1
|
Sheek-Hussein M, Zewude A, Abdullahi AS, Abdelgaleel NH, Ishag HZA, Yusof MF, ALBreiki MS, Shah AMA, AlNeyadi J, Osman B, Hassen AA, Al Nuaimat MM, Kayaf K, Hamad ME, Alsuwaidi AR, Ádám B, Barigye R, Ameni G. One health approach based descriptive study on Coxiella burnetii infections in camels and abattoir workers in the United Arab Emirates. Sci Rep 2025; 15:12308. [PMID: 40210686 PMCID: PMC11986013 DOI: 10.1038/s41598-025-97167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
Coxiellosis is a zoonotic bacterial disease caused by Coxiella burnetii (C. burnetii) infection that occurs as subclinical and clinical infections in animals and humans worldwide except in the Antarctica and New Zealand. The objectives of this study were to estimate the seroprevalences of C. burnetti infections in slaughtered camels and abattoir workers as well as to detect C. burnetii DNA in the clotted blood in the same study subjects at Al Bawadi abattoir of Al Ain city, in the United Arab Emirates, UAE. A cross-sectional study design was used to test 393 slaughtered camels and 86 abattoir workers for C. burnetii antibodies between March 2022 and July 2023 using enzyme-linked immunosorbent assay (ELISA) kits supplied by ID Vet multispecies and Abbexa, respectively. Besides, real-time polymerase chain reaction (qPCR) was used for the detection of C. burnetti DNA in clotted blood of 366 camels and 86 abattoir workers. The seroprevalences of C. burnetii infection were 52.9% (95% confidence interval, CI: 46.0, 60.6%) and 24.4% (95% CI: 15.1, 37.3%) in camels and abattoir workers. But, C. burnetii DNA was not detected in clotted blood samples of camels and abattoir workers. Sex, age and body condition of the camels were not associated with the seroprevalence of C. burnetii while abattoir workers of African origin were more likely to be seropositive (odds ratio, OR = 3.70; 95% CI: 1.05, 13.60) than abattoir workers of south Asian origin. The seroprevalences of C. burnetii infections were high in both slaughtered camels and abattoir workers although its DNA was not detected in the clotted blood of either of the study subjects.
Collapse
Affiliation(s)
- Mohamud Sheek-Hussein
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain city, Abu Dhabi, United Arab Emirates
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Aboma Zewude
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Aminu S Abdullahi
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain city, Abu Dhabi, United Arab Emirates
| | - Nabeeha Hassan Abdelgaleel
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Hassan Zackaria Ali Ishag
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi city, Abu Dhabi, United Arab Emirates
| | - Mohd Farouk Yusof
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi city, Abu Dhabi, United Arab Emirates
| | - Mohammed Saleh ALBreiki
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi city, Abu Dhabi, United Arab Emirates
| | - Asma Mohamed Abdi Shah
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi city, Abu Dhabi, United Arab Emirates
| | - Jamila AlNeyadi
- Al Ain Municipality, Al Ain city, Abu Dhabi, United Arab Emirates
| | - Babiker Osman
- Al Ain Municipality, Al Ain city, Abu Dhabi, United Arab Emirates
| | | | - Mervat Mari Al Nuaimat
- Animal Development & Health Department, Ministry of Climate Change & Environment, Dubai City, Abu Dhabi, United Arab Emirates
| | - Kaltham Kayaf
- Animal Development & Health Department, Ministry of Climate Change & Environment, Dubai City, Abu Dhabi, United Arab Emirates
| | - Mohamed Elfatih Hamad
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ahmed R Alsuwaidi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain city, Abu Dhabi, United Arab Emirates
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain city, Abu Dhabi, United Arab Emirates
| | - Robert Barigye
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Gobena Ameni
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Jafari A, Mardani H, Kordkatuli K, Mohammadpour H, Vakili M, Arghavan B. Global prevalence of Coxiella burnetii in dairy products: A comprehensive Systematic review and meta-analysis. Int Dairy J 2025; 163:106165. [DOI: 10.1016/j.idairyj.2024.106165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
|
3
|
Tolpinrud A, Tadepalli M, Stenos J, Lignereux L, Chaber AL, Devlin JM, Caraguel C, Stevenson MA. Tissue distribution of Coxiella burnetii and antibody responses in macropods co-grazing with livestock in Queensland, Australia. PLoS One 2024; 19:e0303877. [PMID: 38771828 PMCID: PMC11108133 DOI: 10.1371/journal.pone.0303877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is a zoonotic bacteria of global public health significance. The organism has a complex, diverse, and relatively poorly understood animal reservoir but there is increasing evidence that macropods play some part in the epidemiology of Q fever in Australia. The aim of this cross-sectional survey was to estimate the animal- and tissue-level prevalence of coxiellosis amongst eastern grey (Macropus giganteus) and red (Osphranter rufus) kangaroos co-grazing with domestic cattle in a Q fever endemic area in Queensland. Serum, faeces and tissue samples from a range of organs were collected from 50 kangaroos. A total of 537 tissue samples were tested by real-time PCR, of which 99 specimens from 42 kangaroos (84% of animals, 95% confidence interval [CI], 71% to 93%) were positive for the C. burnetii IS1111 gene when tested in duplicate. Twenty of these specimens from 16 kangaroos (32%, 95% CI 20% to 47%) were also positive for the com1 or htpAB genes. Serum antibodies were present in 24 (57%, 95% CI 41% to 72%) of the PCR positive animals. There was no statistically significant difference in PCR positivity between organs and no single sample type consistently identified C. burnetii positive kangaroos. The results from this study identify a high apparent prevalence of C. burnetii amongst macropods in the study area, albeit seemingly with an inconsistent distribution within tissues and in relatively small quantities, often verging on the limits of detection. We recommend Q fever surveillance in macropods should involve a combination of serosurveys and molecular testing to increase chances of detection in a population, noting that a range of tissues would likely need to be sampled to confirm the diagnosis in a suspect positive animal.
