1
|
Broeckhoven I, Devriese A, Honnay O, Merckx R, Bruno V. Impact of agricultural systems on arbuscular mycorrhizal fungi community composition in robusta coffee roots in the Democratic Republic of congo. MYCORRHIZA 2025; 35:30. [PMID: 40227500 DOI: 10.1007/s00572-025-01204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Robusta coffee, grown by 25 million farmers across more than 50 countries, plays an important role in smallholder farmers' livelihoods and the economies of many low-income countries. Coffee establishes a mutualistic symbiosis with arbuscular mycorrhizal fungi (AMF); however, the impact of agricultural practices and soil characteristics on AMF diversity and community composition is not well understood. To address this, we characterised the AMF community composition of robusta coffee in part of its region of origin, the Democratic Republic of Congo. AMF diversity and community composition were compared between coffee monoculture, agroforestry systems and wild robusta in its native rainforest habitat. Using Illumina sequencing on 304 root samples, we identified 307 AMF operational taxonomic units (OTUs), dominated by the genera Glomus and Acaulospora. OTU richness did not vary across the three studied systems, yet large differences in community composition were found. Many unique OTUs were only observed in the coffee in the rainforest. In general, lower available soil phosphorus (P) and lower soil bulk density increased AMF diversity, yet higher available soil P and pH increased AMF diversity in the wild forest coffee. Shifts in AMF community composition across coffee systems were driven by canopy closure, soil pH, available soil P and soil bulk density. Our study is the first to characterise mycorrhizal communities in wild robusta coffee in its region of origin and shows that even low-input agricultural practices result in major AMF community shifts as compared to a natural baseline.
Collapse
Affiliation(s)
- Ieben Broeckhoven
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e, Leuven, 3001, Belgium.
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.
- KU Leuven Plant Institute, Leuven, Belgium.
| | - Arne Devriese
- KU Leuven Plant Institute, Leuven, Belgium
- Division of Ecology, Evolution and Biodiversity Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Olivier Honnay
- KU Leuven Plant Institute, Leuven, Belgium
- Division of Ecology, Evolution and Biodiversity Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Roel Merckx
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e, Leuven, 3001, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Verbist Bruno
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Frolov A, Shumilina J, Etemadi Afshar S, Mashkina V, Rhomanovskaya E, Lukasheva E, Tsarev A, Sulima AS, Shtark OY, Ihling C, Soboleva A, Tikhonovich IA, Zhukov VA. Responsivity of Two Pea Genotypes to the Symbiosis with Rhizobia and Arbuscular Mycorrhiza Fungi-A Proteomics Aspect of the "Efficiency of Interactions with Beneficial Soil Microorganisms" Trait. Int J Mol Sci 2025; 26:463. [PMID: 39859177 PMCID: PMC11764919 DOI: 10.3390/ijms26020463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is well known that individual pea (Pisum sativum L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi. The aim of this study was to characterize alterations in the root proteome of highly responsive pea genotype k-8274 plants and low responsive genotype k-3358 ones grown in non-sterile soil, which were associated with root colonization with rhizobial bacteria and arbuscular mycorrhizal fungi (in comparison to proteome shifts caused by soil supplementation with mineral nitrogen salts). Our results clearly indicate that supplementation of the soil with mineral nitrogen-containing salts switched the root proteome of both genotypes to assimilation of the available nitrogen, whereas the processes associated with nitrogen fixation were suppressed. Surprisingly, inoculation with rhizobial bacteria had only a minor effect on the root proteomes of both genotypes. The most pronounced response was observed for the highly responsive k-8274 genotype inoculated simultaneously with rhizobial bacteria and arbuscular mycorrhizal fungi. This response involved activation of the proteins related to redox metabolism and suppression of excessive nodule formation. In turn, the low responsive genotype k-3358 demonstrated a pronounced inoculation-induced suppression of protein metabolism and enhanced diverse defense reactions in pea roots under the same soil conditions. The results of the study shed light on the molecular basis of differential symbiotic responsivity in different pea cultivars. The raw data are available in the PRIDE repository under the project accession number PXD058701 and project DOI 10.6019/PXD058701.
Collapse
Affiliation(s)
- Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 119334 Moscow, Russia; (J.S.); (A.S.)
| | - Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 119334 Moscow, Russia; (J.S.); (A.S.)
| | - Sarah Etemadi Afshar
- Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06120 Halle, Germany; (S.E.A.); (C.I.)
| | - Valeria Mashkina
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
| | - Ekaterina Rhomanovskaya
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
| | - Elena Lukasheva
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
| | - Alexander Tsarev
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (A.S.S.); (O.Y.S.)
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (A.S.S.); (O.Y.S.)
| | - Christian Ihling
- Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06120 Halle, Germany; (S.E.A.); (C.I.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 119334 Moscow, Russia; (J.S.); (A.S.)
| | - Igor A. Tikhonovich
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (A.S.S.); (O.Y.S.)
