial plants that facilitate plant nutrient uptake and increase host resistance to diverse environmental stresses. AM association is an endosymbiotic process that relies on the differentiation of both host plant roots and AM fungi to create novel contact interfaces within the cells of plant roots. AM plants have two pathways for nutrient uptake: either direct uptake via the root hairs and root epidermis, or indirectly through AM fungal hyphae into root cortical cells. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungi-root interface have been identified. Here, we mainly summarize the recent advances in N uptake, assimilation, and translocation in AM symbiosis, and also discuss how N interplays with C and P in modulating AM development, as well as the synergies between AM fungi and soil microbial communities in N uptake.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qingsong Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Dongsheng Wang
- Department of Ecological Environment and Soil Science, Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Yiting Li
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Banasiak J, Jamruszka T, Murray JD, Jasiński M. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses. PLANT PHYSIOLOGY 2021; 187:2071-2091. [PMID: 34618047 PMCID: PMC8644718 DOI: 10.1093/plphys/kiab280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 05/20/2023]
Abstract
Most land plants live in close contact with beneficial soil microbes: the majority of land plant species establish symbiosis with arbuscular mycorrhizal fungi, while most legumes, the third largest plant family, can form a symbiosis with nitrogen-fixing rhizobia. These microbes contribute to plant nutrition via endosymbiotic processes that require modulating the expression and function of plant transporter systems. The efficient contribution of these symbionts involves precisely controlled integration of transport, which is enabled by the adaptability and plasticity of their transporters. Advances in our understanding of these systems, driven by functional genomics research, are rapidly filling the gap in knowledge about plant membrane transport involved in these plant-microbe interactions. In this review, we synthesize recent findings associated with different stages of these symbioses, from the pre-symbiotic stage to nutrient exchange, and describe the role of host transport systems in both mycorrhizal and legume-rhizobia symbioses.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań 60-632, Poland
| |
Collapse
|
17
|
Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
High nitrogen application aimed at increasing crop yield is offset by higher production costs and negative environmental consequences. For wheat, only one third of the applied nitrogen is utilized, which indicates there is scope for increasing Nitrogen Use Efficiency (NUE). However, achieving greater NUE is challenged by the complexity of the trait, which comprises processes associated with nitrogen uptake, transport, reduction, assimilation, translocation and remobilization. Thus, knowledge of the genetic regulation of these processes is critical in increasing NUE. Although primary nitrogen uptake and metabolism-related genes have been well studied, the relative influence of each towards NUE is not fully understood. Recent attention has focused on engineering transcription factors and identification of miRNAs acting on expression of specific genes related to NUE. Knowledge obtained from model species needs to be translated into wheat using recently-released whole genome sequences, and by exploring genetic variations of NUE-related traits in wild relatives and ancient germplasm. Recent findings indicate the genetic basis of NUE is complex. Pyramiding various genes will be the most effective approach to achieve a satisfactory level of NUE in the field.
Collapse
Affiliation(s)
- Shahidul Islam
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Yun Zhao
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
18
|
Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4469-4479. [PMID: 32157312 PMCID: PMC7475097 DOI: 10.1093/jxb/eraa112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is an essential element for plant productivity, thus, it is abundantly applied to the soil in the form of organic or chemical fertilizers that have negative impacts on the environment. Exploiting the potential of beneficial microbes and identifying crop genotypes that can capitalize on symbiotic associations may be possible ways to significantly reduce the use of N fertilizers. The best-known example of symbiotic association that can reduce the use of N fertilizers is the N2-fixing rhizobial bacteria and legumes. Bacterial taxa other than rhizobial species can develop associative symbiotic interactions with plants and also fix N. These include bacteria of the genera Azospirillum, Azotobacter, and Bacillus, some of which are commercialized as bio-inoculants. Arbuscular mycorrhizal fungi are other microorganisms that can develop symbiotic associations with most terrestrial plants, favoring access to nutrients in a larger soil volume through their extraradical mycelium. Using combinations of different beneficial microbial species is a promising strategy to boost plant N acquisition and foster a synergistic beneficial effect between symbiotic microorganisms. Complex biological mechanisms including molecular, metabolic, and physiological processes dictate the establishment and efficiency of such multipartite symbiotic associations. In this review, we present an overview of the current knowledge and future prospects regarding plant N nutrition improvement through the use of beneficial bacteria and fungi associated with plants, individually or in combination.