Collapse
Affiliation(s)
- Anita Tolpinrud
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Mythili Tadepalli
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Victoria, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Victoria, Australia
| | - Louis Lignereux
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Joanne M. Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles Caraguel
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Mark A. Stevenson
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
5
|
Khalafalla AI. Zoonotic diseases transmitted from the camels. Front Vet Sci 2023; 10:1244833. [PMID: 37929289 PMCID: PMC10620500 DOI: 10.3389/fvets.2023.1244833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Zoonotic diseases, infections transmitted naturally from animals to humans, pose a significant public health challenge worldwide. After MERS-CoV was discovered, interest in camels was raised as potential intermediate hosts for zoonotic viruses. Most published review studies pay little attention to case reports or zoonotic epidemics where there is epidemiological proof of transmission from camels to humans. Accordingly, any pathogen found in camels known to cause zoonotic disease in other animals or humans is reported. METHODS Here, zoonotic diseases linked to camels are reviewed in the literature, focusing on those with epidemiological or molecular evidence of spreading from camels to humans. This review examines the risks posed by camel diseases to human health, emphasizing the need for knowledge and awareness in mitigating these risks. RESULTS A search of the literature revealed that eight (36.4%) of the 22 investigations that offered convincing evidence of camel-to-human transmission involved MERS, five (22.7%) Brucellosis, four (18.2%) plague caused by Yersinia pestis, three (13.6%) camelpox, one (4.5%) hepatitis E, and one (4.5%) anthrax. The reporting of these zoonotic diseases has been steadily increasing, with the most recent period, from 2010 to the present, accounting for 59% of the reports. Additionally, camels have been associated with several other zoonotic diseases, including toxoplasmosis, Rift Valley fever, TB, Crimean-Congo hemorrhagic fever, and Q fever, despite having no evidence of a transmission event. Transmission of human zoonotic diseases primarily occurs through camel milk, meat, and direct or indirect contact with camels. The above-mentioned diseases were discussed to determine risks to human health. CONCLUSION MERS, Brucellosis, plague caused by Y. pestis, camelpox, hepatitis E, and anthrax are the main zoonotic diseases associated with human disease events or outbreaks. Transmission to humans primarily occurs through camel milk, meat, and direct contact with camels. There is a need for comprehensive surveillance, preventive measures, and public health interventions based on a one-health approach to mitigate the risks of zoonotic infections linked to camels.
Collapse
Affiliation(s)
- Abdelmalik Ibrahim Khalafalla
- Development and Innovation Sector, Biosecurity Affairs Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Kilicoglu Y, Akpinar RK, Kiziltepe S, Merhan O, Bozukluhan K. Molecular investigation of Coxiella burnetii in the Middle and East Black Sea region in aborted bovine fetuses and investigation of the oxidant/antioxidant system. Comp Immunol Microbiol Infect Dis 2023; 98:101995. [PMID: 37245380 DOI: 10.1016/j.cimid.2023.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Coxiella burnetii (C. burnetii) is a causative microorganism that causes the zoonotic Q fever disease, which is generally asymptomatic in animals, but causes reproductive issues such as abortion, stillbirth, and infertility. C. burnetii infection poses a threat to farm economies as it affects productivity in farm animals. The purpose of this research was to look into the incidence of Q fever in eight provinces in the Middle and East Black Sea region and to measure reactive oxygen and reactive nitrogen species as well as antioxidant levels in bovine aborted fetal livers infected with C. burnetii. The study material consisted 670 bovine aborted fetal liver samples delivered to Samsun Veterinary Control Institute from eight provinces between 2018 and 2021. C. burnetii was analyzed by PCR in these samples and 47 (7,01%) were positive while 623 negative. Nitric oxide (NO), malondialdehyde (MDA) and reduced glutathione (GSH) activities were analyzed by spectrophotometric method in both 47 positive samples and 40 negative samples as control group. In the C. burnetii positive and control groups, MDA levels were determined to be 2.46 ± 0.18 and 0.87 ± 0.07 nmol/ml, NO levels were determined to be 1.77 ± 0.12 and 1.09 ± 0.07 nmol/ml, and reduced GSH activity was determined to be 5.14 ± 0.33 and 6.62 ± 0.46 µg/dl, respectively. In C. burnetii positive fetal liver tissue, MDA and NO levels were higher than the control group, while reduced GSH levels were lower than the control group. As a result, C. burnetii caused changes in free radical level and antioxidant activity in bovine aborted fetus liver.
Collapse
Affiliation(s)
- Yunus Kilicoglu
- T.C. Ministry of Agriculture and Forestry, Samsun Veterinary Control Institute, Serology Laboratory, Samsun 55200, Turkiye.
| | - Rahsan Koc Akpinar
- T.C. Ministry of Agriculture and Forestry, Samsun Veterinary Control Institute, Bee Diseases Laboratory, Samsun 55200, Turkiye
| | | | - Oguz Merhan
- Kafkas University, Faculty of Veterinary, Department of Biochemistry, Kars 36000, Turkiye
| | - Kadir Bozukluhan
- Kafkas University, Kars School of Higher Vocational Education, Kars 36000, Turkiye
| |
Collapse
|
7
|
Celina SS, Cerný J. Coxiella burnetii in ticks, livestock, pets and wildlife: A mini-review. Front Vet Sci 2022; 9:1068129. [PMID: 36439350 PMCID: PMC9691889 DOI: 10.3389/fvets.2022.1068129] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 07/20/2023] Open
Abstract
Coxiella burnetii is a zoonotic bacterium with an obligatory intracellular lifestyle and has a worldwide distribution. Coxiella burnetii is the causative agent of Q fever in humans and coxiellosis in animals. Since its discovery in 1935, it has been shown to infect a wide range of animal species including mammals, birds, reptiles, and arthropods. Coxiella burnetii infection is of public and veterinary health and economic concern due to its potential for rapid spread and highly infectious nature. Livestock are the primary source of C. burnetii infection in most Q fever outbreaks which occurs mainly through inhalation of contaminated particles. Aside from livestock, many cases of Q fever linked to exposure to wildlife. Changes in the dynamics of human-wildlife interactions may lead to an increased potential risk of interspecies transmission and contribute to the emergence/re-emergence of Q fever. Although C. burnetii transmission is mainly airborne, ticks may act as vectors and play an important role in the natural cycle of transmission of coxiellosis among wild vertebrates and livestock. In this review, we aim to compile available information on vectors, domestic, and wild hosts of C. burnetii, and to highlight their potential role as bacterial reservoirs in the transmission of C. burnetii.