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (A.S.S.); (O.Y.S.)
| |
Collapse
|
3
|
Fan L, Zhang P, Cao F, Liu X, Ji M, Xie M. Effects of AMF on Maize Yield and Soil Microbial Community in Sandy and Saline Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:2056. [PMID: 39124174 PMCID: PMC11314339 DOI: 10.3390/plants13152056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the effects of applying arbuscular mycorrhizal fungi (AMF) on maize root growth and yield formation under different soil conditions. This study was conducted under sandy soil (S) and saline-alkali soil (Y), with treatments of AMF application (AM) and no AMF application (CK). The root characteristics, yield, and quality of maize were measured. High-throughput sequencing technology was employed to assess the impact of AMF on the soil microbial community structure, and the correlation between soil microbes and soil physicochemical properties was elucidated. The results show that under both sandy and saline-alkali soil conditions, AMF application significantly enhanced maize root growth, yield, grain quality, and soil available nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents compared to the CK treatment. Soil microbial Alpha diversity analysis indicated that AMF application effectively increased soil microbial diversity and richness. Principal coordinate analysis (PCoA) and microbial community structure analysis revealed significant differences in bacterial communities between AM treatment in sandy soil (SAM) and CK in sandy soil (SCK), and significant differences in both bacterial and fungal communities between AM treatment in saline-alkali soil (YAM) and CK in saline-alkali soil (YCK). Furthermore, significant correlations between microbial communities and soil physicochemical properties were found, such as AN, AP, AK, soil salinity (SS), and organic matter (OM) content. AMF application had a greater impact on bacterial communities than on fungal communities. This study demonstrated that the use of AMF as a bio-fungal fertilizer was effective in improving spring maize yields, especially in terms of yield increase and quality stability in sandy and saline soils, thereby contributing to safe and sustainable cropping practices.
Collapse
Affiliation(s)
- Li Fan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot 010018, China;
| | - Peng Zhang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Fuzhong Cao
- Erdos Agricultural and Animal Husbandry Technology Extension Center, Erdos 017200, China; (F.C.); (M.J.)
| | - Xueping Liu
- Erdos Agricultural and Animal Husbandry Technology Extension Center, Erdos 017200, China; (F.C.); (M.J.)
| | - Minjia Ji
- Erdos Agricultural and Animal Husbandry Technology Extension Center, Erdos 017200, China; (F.C.); (M.J.)
| | - Min Xie
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China
| |
Collapse
|
4
|
Owiny AA, Dusengemungu L. Mycorrhizae in mine wasteland reclamation. Heliyon 2024; 10:e33141. [PMID: 39035525 PMCID: PMC11259807 DOI: 10.1016/j.heliyon.2024.e33141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Mycorrhizae are found on about 70-80 % of the roots of all plant species; ectomycorrhizae (ECM) are mostly found on woody plants and gymnosperms, whereas arbuscular mycorrhizal fungi (AMF) are found on 80-90 % of all plant species. In abandoned mining sites, woody plants dominate, while non-woody species remain scarce. However, this pattern depends on the specific mine site and its ecological context. This review article explores the potential of using mycorrhizae-plant associations to enhance and facilitate the remediation of mine wastelands and metal-polluted sites. In this review, we employed reputable databases to collect articles and relevant information on mycorrhizae and their role in plant growth and soil fertility spanning from the 1990s up to 2024. Our review found that the abilities of plants selected for minewasteland reclamation can be harnessed effectively if their mycorrhizae utilization is known and considered. Our findings indicate that AMF facilitates plant cohabitation by influencing species richness, feedback effects, shared mycelial networks, and plant-AMF specificity. Several types of mycorrhizae have been isolated from mine wastelands, including Glomus mosseae, which reduces heavy metal accumulation in plants, and Rhizophagus irregularis, which enhances plant growth and survival in revegetated mine sites. Additionally, studies on ECM in surface mine spoil restoration stands highlight their role in enhancing fungal biodiversity and providing habitats for rare and specialized fungal species. Recent research shows that ECM and AMF fungi can interact synergistically to enhance plant growth, with ECM improving plant nitrogen absorption and AMF increasing nitrogen use efficiency. Our review also found that despite their critical role in improving plant growth and resilience, there remains limited knowledge about the specific mechanisms by which mycorrhizae communicate with each other and other microorganisms, such as bacteria, root-associated fungi, soil protozoa, actinomycetes, nematodes, and endophytes, within the soil matrix. This article highlights the connection between mycorrhizae and plants and other microorganisms in mine wastelands, their role in improving soil structure and nutrient cycling, and how mycorrhizae can help restore soil fertility and promote plant growth, thus improving the overall environmental quality of mine wasteland sites.