Collapse
Affiliation(s)
- Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Quillere
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
19
|
Hao DL, Zhou JY, Yang SY, Qi W, Yang KJ, Su YH. Function and Regulation of Ammonium Transporters in Plants. Int J Mol Sci 2020; 21:E3557. [PMID: 32443561 PMCID: PMC7279009 DOI: 10.3390/ijms21103557] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ammonium transporter (AMT)-mediated acquisition of ammonium nitrogen from soils is essential for the nitrogen demand of plants, especially for those plants growing in flooded or acidic soils where ammonium is dominant. Recent advances show that AMTs additionally participate in many other physiological processes such as transporting ammonium from symbiotic fungi to plants, transporting ammonium from roots to shoots, transferring ammonium in leaves and reproductive organs, or facilitating resistance to plant diseases via ammonium transport. Besides being a transporter, several AMTs are required for the root development upon ammonium exposure. To avoid the adverse effects of inadequate or excessive intake of ammonium nitrogen on plant growth and development, activities of AMTs are fine-tuned not only at the transcriptional level by the participation of at least four transcription factors, but also at protein level by phosphorylation, pH, endocytosis, and heterotrimerization. Despite these progresses, it is worth noting that stronger growth inhibition, not facilitation, unfortunately occurs when AMT overexpression lines are exposed to optimal or slightly excessive ammonium. This implies that a long road remains towards overcoming potential limiting factors and achieving AMT-facilitated yield increase to accomplish the goal of persistent yield increase under the present high nitrogen input mode in agriculture.
Collapse
Affiliation(s)
- Dong-Li Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Jin-Yan Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Shun-Ying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Wei Qi
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China;
| | - Ke-Jun Yang
- Agro-Tech Extension and Service Center, Zhucheng 262200, China;
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| |
Collapse
|
20
|
Zhang Z, Gao S, Chu C. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1365-1384. [PMID: 31919537 DOI: 10.1007/s00122-019-03527-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/24/2019] [Indexed: 05/03/2023]
Abstract
Modern agriculture relies heavily on chemical fertilizers, especially in terms of cereal production. The excess application of fertilizers not only increases production cost, but also causes severe environmental problems. As one of the major cereal crops, rice (Oryza sativa L.) provides the staple food for nearly half of population worldwide, especially in developing countries. Therefore, improving rice yield is always the priority for rice breeding. Macronutrients, especially nitrogen (N) and phosphorus (P), are two most important players for the grain yield of rice. However, with economic development and improved living standard, improving nutritional quality such as micronutrient contents in grains has become a new goal in order to solve the "hidden hunger." Micronutrients, such as iron (Fe), zinc (Zn), and selenium (Se), are critical nutritional elements for human health. Therefore, breeding the rice varieties with improved nutrient use efficiency (NUE) is thought to be one of the most feasible ways to increase both grain yield and nutritional quality with limited fertilizer input. In this review, we summarized the progresses in molecular dissection of genes for NUE by reverse genetics on macronutrients (N and P) and micronutrients (Fe, Zn, and Se), exploring natural variations for improving NUE in rice; and also, the current genetic toolbox and future perspectives for improving rice NUE are discussed.
Collapse
Affiliation(s)
- Zhihua Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Yang Q, Zhao Z, Hou H, Bai Z, Yuan Y, Su Z, Wang G. The effect of combined ecological remediation (plant microorganism modifier) on rare earth mine wasteland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13679-13691. [PMID: 32034593 DOI: 10.1007/s11356-020-07886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Due to the vegetation destruction and soil desertification caused by excessive exploitation at Ganzhou ion-type rare earth mine in the mid-1980s, it is essential to carry out ecological remediation. The symbiotic mycorrhiza formed by the developed perennial ryegrass (Lolium perenne L.) roots infected with arbuscular mycorrhizal fungi (AMF) can significantly improve the growth and resistance of plants. In this study, the combination of symbiotic mycorrhiza and soil modifier was used to construct the ryegrass-AMF-soil modifier combined remediation technology, which achieved effective ecological remediation of soil tailings. The orthogonal experiment of soil modifier showed that the most efficient formula for ryegrass biomass, soil organic matter, soil alkaline hydrolysis, soil available phosphorus, and soil pH was 5 g/kg sepiolite, 3 g/kg chicken manure, 2 g/kg humic acid, and 2 g/kg biochar (A4B3C3D3), and chicken manure (B), humic acid (C), and biochar (D) had significant effects on the improvement of ryegrass biomass, soil organic matter, soil alkaline nitrogen, and soil available phosphorus. Sepiolite (A) had a significant improvement in soil pH. Furthermore, the AMF infection results indicated that Glomus moss (G.m.) had higher affinity with ryegrass. The T4 treatment-combined remediation using G.m. inoculation had the most significant effect on ryegrass growth; plant height increased by 39.19% compared with T1 treatment-inoculation using G.m. Under combined remediation, soil pH, organic matter, alkali nitrogen, and effective phosphorus content also significantly improved after combined treatment. Under G.m. inoculation treatment (T4 treatment), the soil nutrient content reached the three criteria of the soil nutrient grading standard.