Collapse
|
8
|
Muema J, Nyamai M, Wheelhouse N, Njuguna J, Jost C, Oyugi J, Bukania Z, Oboge H, Ogoti B, Makori A, Fernandez MDP, Omulo S, Thumbi S. Endemicity of Coxiella burnetii infection among people and their livestock in pastoral communities in northern Kenya. Heliyon 2022; 8:e11133. [PMID: 36303929 PMCID: PMC9593183 DOI: 10.1016/j.heliyon.2022.e11133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Coxiella burnetti can be transmitted to humans primarily through inhaling contaminated droplets released from infected animals or consumption of contaminated dairy products. Despite its zoonotic nature and the close association pastoralist communities have with their livestock, studies reporting simultaneous assessment of C. burnetti exposure and risk-factors among people and their livestock are scarce. Objective This study therefore estimated the seroprevalence of Q-fever and associated risk factors of exposure in people and their livestock. Materials and methods We conducted a cross-sectional study in pastoralist communities in Marsabit County in northern Kenya. A total of 1,074 women and 225 children were enrolled and provided blood samples for Q-fever testing. Additionally, 1,876 goats, 322 sheep and 189 camels from the same households were sampled. A structured questionnaire was administered to collect individual- and household/herd-level data. Indirect IgG ELISA kits were used to test the samples. Results Household-level seropositivity was 13.2% [95% CI: 11.2–15.3]; differences in seropositivity levels among women and children were statistically insignificant (p = 0.8531). Lactating women had higher odds of exposure, odds ratio (OR) = 2.4 [1.3–5.3], while the odds of exposure among children increased with age OR = 1.1 [1.0–1.1]. Herd-level seroprevalence was 83.7% [81.7–85.6]. Seropositivity among goats was 74.7% [72.7–76.7], while that among sheep and camels was 56.8% [51.2–62.3] and 38.6% [31.6–45.9], respectively. Goats and sheep had a higher risk of exposure OR = 5.4 [3.7–7.3] and 2.6 [1.8–3.4], respectively relative to camels. There was no statistically significant association between Q-fever seropositivity and nutrition status in women, p = 0.900 and children, p = 1.000. We found no significant association between exposure in people and their livestock at household level (p = 0.724) despite high animal exposure levels, suggesting that Q-fever exposure in humans may be occurring at a scale larger than households. Conclusion The one health approach used in this study revealed that Q-fever is endemic in this setting. Longitudinal studies of Q-fever burden and risk factors simultaneously assessed in human and animal populations as well as the socioeconomic impacts of the disease and further explore the role of environmental factors in Q-fever epidemiology are required. Such evidence may form the basis for designing Q-fever prevention and control strategies.
Collapse
Affiliation(s)
- Josphat Muema
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Corresponding author.
| | - Mutono Nyamai
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | - Joseph Njuguna
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Christine Jost
- United States Agency for International Development's Bureau for Humanitarian Assistance (USAID/BHA), Washington, DC, USA,Global Health Support Initiative III, Social Solutions International, Washington DC, USA
| | - Julius Oyugi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Zipporah Bukania
- Center for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Harriet Oboge
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA
| | - Brian Ogoti
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | - Anita Makori
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | - Sylvia Omulo
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | - S.M. Thumbi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya,Paul G. Allen School for Global Health, Washington State University, Pullman, USA,South African Center for Epidemiological Modelling Analysis, South Africa,Institute of Immunology and Infection Research, University of Edinburgh, UK
| |
Collapse
|
9
|
Selmi R, Belkahia H, Sazmand A, Ben Said M, Messadi L. Epidemiology and genetic characteristics of tick-borne bacteria in dromedary camels of the world. Acta Trop 2022; 234:106599. [PMID: 35810831 DOI: 10.1016/j.actatropica.2022.106599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022]
Abstract
This review presents updated knowledge on the main tick-borne bacteria infecting one-humped camels (Camelus dromedarius) around the world. Camels are increasingly the subject of several scientific investigations, showing that they are receptive and carriers of several zoonotic bacteria. An appraisal is also given of the relative public health importance of these bacterial infections according to One Health concept. Microscopic, serologic and molecular findings are appropriately generated in order to exploit epidemiological data, and phylogeographic specificities associated to each vector-borne bacterium. Indeed, camels and their ticks harbour similar species and genotypes of pathogenic bacteria commonly identified in other animals, e.g., Anaplasma spp.,Ehrlichia spp., Borrelia spp., Rickettsia spp., Coxiella burnetii, Bartonella spp. and hemotrophic mycoplasmas. This evidence suggests an epidemiological role of camels in the spread of these pathogens in their natural habitats. However, these infections are commonly asymptomatic in camels resulting in underestimation of the impact of these infections. Furthermore, camels have recently been proven to have their own specific unclassified strains, such as Candidatus Anaplasma camelii and Candidatus Bartonella camelii, implying that possible interactions may lead to the emergence of pathogenic and zoonotic bacteria. In camel-rearing areas of the world, spatial and temporal spread of these infections, due to climatic and ecological changes and human activities such as development projects and urbanization, is expected. Hence the data presented herein provides a basis for strategic frameworks for the research and the development of novel diagnosis and control strategies worldwide, which are needed to protect camels, other livestock, and people in contact with dromedaries from threats that arthropod-borne pathogens can pose.
Collapse
Affiliation(s)
- Rachid Selmi
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Ministry of National Defense, General Directorate of Military Health, Military center of Veterinary Medicine, Tunis, Tunisia.
| | - Hanène Belkahia
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6517658978, Iran
| | - Mourad Ben Said
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia.
| |
Collapse
|
10
|
Hussain S, Saqib M, El-Adawy H, Hussain MH, Jamil T, Sajid MS, Alvi MA, Ghafoor M, Tayyab MH, Abbas Z, Mertens-Scholz K, Neubauer H, Khan I, Khalid Mansoor M, Muhammad G. Seroprevalence and Molecular Evidence of Coxiella burnetii in Dromedary Camels of Pakistan. Front Vet Sci 2022; 9:908479. [PMID: 35782546 PMCID: PMC9244431 DOI: 10.3389/fvets.2022.908479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Coxiellosis is a zoonosis in animals caused by Coxiella burnetii. A cross-sectional study was conducted on 920 (591 female and 329 male) randomly selected camels (Camelus dromedarius) of different age groups from 13 districts representative of the three different ecological zones in the Province Punjab, Pakistan to determine the prevalence and associated risk factors of coxiellosis. The blood samples were collected and tested for anti-C. burnetti antibodies using indirect multispecies ELISA. Real-time PCR was used for the detection of C. burnetii DNA to determine the prevalence in heparinized blood pools. Out of 920 investigated camels, anti-C. burnetii antibodies were detected in 288 samples (31.3%) (95% CI: 28.3–34.4%). The highest (78.6%) and lowest (1.8%) seroprevalence were detected in Rahimyar Khan (southern Punjab) and in Jhang (central Punjab), respectively. Potential risk factors associated with seropositivity of the Q fever in camels included desert area (42.5%; OR = 2.78, 95% CI 1.12–3.21) summer season (35.7%; OR = 2.3, 95% CI: 1.31–3.2), sex (female) (39.1; OR = 2.35, 95% CI: 1.34–2.98), tick infestation (51.3%;OR = 2.81, 95% CI: 1.34–3.02), age (>10 years; 46.4%; OR = 1.56, 95% CI: 0.33–2.05) and herd size (38.5%; OR = 1.21, 95% CI: 0.76–1.54). Coxiella burnetii DNA was amplified in 12 (20%) and 1 (10%) of 60 ELISA-negative and 10 suspected camels, respectively. DNA could not be detected in ELISA positive blood pools. This study emphasizes the seroprevalence and associated risk factors of coxiellosis as well as its potential to spill over to animals and humans in contact with these camel herds.