Collapse
Affiliation(s)
- Arthur A. Owiny
- Copperbelt University, School of Natural Resources, Department of Plant and Environmental Sciences, P.O Box 21692, Kitwe, Zambia
- Chair of Environment and Development, Oliver R. Tambo Africa Research Chair Initiative (ORTARChI), The Copperbelt University, P.O. Box 21692, Kitwe, Zambia
| | - Leonce Dusengemungu
- Copperbelt University, School of Mathematics and Natural Sciences, Department of Biological Sciences, P.O BOX 21692, Kitwe, Zambia
- Copperbelt University, Africa Centre of Excellence for Sustainable Mining, Kitwe, Zambia
| |
Collapse
|
5
|
Vultaggio L, Allevato E, Sabatino L, Ntatsi G, Rouphael Y, Torta L, La Bella S, Consentino BB. Modulation of cherry tomato performances in response to molybdenum biofortification and arbuscular mycorrhizal fungi in a soilless system. Heliyon 2024; 10:e33498. [PMID: 39027518 PMCID: PMC11255863 DOI: 10.1016/j.heliyon.2024.e33498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Molybdenum (Mo) is a crucial microelement for both, humans and plants. The use of agronomic biofortification techniques can be an alternative method to enhance Mo content in vegetables. Concomitantly, arbuscular mycorrhizal fungi (AMF) application is a valuable strategy to enhance plant performances and overcome plant abiotic distresses such as microelement overdose. The aim of this research was to estimate the direct and/or indirect effects of Mo supply at four doses [0.0, 0.5 (standard dose), 2.0 or 4.0 μmol L-1], alone or combined with AMF inoculation, on plant performances. In particular, plant height and first flower truss emission, productive features (total yield, marketable yield and average marketable fruit weight) and fruit qualitative characteristics (fruit dry matter, soluble solids content, titratable acidity, ascorbic acid, lycopene, polyphenol, nitrogen, copper, iron and molybdenum) of an established cherry tomato genotype cultivated in soilless conditions were investigated. Moreover, proline and malondialdehyde concentrations, as well as Mo hazard quotient (HQ) in response to experimental treatments were determined. A split-plot randomized experimental block design with Mo dosages as plots and +AMF or -AMF as sub-plots was adopted. Data revealed that AMF inoculation enhanced marketable yield (+50.0 %), as well as some qualitative traits, such as fruit soluble solids content (SSC) (+9.9 %), ascorbic acid (+7.3 %), polyphenols (+2.3 %), and lycopene (+2.5 %). Molybdenum application significantly increased SSC, polyphenols, fruit Mo concentration (+29.0 % and +100.0 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively) and proline, whereas it decreased N (-25.0 % and -41.6 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively). Interestingly, the application of AMF mitigated the detrimental effect of high Mo dosages (2.0 or 4.0 μmol L-1). A pronounced advance in terms of plant height 45 DAT, fruit lycopene concentration and fruit Fe, Cu and Mo concentrations was observed when AMF treatment and Mo dosages (2.0 or 4.0 μmol Mo L-1) were combined. Plants inoculated or not with AMF showed an improvement in the hazard quotient (HQ) in reaction to Mo application. However, the HQ - for a consumption of 200 g day-1 of biofortified cherry tomato - remained within the safety level for human consumption. This study suggests that Mo-implementation (at 2.0 or 4.0 μmol L-1) combined with AMF inoculation could represent a viable cultivation protocol to enhance yield, produce premium quality tomato fruits and, concomitantly, improve Mo dose in human diet. In the light of our findings, further studies on the interaction between AMF and microelements in other vegetable crops are recommended.
Collapse
Affiliation(s)
- Lorena Vultaggio
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Leo Sabatino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, 11855 Athens, Greece
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Livio Torta
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Salvatore La Bella
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Beppe Benedetto Consentino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
6
|
Mafune KK, Kasson MT, Winkler MKH. Building blocks toward sustainable biofertilizers: variation in arbuscular mycorrhizal spore germination when immobilized with diazotrophic bacteria in biodegradable hydrogel beads. J Appl Microbiol 2024; 135:lxae167. [PMID: 38960411 DOI: 10.1093/jambio/lxae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
AIM We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.