Collapse
Affiliation(s)
- Qiao Yang
- College of Land Science and Technology, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zhongqiu Zhao
- College of Land Science and Technology, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China.
- Key Laboratory of Land Consolidation and Rehabilitation Ministry of Land and Resources, Beijing, 100035, China.
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhongke Bai
- College of Land Science and Technology, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China
- Key Laboratory of Land Consolidation and Rehabilitation Ministry of Land and Resources, Beijing, 100035, China
| | - Ye Yuan
- College of Land Science and Technology, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zhijie Su
- College of Land Science and Technology, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Guangyao Wang
- College of Land Science and Technology, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
22
|
Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. THE NEW PHYTOLOGIST 2019; 223:1127-1142. [PMID: 30843207 DOI: 10.1111/nph.15775] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/20/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franziska Krajinski
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
23
|
Jiang J, Zhao J, Duan W, Tian S, Wang X, Zhuang H, Fu J, Kang Z. TaAMT2;3a, a wheat AMT2-type ammonium transporter, facilitates the infection of stripe rust fungus on wheat. BMC PLANT BIOLOGY 2019; 19:239. [PMID: 31170918 PMCID: PMC6554902 DOI: 10.1186/s12870-019-1841-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/21/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ammonium transporters (AMTs), a family of proteins transporting ammonium salt and its analogues, have been studied in many aspects. Although numerous studies have found that ammonium affects the interaction between plants and pathogens, the role of AMTs remains largely unknown, especially that of the AMT2-type AMTs. RESULTS In the present study, we found that the concentration of ammonium in wheat leaves decreased after infection with Puccinia striiformis f. sp. tritici (Pst), the causal agent of stripe rust. Then, an AMT2-type ammonium transporter gene induced by Pst was identified and designated as TaAMT2;3a. Transient expression assays indicated that TaAMT2;3a was located to the cell and nuclear membranes. TaAMT2;3a successfully complemented the function of a yeast mutant defective in NH4+ transport, indicating its ammonium transport capacity. Function of TaAMT2;3a in wheat-Pst interaction was further analyzed by barley stripe mosaic virus (BSMV)-induced gene silencing. Pst growth was significantly retarded in TaAMT2;3a-knockdown plants, in which ammonium in leaves were shown to be induced at the early stage of infection. Histological observation showed that the hyphal length, the number of hyphal branches and haustorial mother cells decreased in the TaAMT2;3a knockdown plants, leading to the impeded growth of rust pathogens. CONCLUSIONS The results clearly indicate that the induction of AMT2-type ammonium transporter gene TaAMT2;3a may facilitates the nitrogen uptake from wheat leaves by Pst, thereby contribute to the infection of rust fungi.
Collapse
Affiliation(s)
- Junpeng Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Wanlu Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Song Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Hua Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Jing Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| |
Collapse
|
24
|
Drechsler N, Courty PE, Brulé D, Kunze R. Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice. MYCORRHIZA 2018; 28:93-100. [PMID: 28993893 DOI: 10.1007/s00572-017-0802-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/04/2017] [Indexed: 05/17/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonize up to 90% of all land plants and facilitate the acquisition of mineral nutrients by their hosts. Inorganic orthophosphate (Pi) and nitrogen (N) are the major nutrients transferred from the fungi to plants. While plant Pi transporters involved in nutrient transfer at the plant-fungal interface have been well studied, the plant N transporters participating in this process are largely unknown except for some ammonium transporters (AMT) specifically assigned to arbuscule-colonized cortical cells. In plants, many nitrate transporter 1/peptide transporter family (NPF) members are involved in the translocation of nitrogenous compounds including nitrate, amino acids, peptides and plant hormones. Whether NPF members respond to AMF colonization, however, is not yet known. Here, we investigated the transcriptional regulation of 82 rice (Oryza sativa) NPF genes in response to colonization by the AMF Rhizophagus irregularis in roots of plants grown under five different nutrition regimes. Expression of the four OsNPF genes NPF2.2/PTR2, NPF1.3, NPF6.4 and NPF4.12 was strongly induced in mycorrhizal roots and depended on the composition of the fertilizer solution, nominating them as interesting candidates for nutrient signaling and exchange processes at the plant-fungal interface.
Collapse
Affiliation(s)
- Navina Drechsler
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Daphnée Brulé
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Reinhard Kunze
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|