Collapse
Affiliation(s)
- Shujaat Hussain
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
- Muhammad Saqib
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Faculty Medicine of Veterinary, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- *Correspondence: Hosny El-Adawy
| | - Muhammad Hammad Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muzafar Ghafoor
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Haleem Tayyab
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Zaeem Abbas
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Iahtasham Khan
- Department of Clinical Sciences, University of Veterinary & Animal Sciences, Lahore Sub Campus Jhang, Lahore, Pakistan
| | - Muhammad Khalid Mansoor
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Muhammad
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
11
|
Abdullah HHAM, Amanzougaghene N, Dahmana H, Louni M, Raoult D, Mediannikov O. Multiple vector-borne pathogens of domestic animals in Egypt. PLoS Negl Trop Dis 2021; 15:e0009767. [PMID: 34587171 PMCID: PMC8480906 DOI: 10.1371/journal.pntd.0009767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
Vector Borne Diseases (VBDs) are considered emerging and re-emerging diseases that represent a global burden. The aim of this study was to explore and characterize vector-borne pathogens in different domestic animal hosts in Egypt. A total of 557 blood samples were collected from different animals using a convenience sampling strategy (203 dogs, 149 camels, 88 cattle, 26 buffaloes, 58 sheep and 33 goats). All samples were tested for multiple pathogens using quantitative PCR and standard PCR coupled with sequencing. We identified Theileria annulata and Babesia bigemina in cattle (15.9 and 1.1%, respectively), T. ovis in sheep and buffaloes (8.6 and 7.7%, respectively) and Ba. canis in dogs (0.5%) as well as Anaplasma marginale in cattle, sheep and camels (20.4, 3.4 and 0.7%, respectively) and Coxiella burnetii in sheep and goats (1.7 and 3%; respectively). New genotypes of An. centrale, An. ovis, An. platys-like and Borrelia theileri were found in cattle (1.1,3.4, 3.4 and 3.4%, respectively), An. platys-like in buffaloes (7.7%), An. marginale, An. ovis, An. platys-like and Bo. theileri in sheep (3.4, 1.7, 1.7 and 3.4%, respectively), An. platys, An. platys-like and Setaria digitata in camels (0.7, 5.4 and 0.7%, respectively) and Rickettsia africae-like, An. platys, Dirofilaria repens and Acanthocheilonema reconditum in dogs (1.5, 3.4, 1 and 0.5%, respectively). Co-infections were found in cattle, sheep and dogs (5.7, 1.7, 0.5%, respectively). For the first time, we have demonstrated the presence of several vector-borne zoonoses in the blood of domestic animals in Egypt. Dogs and ruminants seem to play a significant role in the epidemiological cycle of VBDs.
Collapse
Affiliation(s)
- Hend H. A. M. Abdullah
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Nadia Amanzougaghene
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Handi Dahmana
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Meriem Louni
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
12
|
Sero-prevalence of brucellosis, Q-fever and Rift Valley fever in humans and livestock in Somali Region, Ethiopia. PLoS Negl Trop Dis 2021; 15:e0008100. [PMID: 33493173 PMCID: PMC7861547 DOI: 10.1371/journal.pntd.0008100] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/04/2021] [Accepted: 11/05/2020] [Indexed: 12/29/2022] Open
Abstract
Information on zoonotic diseases in humans and livestock are limited in pastoral/agro-pastoral communities in Ethiopia. A multi-stage cross sectional cluster design study was implemented with the aim to establish the seroprevalence of zoonotic diseases including brucellosis, Q-fever and Rift Valley fever (RVF) in humans and livestock in Adadle Woreda of the Somali Region, Ethiopia. Blood samples were collected from humans and livestock and tested by relevant serological tests. For brucellosis, Rose Bengal test (RBT) and indirect ELISA was used for screening and confirmatory diagnosis respectively. Indirect and competitive ELISA were also used for Q-fever and RVF respectively. The individual seropositivity of Q-fever in livestock was 9.6% (95% CI 5.9-15.1) in cattle, 55.7% (95% CI 46.0-65.0) in camels, 48.8% (95% CI 42.5-55.0) in goats, and 28.9% (95% CI 25.0-33.2) in sheep. In humans, seropositivity of Q-fever was 27.0% (95% CI 20.4-34.0), with prevalence in males of 28.9% vs 24.2% in females (OR = 1.3; 95% CI 0.6-2.5). Camel seropositivity of Q-fever was significantly associated with age (OR = 8.1; 95% CI 2.8-23.7). The individual apparent seroprevalence of RVF was 13.2% (95% CI 8.7-18.8) in humans, 17.9% (95% CI 11.0-27.8) in cattle, 42.6% (95% CI 34.8-50.7) in camels, 6.3% (95% CI 3.3-11.6) in goats and 7.4% (95% CI 4.7-11.5) in sheep. Camels had the highest seropositivity of both Q-fever and RVF. Only a weak correlation was observed between human and livestock seropositivity for both Q-fever and RVF. Only cattle and camels were seropositive for brucellosis by iELISA. The individual seroprevalence of brucellosis was 2.8(0.9-6.4) in humans, 1.5% (95% CI 0.2-5.2) in cattle and 0.6% (95% CI 0.0-3.2) in camels. This study showed the importance of zoonoses in Somali Region and is the first published study to describe RVF exposure in humans and livestock in the country. Even though human exposure to RVF virus was reported, public health sector of Somali Region has not given attention to such zoonoses. Collaboration between public and animal health sectors for further investigation on these zoonoses using the One Health concept is indispensable.