Collapse
Affiliation(s)
- Korena K Mafune
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| |
Collapse
|
7
|
Nacoon S, Seemakram W, Gateta T, Theerakulpisut P, Sanitchon J, Kuyper TW, Boonlue S. Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi. J Fungi (Basel) 2023; 9:1152. [PMID: 38132753 PMCID: PMC10744396 DOI: 10.3390/jof9121152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
There is an increasing interest in finding eco-friendly and safe approaches to increase agricultural productivity and deliver healthy foods. Arbuscular mycorrhizal fungi (AMF) and endophytic fungi (EPF) are important components of sustainable agriculture in view of their ability to increase productivity and various plant secondary metabolites with health-promoting effects. In a pot experiment, our main research question was to evaluate the additive and synergistic effects of an AMF and four root-endophytic fungi on plant performance and on the accumulation of health-promoting secondary compounds. Plant growth varied between the treatments with both single inoculants and co-inoculation of an AMF and four EPF strains. We found that inoculation with a single EPF positively affected the growth and biomass production of most of the plant-endophyte consortia examined. The introduction of AMF into this experiment (dual inoculation) had a beneficial effect on plant growth and yield. AMF, Rhizophagus variabilis KS-02 co-inoculated with EPF, Trichoderma zelobreve PBMP16 increased the highest biomass, exceeding the growth rate of non-inoculated plants. Co-inoculated R. variabilis KS-02 and T. zelobreve PBMP16 had significantly greater beneficial effects on almost all aspects of plant growth, photosynthesis-related parameters, and yield. It also promoted root growth quality and plant nutrient uptake. The phenolic compounds, anthocyanin, and antioxidant capacity in rice seeds harvested from plants co-inoculated with AMF and EPF were dramatically increased compared with those from non-inoculated plants. In conclusion, our results indicated that EPF and AMF contributed to symbiosis in Maled Phai cultivar and were coordinately involved in promoting plant growth performance under a pot trial.
Collapse
Affiliation(s)
- Sabaiporn Nacoon
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Wasan Seemakram
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Thanawan Gateta
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Piyada Theerakulpisut
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Salt-Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jirawat Sanitchon
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands;
| | - Sophon Boonlue
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
- Salt-Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Sportes A, Hériché M, Mounier A, Durney C, van Tuinen D, Trouvelot S, Wipf D, Courty PE. Comparative RNA sequencing-based transcriptome profiling of ten grapevine rootstocks: shared and specific sets of genes respond to mycorrhizal symbiosis. MYCORRHIZA 2023; 33:369-385. [PMID: 37561219 DOI: 10.1007/s00572-023-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023]
Abstract
Arbuscular mycorrhizal symbiosis improves water and nutrient uptake by plants and provides them other ecosystem services. Grapevine is one of the major crops in the world. Vitis vinifera scions generally are grafted onto a variety of rootstocks that confer different levels of resistance against different pests, tolerance to environmental stress, and influence the physiology of the scions. Arbuscular mycorrhizal fungi are involved in the root architecture and in the immune response to soil-borne pathogens. However, the fine-tuned regulation and the transcriptomic plasticity of rootstocks in response to mycorrhization are still unknown. We compared the responses of 10 different grapevine rootstocks to arbuscular mycorrhizal symbiosis (AMS) formed with Rhizophagus irregularis DAOM197198 using RNA sequencing-based transcriptome profiling. We have highlighted a few shared regulation mechanisms, but also specific rootstock responses to R. irregularis colonization. A set of 353 genes was regulated by AMS in all ten rootstocks. We also compared the expression level of this set of genes to more than 2000 transcriptome profiles from various grapevine varieties and tissues to identify a class of transcripts related to mycorrhizal associations in these 10 rootstocks. Then, we compared the response of the 351 genes upregulated by mycorrhiza in grapevine to their Medicago truncatula homologs in response to mycorrhizal colonization based on available transcriptomic studies. More than 97% of the 351 M. truncatula-homologous grapevine genes were expressed in at least one mycorrhizal transcriptomic study, and 64% in every single RNAseq dataset. At the intra-specific level, we described, for the first time, shared and specific grapevine rootstock genes in response to R. irregularis symbiosis. At the inter-specific level, we defined a shared subset of mycorrhiza-responsive genes.
Collapse
Affiliation(s)
- Antoine Sportes
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Hériché
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Arnaud Mounier
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Célien Durney
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sophie Trouvelot
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
9
|
Yuan ML, Zhang MH, Shi ZY, Yang S, Zhang MG, Wang Z, Wu SW, Gao JK. Arbuscular mycorrhizal fungi enhance active ingredients of medicinal plants: a quantitative analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1276918. [PMID: 37929165 PMCID: PMC10623335 DOI: 10.3389/fpls.2023.1276918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
Medicinal plants are invaluable resources for mankind and play a crucial role in combating diseases. Arbuscular mycorrhizal fungi (AMF) are widely recognized for enhancing the production of medicinal active ingredients in medicinal plants. However, there is still a lack of comprehensive understanding regarding the quantitative effects of AMF on the accumulation of medicinal active ingredients. Here we conducted a comprehensive global analysis using 233 paired observations to investigate the impact of AMF inoculation on the accumulation of medicinal active ingredients. This study revealed that AMF inoculation significantly increased the contents of medicinal active ingredients by 27%, with a particularly notable enhancement observed in flavonoids (68%) and terpenoids (53%). Furthermore, the response of medicinal active ingredients in belowground organs (32%) to AMF was more pronounced than that in aboveground organs (18%). Notably, the AMF genus Rhizophagus exhibited the strongest effect in improving the contents of medicinal active ingredients, resulting in an increase of over 50% in both aboveground and belowground organs. Additionally, the promotion of medicinal active ingredients by AMF was attributed to improvements in physiological factors, such as chlorophyll, stomatal conductance and net photosynthetic rate. Collectively, this research substantially advanced our comprehension of the pivotal role of AMF in improving the medicinal active ingredients of plants and provided valuable insights into the potential mechanisms driving these enhancements.