Collapse
|
13
|
Devaux CA, Osman IO, Million M, Raoult D. Coxiella burnetii in Dromedary Camels ( Camelus dromedarius): A Possible Threat for Humans and Livestock in North Africa and the Near and Middle East? Front Vet Sci 2020; 7:558481. [PMID: 33251255 PMCID: PMC7674558 DOI: 10.3389/fvets.2020.558481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
The "One Health" concept recognizes that human health is connected to animal health and to the ecosystems. Coxiella burnetii-induced human Q fever is one of the most widespread neglected zoonosis. The main animal reservoirs responsible for C. burnetii transmission to humans are domesticated ruminants, primarily goats, sheep, and cattle. Although studies are still too sparse to draw definitive conclusions, the most recent C. burnetii serosurvey studies conducted in herds and farms in Africa, North Africa, Arabian Peninsula, and Asia highlighted that seroprevalence was strikingly higher in dromedary camels (Camelus dromedarius) than in other ruminants. The C. burnetii seroprevalence in camel herds can reach more than 60% in Egypt, Saudi Arabia, and Sudan, and 70 to 80% in Algeria and Chad, respectively. The highest seroprevalence was in female camels with a previous history of abortion. Moreover, C. burnetii infection was reported in ticks of the Hyalomma dromedarii and Hyalomma impeltatum species collected on camels. Even if dromedary camels represent <3% of the domesticated ruminants in the countries of the Mediterranean basin Southern coast, these animals play a major socioeconomic role for millions of people who live in the arid zones of Africa, Middle East, and Asia. In Chad and Somalia, camels account for about 7 and 21% of domesticated ruminants, respectively. To meet the growing consumers demand of camel meat and milk (>5 million tons/year of both raw and pasteurized milk according to the Food and Agriculture Organization) sustained by a rapid increase of population (growth rate: 2.26-3.76 per year in North Africa), dromedary camel breeding tends to increase from the Maghreb to the Arabic countries. Because of possible long-term persistence of C. burnetii in camel hump adipocytes, this pathogen could represent a threat for herds and breeding farms and ultimately for public health. Because this review highlights a hyperendemia of C. burnetii in dromedary camels, a proper screening of herds and breeding farms for C. burnetii is urgently needed in countries where camel breeding is on the rise. Moreover, the risk of C. burnetii transmission from camel to human should be further evaluated.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Ikram Omar Osman
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Faculty of Sciences Ben-Ben-M'Sik, University Hassan II, Casablanca, Morocco
| | - Matthieu Million
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
14
|
Ghoneim NH, Abdel-Moein KA, Zaher HM, Abuowarda MM. Investigation of Ixodidae ticks infesting camels at slaughterhouse and its potential role in transmitting Coxiella burnetii in Egypt. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Mohammadpour R, Champour M, Tuteja F, Mostafavi E. Zoonotic implications of camel diseases in Iran. Vet Med Sci 2020; 6:359-381. [PMID: 32160657 PMCID: PMC7397890 DOI: 10.1002/vms3.239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 05/28/2019] [Accepted: 07/07/2019] [Indexed: 12/31/2022] Open
Abstract
Approximately 60% of all human pathogens and 75% of emerging infectious diseases are zoonotic (of animal origin). Camel zoonotic diseases can be encountered in all camel-rearing countries. In this article, all studies carried out on camel zoonotic diseases in Iran are reviewed to show the importance of camels for public health in this country. More than 900 published documents were systematically searched to find relevant studies from 1,890 until late 2018. The collected articles were classified according to the aetiological agents. In this study, 19 important zoonotic diseases were reported among Iranian camels including listeriosis, leptospirosis, plague, Q fever, brucellosis, campylobacteriosis, tuberculosis, pasteurellosis, clostridiosis, salmonellosis, Escherichia coli infections, rabies, camelpox, Middle East respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever, echinococcosis, cryptosporidiosis, toxoplasmosis and dermatophytosis, most of which belong to bacterial, viral, parasitic and fungal pathogens, respectively. Results show that camels are one of the most important sources of infections and diseases in human; therefore, continuous monitoring and inspection programs are necessary to prevent the outbreak of zoonotic diseases caused by this animal in humans.
Collapse
Affiliation(s)
- Roya Mohammadpour
- Department of Epidemiology and BiostatisticsResearch Centre for Emerging and Reemerging infectious diseasesPasteur Institute of IranTehranIran
| | - Mohsen Champour
- Department of Clinical SciencesSchool of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Fateh Tuteja
- National Research Centre on CamelBikanerRajasthanIndia
| | - Ehsan Mostafavi
- Department of Epidemiology and BiostatisticsResearch Centre for Emerging and Reemerging infectious diseasesPasteur Institute of IranTehranIran
| |
Collapse
|
16
|
Bellabidi M, Benaissa MH, Bissati-Bouafia S, Harrat Z, Brahmi K, Kernif T. Coxiella burnetii in camels (Camelus dromedarius) from Algeria: Seroprevalence, molecular characterization, and ticks (Acari: Ixodidae) vectors. Acta Trop 2020; 206:105443. [PMID: 32173315 DOI: 10.1016/j.actatropica.2020.105443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Q fever is a widespread zoonotic disease caused by Coxiella burnetii that most commonly infects not only a variety of mammals but also arthropods and in particularly ticks. The aim of this study was to detect C. burnetii infection in camels including ixodid ticks using serological and molecular assays. Between July 2018 to June 2019, blood samples from 184 male and female camels (Camelus dromedarius) were collected from 3 regions of South-East Algeria and serum samples were tested for antibodies against Coxiella burnetii using indirect enzyme-linked immunosorbent assay (ELISA) kit. The positive sera and a total of 60 ticks were tested by quantitative PCR (qPCR) for detection of C. burnetii with primers and probes specific to the transposon-like repetitive region (IS1111 gene). Positive samples were genotyped by amplification and sequencing of partial sequences based on the IS1111 gene. The seroprevalence of antibodies against C. burnetii was 75.5%. Statistical analysis pointed out three potential risk factors associated with Q fever infection: geographic location, age class and season. No positive DNA of camel blood sample was observed. However, five Hyalomma dromedarii, one H. impeltatum and one H. excavatum tick species were detected positive for Coxiella burnetii DNA by qPCR, with an overall prevalence rate of 11.66% (7/60). The revealed Algerian strains by phylogenetic and comparative analysis of the IS1111 nucleotide sequences were clustered with several pathogenic C. burnetii strains isolated from ticks, human, and cattle located in Tunisia, Greece and in some Mediterranean countries, respectively. The study results clearly indicate that camels and their ticks in Algeria may play an important role as a reservoir for C. burnetii and can be considered as a significant source of Q fever transmission to other animal species and humans.
Collapse
|
17
|
Abdullah HHAM, Hussein HA, El-Razik KAA, Barakat AMA, Soliman YA. Q fever: A neglected disease of camels in Giza and Cairo Provinces, Egypt. Vet World 2019; 12:1945-1950. [PMID: 32095045 PMCID: PMC6989333 DOI: 10.14202/vetworld.2019.1945-1950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Q fever is a zoonotic disease caused by Coxiella burnetii. Cattle, sheep, and goat are the main reservoir of C. burnetii. In Egypt, the epidemiological data about C. burnetii in camels are limited. Therefore, the current study was conducted to identify C. burnetii infection in camels by different molecular tools and to estimate its seropositivity through the detection of anti-C. burnetii antibodies in camel sera. Materials and Methods Blood samples were collected 112 from camels in Giza and Cairo Provinces, Egypt. All blood samples were screened by trans-quantitative polymerase chain reaction (trans-qPCR) for C. burnetii and positive samples subjected to standard PCR using the superoxide dismutase enzyme coding gene of C. burnetii. Sera of studied camels were examined for the presence of antibodies against C. burnetii using enzyme-linked immunosorbent assay. Results Out of 112 camels, 19 were positive for C. burnetii by qPCR with an overall prevalence of 16.9% (18.6% in Giza and 15.1% in Cairo Provinces, respectively). The seroprevalence of anti-C. burnetii IgG antibodies in the examined camels was 4.5% (5/112). Conclusions Trans-qPCR assay is a rapid and sensitive tool for the detection of C. burnetii in acute stage. Camels should be considered one of the major reservoirs for C. burnetii in Egypt.
Collapse
Affiliation(s)
- Hend H A M Abdullah
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Hany A Hussein
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Dokki, Giza, Egypt.,Key Laboratory of Diagnostic and Detective Technology, Department of Veterinary Research, Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, China
| | - Khaled A Abd El-Razik
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Dokki, Giza, Egypt
| | - Ashraf M A Barakat
- Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Yousef A Soliman
- Department of Biotechnology, Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo, Egypt
| |
Collapse
|
18
|
Monaco D, Lacalandra GM. Considerations for the development of a dromedary camel (Camelus dromedarius) semen collection centre. Anim Reprod Sci 2019; 212:106239. [PMID: 31864495 DOI: 10.1016/j.anireprosci.2019.106239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
Abstract
The dromedary camel (DC) is a strategic animal for the exploitation of the desert and unhospitable lands (arid and semiarid areas). These animals are a genetic resource, locally adapted and more resilient to these environs, that may significantly contribute to food security and sustainable development of marginal land areas. Artificial insemination is the least invasive, least expensive technique for improving genetic selection and minimising transmission of venereal disease among animals and herds. Besides semen preservation protocols, specific approaches for the development of DC semen collection centres - biosecurity measures, screening for infectious diseases, management of animals, welfare, nutrition, control of seasonality, training, hygiene of semen collection and processing - have been considered less important aspects. The aim of this research is to describe the aspects related to the development of a DC semen collection centre, summarising the latest studies in the field of welfare, reproduction and diseases, and describing biosecurity and hygiene aspects related to semen collection and handling. Scientific gaps and requirements for maximising the production of good quality and safe-to-use semen doses with minimal risks of disease transmission are also described.
Collapse
Affiliation(s)
- D Monaco
- Department of Veterinary Medicine (DiMeV), University of Bari 'Aldo Moro', Italy.
| | - G M Lacalandra
- Department of Veterinary Medicine (DiMeV), University of Bari 'Aldo Moro', Italy
| |
Collapse
|
19
|
El-Deeb W, Ghoneim I, Fayez M, Elsohaby I, Alhaider A, ElGioushy M. Acute phase proteins, proinflammatory cytokines and oxidative stress biomarkers in sheep, goats and she-camels with Coxiella burnetii infection-induced abortion. Comp Immunol Microbiol Infect Dis 2019; 67:101352. [PMID: 31568899 DOI: 10.1016/j.cimid.2019.101352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/01/2022]
Abstract
Acute phase proteins (APPs) and oxidative stress are helpful markers in diagnosis of several infectious diseases. APPs, proinflammatory cytokines and oxidative stress markers were evaluated for their role in the diagnosis of naturally acquired Coxiella burnetii (Q fever) associated with abortion in sheep, goats and she-camels. Blood, aborted materials and vaginal swabs were collected from mixed herds in the Eastern Province of Saudi Arabia. Antioxidant biomarkers showed significant decline in cases of abortion compared to control animals at delivery time. The correlation between disease status and all parameters ranged from moderate to high. The APPs, cytokines and the oxidative stress marker malondialdehyde (MDA) displayed a high degree of distinction between aborted sheep and goat and normal delivered animals (AUC > 0.90). However, only MDA showed a high degree of differentiation (AUC > 0.90) between aborted she-camels and normal delivered controls. In conclusion, results from our study allow us to recommend using APPs, cytokines and oxidative stress markers as an additional tool for diagnosis of naturally occurring C. burnetii infection in sheep, goats and she-camels. However, it does not replace standard procedures for detection of C. burnetii.
Collapse
Affiliation(s)
- Wael El-Deeb
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al-Hofuf P.O. 400, Saudi Arabia; Department of Veterinary Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Ibrahim Ghoneim
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al-Hofuf P.O. 400, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud Fayez
- Ministry of Agriculture, Al Ahsa Veterinary Diagnostic Laboratory, Saudi Arabia; Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
| | - Ibrahim Elsohaby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Abdulrahman Alhaider
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al-Hofuf P.O. 400, Saudi Arabia
| | - Magdy ElGioushy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| |
Collapse
|
20
|
Selmi R, Ben Said M, Mamlouk A, Ben Yahia H, Messadi L. Molecular detection and genetic characterization of the potentially pathogenic Coxiella burnetii and the endosymbiotic Candidatus Midichloria mitochondrii in ticks infesting camels (Camelus dromedarius) from Tunisia. Microb Pathog 2019; 136:103655. [PMID: 31398530 DOI: 10.1016/j.micpath.2019.103655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022]
Abstract
Tick-borne bacteria are considered to be emerging in camels, but data about their occurrence in Tunisian dromedaries and their infesting ticks remain scarce. In this study, 412 camel blood samples and 327 partially engorged ticks were collected and tested for the presence of Coxiella burnetii and/or related strains, and Rickettsiales bacteria. Coxiella burnetii was detected in 9 Hyalomma impeltatum and 3 H. dromedarii with an overall prevalence rate of 3.6% (12/327). Candidatus Midichloria mitochondrii DNA was identified in 16 H. impeltatum and 10 H. dromedarii with an overall prevalence rate of 8% (26/327). Six ticks (2%) were found to be co-infected with these two bacteria. No positive DNA camel blood sample was observed for both bacteria. Genotyping and phylogenetic analysis of obtained C. burnetii partial sequences based on the IS1111 and htpB genes revealed 99-100% similarity to the pathogenic C. burnetii strains isolated from humans, ruminants and ticks, and that were genetically distant to those isolated from all endosymbiotic related strains (Coxiella-like bacteria). The analysis of the rickettsial partial sequences of the 16S rRNA gene showed 100% similarity to Ca. M. mitochondrii strains infecting Ixodid ticks and dogs. This is the first time that C. burnetii and Ca. M. mitochondrii have been detected in ticks from Tunisia, which raises the possibility of the involvement of Hyalomma tick species in the active diffusion of these bacteria among camels, other domestic animals and humans.