Collapse
Affiliation(s)
- Ming-Li Yuan
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- School of Agriculture and Animal Husbandry Engineering, Zhoukou Vocational and Technical College, Henan, China
| | - Meng-Han Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Zhao-Yong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Shuang Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Meng-Ge Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Zhen Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Shan-Wei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Jia-Kai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| |
Collapse
|
10
|
Akbar M, Chohan SA, Yasin NA, Ahmad A, Akram W, Nazir A. Mycorrhizal inoculation enhanced tillering in field grown wheat, nutritional enrichment and soil properties. PeerJ 2023; 11:e15686. [PMID: 37719109 PMCID: PMC10504892 DOI: 10.7717/peerj.15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
To meet food security, commercial fertilizers are available to boost wheat yield, but there are serious ill effects associated with these fertilizers. Amongst various organic alternatives, inoculating crop fields with mycorrhizal species is the most promising option. Although, mycorrhizae are known to enhance wheat yield, but how the mycorrhizae influence different yield and quality parameters of wheat, is not clear. Therefore, this study was undertaken to investigate the influence of indigenous mycorrhizal species on the growth of wheat, its nutritional status and soil properties, in repeated set of field experiments. In total 11 species of mycorrhizae were isolated from the experimental sites with Claroideoglomus, being the most dominant one. Five different treatments were employed during the present study, keeping plot size for each replicate as 6 × 2 m. Introduction of consortia of mycorrhizae displayed a significant increase in number of tillers/plant (49.5%), dry biomass (17.4%), grain yield (21.2%) and hay weight (16.7%). However, there was non-significant effect of mycorrhizal inoculation on 1,000 grains weight. Moreover, protein contents were increased to 24.2%. Zinc, iron, phosphorus and potassium concentrations were also increased to 24%, 21%, 30.9% and 14.8%, respectively, in wheat grains. Enhancement effects were also noted on soil fertility such as soil organic carbon % age, available phosphorus and potassium were increased up to 64.7%, 35.8% and 23.9%, respectively. Herein, we concluded that mycorrhizal introduction in wheat fields significantly increased tillering in wheat and this increased tillering resulted in overall increase in wheat biomass/yield. Mycorrhizae also enhanced nutritional attributes of wheat grains as well as soil fertility. The use of mycorrhizae will help to reduce our dependance on synthetic fertilizers in sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Safeer A Chohan
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Nasim A Yasin
- SSG, RO-II Department, University of the Punjab, Lahore, Punjab, Pakistan
| | - Aqeel Ahmad
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Waheed Akram
- Department of Plant Pathology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Abdul Nazir
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
11
|
Albqmi M, Selim S, Al-Sanea MM, Alnusaire TS, Almuhayawi MS, Jaouni SKA, Hussein S, Warrad M, Sofy MR, AbdElgawad H. Interactive Effect of Arbuscular Mycorrhizal Fungi (AMF) and Olive Solid Waste on Wheat under Arsenite Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051100. [PMID: 36903959 PMCID: PMC10005190 DOI: 10.3390/plants12051100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 06/12/2023]
Abstract
Heavy metal such as arsenite (AsIII) is a threat worldwide. Thus, to mitigate AsIII toxicity on plants, we investigated the interactive effect of olive solid waste (OSW) and arbuscular mycorrhizal fungi (AMF) on wheat plants under AsIII stress. To this end, wheat seeds were grown in soils treated with OSW (4% w/w), AMF-inoculation, and/or AsIII treated soil (100 mg/kg soil). AMF colonization is reduced by AsIII but to a lesser extent under AsIII + OSW. AMF and OSW interactive effects also improved soil fertility and increased wheat plants' growth, particularly under AsIII stress. The interactions between OSW and AMF treatments reduced AsIII-induced H2O2 accumulation. Less H2O2 production consequently reduced AsIII-related oxidative damages i.e., lipid peroxidation (malondialdehyde, MDA) (58%), compared to As stress. This can be explained by the increase in wheat's antioxidant defense system. OSW and AMF increased total antioxidant content, phenol, flavonoids, and α-tocopherol by approximately 34%, 63%, 118%, 232%, and 93%, respectively, compared to As stress. The combined effect also significantly induced anthocyanins accumulation. The combination of OSW+AMF improved antioxidants enzymes activity, where superoxide dismutase (SOD, catalase (CAT), peroxidase (POX), glutathione reductase (GR), and glutathione peroxidase (GPX) were increased by 98%, 121%, 105%, 129%, and 110.29%, respectively, compared to AsIII stress. This can be explained by induced anthocyanin percussors phenylalanine, cinamic acid and naringenin, and biosynthesic enzymes (phenylalanine aminolayse (PAL) and chalcone synthase (CHS)). Overall, this study suggested the effectiveness of OSW and AMF as a promising approach to mitigate AsIII toxicity on wheat growth, physiology, and biochemistry.