Collapse
Affiliation(s)
- Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020, Sidi Thabet, Tunisia; Institut National Agronomique de Tunis, Université de Carthage, Tunisia; Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisia
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020, Sidi Thabet, Tunisia
| | - Aymen Mamlouk
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020, Sidi Thabet, Tunisia
| | - Houcine Ben Yahia
- Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020, Sidi Thabet, Tunisia.
| |
Collapse
|
21
|
Evaluating Camel Health in Kenya—An Example of Conservation Medicine in Action. FOWLER'S ZOO AND WILD ANIMAL MEDICINE CURRENT THERAPY, VOLUME 9 2019. [PMCID: PMC7152025 DOI: 10.1016/b978-0-323-55228-8.00016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Khamesipour F, Dida GO, Anyona DN, Razavi SM, Rakhshandehroo E. Tick-borne zoonoses in the Order Rickettsiales and Legionellales in Iran: A systematic review. PLoS Negl Trop Dis 2018; 12:e0006722. [PMID: 30204754 PMCID: PMC6181433 DOI: 10.1371/journal.pntd.0006722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/11/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tick-borne zoonoses in the Order Rickettsiales and Legionellales cause infections that often manifest as undifferentiated fevers that are not easy to distinguish from other causes of acute febrile illnesses clinically. This is partly attributed to difficulty in laboratory confirmation since convalescent sera, specific diagnostic reagents, and the required expertise may not be readily available. As a result, a number of tick-borne zoonoses are underappreciated resulting in unnecessary morbidity, mortality and huge economic loses. In Iran, a significant proportion of human infectious diseases are tick-borne, with anecdotal evidence suggesting that tick-borne zoonoses are widespread but underreported in the country. Epidemiological review is therefore necessary to aid in the effective control and prevention of tick-borne zonooses in Iran. The aim of this review is to provide an in-depth and comprehensive overview of anaplasmosis, ehrlichiosis, spotted fever group rickettsioses and coxiellosis in Iran. METHODS Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, all relevant publications on tick-borne zoonoses in the Order Rickettsiales and Legionellales in Iran were searched using a number of search terms. The search was confined to authentic resources from repositories of popular data bases among them PubMed, Web of Science, Google Scholar, Science Direct, SpringerLink and SCOPUS. The search items included peer reviewed journals, books and book chapters published between 1996 and 2017. RESULTS A total of 1 205 scientific publications and reports were sourced, of which 63 met the search criteria and were reviewed. Of the 63 articles reviewed, 36 (57.1%) reported on coxiellosis, 15 (23.8%) on anaplasmosis, 11 (17.5%) on ehrlichiosis and 1(1.6%) on spotted fever group rickettsiae in a large scale study involving four countries, among them Iran. The existence of tick-borne pathogens in the Order Rickettsiales and Legionellales was confirmed by molecular, serological and microscopic techniques conducted on samples obtained from sheep, cattle, goats, camels, poultry, animal products (milk and eggs), dogs, ticks and even human subjects in different parts of the country; pointing to a countrywide distribution. DISCUSSION Based on the review, coxiellosis, anaplasmosis, ehrlichiosis, and SFG rickettsiae can be categorized as emerging tick-borne zoonotic diseases in Iran given the presence of their causiative agents (C. burnetii, A. phagocytophilum, A. marginale, A. bovis, A. ovis, A. central, E. canis, E. ewingii, E. chaffeensis and R. conorii) collectively reported in a variety of domestic animals, animal products, arthropods and human beings drawn from 22 provinces in Iran. CONCLUSION Given the asymptomatic nature of some of these zoonoses, there is a high likelihood of silent transmission to humans in many parts of the country, which should be considered a public health concern. Presently, information on the transmission intensity of tick-borne zoonoses caused by pathogens in the Order Rickettsiales and Legionellales to humans and its public health impact in Iran is scanty.
Collapse
Affiliation(s)
- Faham Khamesipour
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gabriel O. Dida
- School of Public Health and Community Development, Maseno University, Maseno, Kenya
- Department of Community and Public Health, Technical University of Kenya, Nairobi, Kenya
| | - Douglas N. Anyona
- School of Environment and Earth Sciences, Maseno University, Maseno, Kenya
| | - S. Mostafa Razavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ehsan Rakhshandehroo
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
23
|
Abdullah HHAM, El-Shanawany EE, Abdel-Shafy S, Abou-Zeina HAA, Abdel-Rahman EH. Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels. Vet World 2018; 11:1109-1119. [PMID: 30250371 PMCID: PMC6141297 DOI: 10.14202/vetworld.2018.1109-1119] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIM Q fever Coxiella burnetii is a worldwide zoonotic disease, and C. burnetii was detected in mammals and ticks. Ticks play an important role in the spread of C. burnetii in the environment. Therefore, the aims of this study were to detect Q fever C. burnetii in camels and ixodid ticks by molecular tools and identification of Hyalomma dromedarii and Hyalomma excavatum using molecular and immunological assays. MATERIALS AND METHODS A total of 113 blood samples from camels and 190 adult ticks were investigated for the infection with C. burnetii by polymerase chain reaction (PCR) and sequencing the targeting IS30A spacer. The two tick species H. dromedarii and H. excavatum were characterized molecularly by PCR and sequencing of 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit-1 (CO1) genes and immunologically by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. RESULTS A total of 52 camels (46%) were positive for Q fever infection. Only 10 adult ticks of H. dromedarii were infected with C. burnetii. The IS30A sequence was around 200 bp in length for C. burnetii in H. dromedarii ticks with a similarity of 99% when compared with reference data in GenBank records. The length of 16S rDNA and CO1 was 440 and 850 bp, respectively, for both H. dromedarii and H. excavatum. The phylogenetic status of H. dromedarii was distant from that of H. excavatum. SDS-PAGE revealed seven different bands in the adult antigens of either H. dromedarii or H. excavatum with molecular weights ranged from 132.9 to 17.7 KDa. In western blot analyses, the sera obtained from either infested camel by H. dromedarii or infested cattle by H. excavatum recognized four immunogenic bands (100.7, 49.7, 43.9, and 39.6 kDa) in H. dromedarii antigen. However, the infested camel sera identified two immunogenic bands (117 and 61.4 kDa) in H. excavatum antigen. Furthermore, the sera collected from cattle infested by H. excavatum recognized three immunogenic bands (61.4, 47.3, and 35 kDa) in H. excavatum antigen. CONCLUSION Molecular analyses indicated that both camels and ticks could be sources for infection of animals and humans with Q fever. Furthermore, the molecular analyses are more accurate tools for discriminating H. dromedarii and H. excavatum than immunological tools.
Collapse
Affiliation(s)
- Hend H. A. M. Abdullah
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Eman E. El-Shanawany
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Hala A. A. Abou-Zeina
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Eman H. Abdel-Rahman
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
24
|
Browne AS, Fèvre EM, Kinnaird M, Muloi DM, Wang CA, Larsen PS, O'Brien T, Deem SL. Serosurvey of Coxiella burnetii (Q fever) in Dromedary Camels (Camelus dromedarius) in Laikipia County, Kenya. Zoonoses Public Health 2017; 64:543-549. [PMID: 28176495 PMCID: PMC5655913 DOI: 10.1111/zph.12337] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Indexed: 12/19/2022]
Abstract
Dromedary camels (Camelus dromedarius) are an important protein source for people in semi-arid and arid regions of Africa. In Kenya, camel populations have grown dramatically in the past few decades resulting in the potential for increased disease transmission between humans and camels. An estimated four million Kenyans drink unpasteurized camel milk, which poses a disease risk. We evaluated the seroprevalence of a significant zoonotic pathogen, Coxiella burnetii (Q fever), among 334 camels from nine herds in Laikipia County, Kenya. Serum testing revealed 18.6% positive seroprevalence of Coxiella burnetii (n = 344). Increasing camel age was positively associated with C. burnetii seroprevalence (OR = 5.36). Our study confirmed that camels living in Laikipia County, Kenya, have been exposed to the zoonotic pathogen, C. burnetii. Further research to evaluate the role of camels in disease transmission to other livestock, wildlife and humans in Kenya should be conducted.
Collapse
Affiliation(s)
- A. S. Browne
- Molecular Epidemiology and Public Health LaboratoryHopkirk Research InstituteMassey UniversityPalmerston NorthNZ
| | - E. M. Fèvre
- Institute of Infection and Global HealthUniversity of LiverpoolNestonUK
- International Livestock Research InstituteNairobiKE
| | | | - D. M. Muloi
- Centre for Immunity, Infection and EvolutionUniversity of EdinburghEdinburghUK
| | - C. A. Wang
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - P. S. Larsen
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMIUSA
| | - T. O'Brien
- Mpala Research CentreNanyukiKE
- Wildlife Conservation SocietyGlobal Conservation ProgramsBronx, New YorkNYUSA
| | - S. L. Deem
- Saint Louis Zoo Institute for Conservation MedicineSaint LouisMOUSA
| |
Collapse
|
25
|
Benaissa MH, Ansel S, Mohamed-Cherif A, Benfodil K, Khelef D, Youngs CR, Kaidi R, Ait-Oudhia K. Seroprevalence and risk factors for Coxiella burnetii, the causative agent of Q fever in the dromedary camel ( Camelus dromedarius) population in Algeria. Onderstepoort J Vet Res 2017; 84:e1-e7. [PMID: 28893076 PMCID: PMC6238797 DOI: 10.4102/ojvr.v84i1.1461] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 01/24/2023] Open
Abstract
Query (Q) fever is a globally distributed zoonotic disease caused by Coxiella burnetii, a bacterial agent for which ruminants are the most prevalent natural reservoir. Data regarding Q fever infection in camels in Algeria are limited. Therefore, a survey to detect seroprevalence of C. burnetii antibodies was conducted among healthy camel populations in a vast area in southeastern Algeria to determine distribution of the Q fever causative organism and to identify risk factors associated with infection. Between January and March 2016, blood samples were collected from 184 camels and serum samples were subsequently analysed using a commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit. At the time of blood collection, a questionnaire investigating 13 potential predisposing factors associated with C. burnetii seropositivity was completed for every dromedary camel and herd. Results were analysed by a chi-square (χ2) test and multivariate logistic regression. The seroprevalence of C. burnetii at the animal level was 71.2% (95% CI: 65.2-78.3) and 85.3% (95% CI: 72.8-97.8) at the herd level. At the animal level, differences in seroprevalence were observed because of herd size, animal age, animal sex, presence of ticks and contact with other herds. A multivariable logistic regression model identified three main risk factors associated with individual seropositivity: (1) age class > 11 years (OR = 8.81, 95% CI: 2.55-30.41), (2) herd size > 50 head (OR = 4.46, 95% CI: 1.01-19.59) and (3) infestation with ticks (OR 2.2; 95% CI: 1.1-4.5). This study of seroprevalence of C. burnetii infection in camels in Algeria revealed a high seroprevalence of Q fever in camel populations in southeastern Algeria and provided strong evidence that Q fever represents an economic, public health and veterinary concern. Appropriate measures should be taken to prevent the spread of C. burnetii and to reduce the risk of Q fever in farm animals and humans in this agro-ecologically and strategically important region of North Africa.
Collapse
Affiliation(s)
- Mohammed H Benaissa
- Scientific and Technical Research Centre for Arid Areas (CRSTRA), Touggourt.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mohabbati Mobarez A, Bagheri Amiri F, Esmaeili S. Seroprevalence of Q fever among human and animal in Iran; A systematic review and meta-analysis. PLoS Negl Trop Dis 2017; 11:e0005521. [PMID: 28394889 PMCID: PMC5398711 DOI: 10.1371/journal.pntd.0005521] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/20/2017] [Accepted: 03/23/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Q fever is a main zoonotic disease around the world. The aim of this meta-analysis was to estimate the overall seroprevalence of Coxiella burnetii among human and animal population in Iran. METHODS Major national and international databases were searched from 2005 up to August 2016. We extracted the prevalence of Q fever antibodies (IgG) as the main primary outcome. We reported the prevalence of the seropositivity as point and 95% confidence intervals. RESULTS The overall seroprevalence of IgG phase I and II antibodies of Q fever in human was 19.80% (95% CI: 16.35-23.25%) and 32.86% (95% CI: 23.80-41.92%), respectively. The herd and individual prevalence of C. burnetii antibody in goat were 93.42% (95% CI: 80.23-100.00) and 31.97% (95% CI: 20.96-42.98%), respectively. The herd and individual prevalence of Q fever antibody in sheep's were 96.07% (95% CI: 89.11-100.00%) and 24.66% (95% CI: 19.81-29.51%), respectively. The herd and individual prevalence of C. burnetii antibody in cattle were 41.37% (95% CI: 17.88-64.86%) and 13.30% (95% CI: 2.98-23.62%), respectively. Individual seropositivity of Q fever in camel and dog were 28.26% (95% CI: 21.47-35.05) and 0.55% (0.03-2.68), respectively. CONCLUSION Seroprevalence of Q fever among human and domestic animals is considerable. Preventative planning and control of C. burnetii infections in Iran is necessary. Active surveillance and further research studies are recommended, to more clearly define the epidemiology and importance of C. burnetii infections in animals and people in Iran.
Collapse
Affiliation(s)
- Ashraf Mohabbati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saber Esmaeili
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- National Reference Laboratory of Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran
| |
Collapse
|