Collapse
Affiliation(s)
- Mha Albqmi
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat 77447, Saudi Arabia
- Olive Research Center, Jouf University, Sakaka 72341, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Taghreed S. Alnusaire
- Department of Biology, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology and Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Qurayyat 77425, Saudi Arabia
| | - Mahmoud R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
12
|
Boussageon R, van Tuinen D, Lapadatescu C, Trépanier M, Vermersch E, Wipf D, Courty PE. Effects of field inoculation of potato tubers with the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197,198 are cultivar dependent. Symbiosis 2023. [DOI: 10.1007/s13199-023-00908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
13
|
Melloni R, Cardoso EJBN. Microbiome Associated with Olive Cultivation: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:897. [PMID: 36840245 PMCID: PMC9963204 DOI: 10.3390/plants12040897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
International research has devoted much effort to the study of the impacts caused to the soil by different management practices applied to olive cultivation. Such management involves techniques considered conventional, including the control of spontaneous plants with herbicides or machines, inorganic fertilizers, and pesticides to control pests and diseases. Equally, some producers use sustainable techniques, including drastic pruning, the use of cultivars that are tolerant to diseases and adverse climates, the use of organic conditioners in the soil, the maintenance of vegetation cover with spontaneous plants, and the use of inoculants, among others. In both conventional and sustainable/organic management, the effects on soil quality, crop development, and production are accessed through the presence, activity, and/or behavior of microorganisms, microbial groups, and their processes in the soil and/or directly in the crop itself, such as endophytes and epiphytes. Thus, our present review seeks to assemble research information, not only regarding the role of microorganisms on growth and development of the olive tree (Olea europaea L.). We looked mainly for reviews that reveal the impacts of different management practices applied in countries that produce olive oil and olives, which can serve as a basis and inspiration for Brazilian studies on the subject.
Collapse
Affiliation(s)
- Rogério Melloni
- Institute of Natural Research, Federal University of Itajubá (Unifei), Itajubá 37500-903, MG, Brazil
| | - Elke J. B. N. Cardoso
- Luiz de Queiroz College of Agriculture, University of São Paulo (Esalq/USP), Piracicaba 13418-260, SP, Brazil
| |
Collapse
|
14
|
Morcillo RJL, Baroja-Fernández E, López-Serrano L, Leal-López J, Muñoz FJ, Bahaji A, Férez-Gómez A, Pozueta-Romero J. Cell-free microbial culture filtrates as candidate biostimulants to enhance plant growth and yield and activate soil- and plant-associated beneficial microbiota. FRONTIERS IN PLANT SCIENCE 2022; 13:1040515. [PMID: 36618653 PMCID: PMC9816334 DOI: 10.3389/fpls.2022.1040515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/05/2022] [Indexed: 06/12/2023]
Abstract
In this work we compiled information on current and emerging microbial-based fertilization practices, especially the use of cell-free microbial culture filtrates (CFs), to promote plant growth, yield and stress tolerance, and their effects on plant-associated beneficial microbiota. In addition, we identified limitations to bring microbial CFs to the market as biostimulants. In nature, plants act as metaorganisms, hosting microorganisms that communicate with the plants by exchanging semiochemicals through the phytosphere. Such symbiotic interactions are of high importance not only for plant yield and quality, but also for functioning of the soil microbiota. One environmentally sustainable practice to increasing crop productivity and/or protecting plants from (a)biotic stresses while reducing the excessive and inappropriate application of agrochemicals is based on the use of inoculants of beneficial microorganisms. However, this technology has a number of limitations, including inconsistencies in the field, specific growth requirements and host compatibility. Beneficial microorganisms release diffusible substances that promote plant growth and enhance yield and stress tolerance. Recently, evidence has been provided that this capacity also extends to phytopathogens. Consistently, soil application of microbial cell-free culture filtrates (CFs) has been found to promote growth and enhance the yield of horticultural crops. Recent studies have shown that the response of plants to soil application of microbial CFs is associated with strong proliferation of the resident beneficial soil microbiota. Therefore, the use of microbial CFs to enhance both crop yield and stress tolerance, and to activate beneficial soil microbiota could be a safe, efficient and environmentally friendly approach to minimize shortfalls related to the technology of microbial inoculation. In this review, we compile information on microbial CFs and the main constituents (especially volatile compounds) that promote plant growth, yield and stress tolerance, and their effects on plant-associated beneficial microbiota. In addition, we identify challenges and limitations for their use as biostimulants to bring them to the market and we propose remedial actions and give suggestions for future work.
Collapse
Affiliation(s)
- Rafael Jorge León Morcillo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Málaga, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Nafarroa, Spain
| | - Lidia López-Serrano
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Málaga, Spain
| | - Jesús Leal-López
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Málaga, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Nafarroa, Spain
| | - Alberto Férez-Gómez
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Málaga, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
15
|
Łata B, Żakowska-Biemans S, Wrona D. Apple Antioxidant Properties as an Effect of N Dose and Rate-Mycorrhization Involvement: A Long-Term Study. Antioxidants (Basel) 2022; 11:antiox11122446. [PMID: 36552654 PMCID: PMC9774935 DOI: 10.3390/antiox11122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The genetic and/or the agronomic approaches are two main ways to enhance concentrations of biologically active compounds in fruits and vegetables. In this study, the apple antioxidant status was evaluated from the second to the fourth year after planting in relation to an increasing N-dose applied-with or without plant microbial inoculation in the field conditions. Cultivar 'Šampion Arno' was selected to test these relationships. In the growing season, N treatment and inoculation effects were monitored for the apple peel total phenolics and selected individual phenolic compounds ((+)-catechin, (-)-epicatechin, chlorogenic and caffeic acids, rutin and phloridzin) and total ascorbate concentration. Additionally, as an environmental stress marker measurement of glutathione reductase, ascorbate peroxidase and catalase activity were conducted. The year effect was most pronounced, while the N or applied inoculum effects were much weaker. Great differences in antioxidative enzyme activity and phenolic concentrations between years were revealed. Nitrogen fertilization reduced the fruit's global phenolic accumulation compared to the control, but the N-effect varied depending on individual phenolic compounds, N dose and N application method. None of the tested factors influenced the ascorbate concentration. There was a certain tendency to increase antioxidant properties in the control group (without mineral N fertilization) but with the application of bio-fertilizer, which may seem promising for future research in this scope.
Collapse
Affiliation(s)
- Barbara Łata
- Section of Basic Sciences in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Sylwia Żakowska-Biemans
- Department of Food Market Research and Consumption, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Correspondence:
| | - Dariusz Wrona
- Department of Pomology and Horticulture Economics, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
16
|
Fusco GM, Nicastro R, Rouphael Y, Carillo P. The Effects of the Microbial Biostimulants Approved by EU Regulation 2019/1009 on Yield and Quality of Vegetable Crops. Foods 2022; 11:2656. [PMID: 36076841 PMCID: PMC9455239 DOI: 10.3390/foods11172656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/04/2022] Open
Abstract
The use of microbial biostimulants such as plant growth-promoting rhizobacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) has gained popularity in recent years as a sustainable approach to boost yield as well as the quality of produce. The beneficial effects of microbial biostimulants have been reported numerous times. However, information is missing concerning quantitative assessment of the overall impact of microbial biostimulants on the yield and quality of vegetable crops. Here we provide for the first time a comprehensive, semi-systematic review of the effects of microbial biostimulants allowed by Regulation (EU) 2019/1009, including microorganisms belonging to the AMF (phylum Glomeromycota), or to Azospirillum, Azotobacter and Rhizobium genera, on vegetable crops' quality and yield, with rigorous inclusion and exclusion criteria based on the PRISMA method. We identified, selected and critically evaluated all the relevant research studies from 2010 onward in order to provide a critical appraisal of the most recent findings related to these EU-allowed microbial biostimulants and their effects on vegetable crops' quality and yield. Moreover, we highlighted which vegetable crops received more beneficial effects from specific microbial biostimulants and the protocols employed for plant inoculation. Our study is intended to draw more attention from the scientific community to this important instrument to produce nutrient-dense vegetables in a sustainable manner. Finally, our semi-systematic review provides important microbial biostimulant application guidelines and gives extension specialists and vegetable growers insights into achieving an additional benefit from microbial biostimulant application.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
17
|
Zhao Y, Cartabia A, Lalaymia I, Declerck S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. MYCORRHIZA 2022; 32:221-256. [PMID: 35556179 PMCID: PMC9184413 DOI: 10.1007/s00572-022-01079-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in different parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorganisms forming associations with more than 70% of vascular plants. In the last decade, a number of studies have reported the positive effects of AMF on improving the production and accumulation of important active compounds in medicinal plants.In this work, we reviewed the literature on the effects of AMF on the production of secondary metabolites in medicinal plants. The major findings are as follows: AMF impact the production of secondary metabolites either directly by increasing plant biomass or indirectly by stimulating secondary metabolite biosynthetic pathways. The magnitude of the impact differs depending on the plant genotype, the AMF strain, and the environmental context (e.g., light, time of harvesting). Different methods of cultivation are used for the production of secondary metabolites by medicinal plants (e.g., greenhouse, aeroponics, hydroponics, in vitro and hairy root cultures) which also are compatible with AMF. In conclusion, the inoculation of medicinal plants with AMF is a real avenue for increasing the quantity and quality of secondary metabolites of pharmacological, medical, and cosmetic interest.
Collapse
Affiliation(s)
- YanYan Zhao
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
18
|
Adeleke BS, Babalola OO. Meta-omics of endophytic microbes in agricultural biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Vandepol N, Liber J, Yocca A, Matlock J, Edger P, Bonito G. Linnemannia elongata (Mortierellaceae) stimulates Arabidopsis thaliana aerial growth and responses to auxin, ethylene, and reactive oxygen species. PLoS One 2022; 17:e0261908. [PMID: 35413060 PMCID: PMC9004744 DOI: 10.1371/journal.pone.0261908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Harnessing the plant microbiome has the potential to improve agricultural yields and protect plants against pathogens and/or abiotic stresses, while also relieving economic and environmental costs of crop production. While previous studies have gained valuable insights into the underlying genetics facilitating plant-fungal interactions, these have largely been skewed towards certain fungal clades (e.g. arbuscular mycorrhizal fungi). Several different phyla of fungi have been shown to positively impact plant growth rates, including Mortierellaceae fungi. However, the extent of the plant growth promotion (PGP) phenotype(s), their underlying mechanism(s), and the impact of bacterial endosymbionts on fungal-plant interactions remain poorly understood for Mortierellaceae. In this study, we focused on the symbiosis between soil fungus Linnemannia elongata (Mortierellaceae) and Arabidopsis thaliana (Brassicaceae), as both organisms have high-quality reference genomes and transcriptomes available, and their lifestyles and growth requirements are conducive to research conditions. Further, L. elongata can host bacterial endosymbionts related to Mollicutes and Burkholderia. The role of these endobacteria on facilitating fungal-plant associations, including potentially further promoting plant growth, remains completely unexplored. We measured Arabidopsis aerial growth at early and late life stages, seed production, and used mRNA sequencing to characterize differentially expressed plant genes in response to fungal inoculation with and without bacterial endosymbionts. We found that L. elongata improved aerial plant growth, seed mass and altered the plant transcriptome, including the upregulation of genes involved in plant hormones and “response to oxidative stress”, “defense response to bacterium”, and “defense response to fungus”. Furthermore, the expression of genes in certain phytohormone biosynthetic pathways were found to be modified in plants treated with L. elongata. Notably, the presence of Mollicutes- or Burkholderia-related endosymbionts in Linnemannia did not impact the expression of genes in Arabidopsis or overall growth rates. Together, these results indicate that beneficial plant growth promotion and seed mass impacts of L. elongata on Arabidopsis are likely driven by plant hormone and defense transcription responses after plant-fungal contact, and that plant phenotypic and transcriptional responses are independent of whether the fungal symbiont is colonized by Mollicutes or Burkholderia-related endohyphal bacteria.
Collapse
Affiliation(s)
- Natalie Vandepol
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Julian Liber
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biology, Michigan Duke University, Durham, North Carolina, United States of America
| | - Alan Yocca
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jason Matlock
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Patrick Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Gregory Bonito
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bettenfeld P, Cadena i Canals J, Jacquens L, Fernandez O, Fontaine F, van Schaik E, Courty PE, Trouvelot S. The microbiota of the grapevine holobiont: A key component of plant health. J Adv Res 2021; 40:1-15. [PMID: 36100319 PMCID: PMC9481934 DOI: 10.1016/j.jare.2021.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Grapevine interacts different microbiota living around and within its tissues Addition of microbial genes to plant genome gives supplementary functions to the holobiont The composition of grapevine microbiota varies according to endogenous and exogenous factors Microbiota variations can lead to perturbations of grapevine metabolism The link between symptom emergence of dieback and microbial imbalance is currently studied
Background Grapevine is a woody, perennial plant of high economic importance worldwide. Like other plants, it lives in close association with large numbers of microorganisms. Bacteria, fungi and viruses are structured in communities, and each individual can be beneficial, neutral or harmful to the plant. In this sense, microorganisms can interact with each other and regulate plant functions (including immunity) and even provide new ones. Thus, the grapevine associated with its microbial communities constitutes a supra-organism, also called a holobiont, whose functioning is linked to established plant-microorganism interactions. Aim of review The overall health of the plant may be conditioned by the diversity and structure of microbial communities. Consequently, an optimal microbial composition will consist of a microbial balance allowing the plant to be healthy. Conversely, an imbalance of microbial populations could lead to (or be generated by) a decline of the plant. The microbiome is an active component of the host also responsive to biotic and abiotic changes; in that respect, a better understanding of the most important drivers of the composition of plant microbiomes is needed. Key scientific concepts of review This article presents the current state of the art about the grapevine microbiota and its composition according to the plant compartments and the influencing factors. We also focus on situations of imbalance, in particular during plant disease or decline. Finally, we discuss the possible interest of microbial engineering in an agrosystem such as viticulture.
Collapse
|