1
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
2
|
Huang L, Long Q, Su Q, Zhu X, Long X. Aflatoxin B1-DNA adducts modify the effects of post-operative adjuvant transarterial chemoembolization improving hepatocellular carcinoma prognosis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:780-792. [PMID: 37711588 PMCID: PMC10497403 DOI: 10.37349/etat.2023.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023] Open
Abstract
AIM DNA damage involves in the carcinogenesis of some cancer and may act as a target for therapeutic intervention of cancers. However, it is unclear whether aflatoxin B1 (AFB1)-DNA adducts (ADAs), an important kind of DNA damage caused by AFB1, affect the efficiency of post-operative adjuvant transarterial chemoembolization (po-TACE) treatment improving hepatocellular carcinoma (HCC) survival. METHODS A hospital-based retrospective study, including 318 patients with Barcelona Clinic Liver Cancer (BCLC)-C stage HCC from high AFB1 exposure areas, to investigate the potential effects of ADAs in the tissues with HCC on po-TACE treatment. The amount of ADAs in the cancerous tissues was tested by competitive enzyme-linked immunosorbent assay (c-ELISA). RESULTS Among these patients with HCC, the average amount of ADAs was 3.00 µmol/mol ± 1.51 µmol/mol DNA in their tissues with cancer. For these patients, increasing amount of ADAs was significantly associated with poorer overall survival (OS) and tumor reoccurrence-free survival (RFS), with corresponding death risk (DR) of 3.69 (2.78-4.91) and tumor recurrence risk (TRR) of 2.95 (2.24-3.88). The po-TACE therapy can efficiently improve their prognosis [DR = 0.59 (0.46-0.76), TRR = 0.63 (0.49-0.82)]. Interestingly, this improving role was more noticeable among these patients with high ADAs [DR = 0.36 (0.24-0.53), TRR = 0.40 (0.28-0.59)], but not among those with low ADAs (P > 0.05). CONCLUSIONS These results suggest that increasing ADAs in the cancerous tissues may be beneficial for po-TACE in ameliorating the survival of patients with HCC.
Collapse
Affiliation(s)
- Liyan Huang
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Departement of Pathology, Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qinqin Long
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qunying Su
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xiaoying Zhu
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xidai Long
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Zong RQ, Zhang HY, Li XY, Li YR, Chen Y. Overexpressed Histocompatibility Minor 13 was Associated with Liver Hepatocellular Carcinoma Progression and Prognosis. Genet Res (Camb) 2022; 2022:7067743. [PMID: 36262249 PMCID: PMC9550386 DOI: 10.1155/2022/7067743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Among primary liver carcinoma cases, the proportion of liver hepatocellular carcinoma (LIHC) cases is 75%-85%. Current treatments for LIHC include chemotherapy, surgical excision, and liver transplantation, which are effective for early LIHC treatment. Nevertheless, the early symptoms of liver carcinoma are atypical, so a large proportion of LIHC patients are diagnosed at an advanced stage. Histocompatibility minor 13 (HM13), located in the endoplasmic reticulum, is responsible for catalysing the hydrolysis of some signal peptides after cleavage from the precursor protein. Here, we studied the role of HM13 in LIHC development through bioinformatics analysis. Database analysis showed that HM13 was of great significance for LIHC tumorigenesis. Compared to normal liver tissues, HM13 expression was increased to a greater extent in LIHC tissues. After analysis of Kaplan‒Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA) datasets, we discovered that highly expressed HM13 exhibited an association with shorter overall survival (OS), disease-free survival (DFS), and disease-specific survival (DSS). We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to analyse HM13-related genes, and the data indicated that these genes obviously participated in rRNA processing, ribosome biogenesis, spliceosome, Huntington's disease, and ATP-dependent helicase activity. The Cell Counting Kit-8 (CCK-8) assay and Transwell assay showed that reducing HM13 expression hindered LIHC cell proliferation, migration, and invasion. In conclusion, these findings indicate that HM13 is a biomarker and is related to the poor prognosis of LIHC. Our results are conducive to discovering new targets for LIHC treatment.
Collapse
Affiliation(s)
- Rui-Qing Zong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hong-Yan Zhang
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiao-Ying Li
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi-ran Li
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Wang S, Yang XX, Li TJ, Zhao L, Bao YR, Meng XS. Analysis of the absorbed constituents and mechanism of liquidambaris fructus extract on hepatocellular carcinoma. Front Pharmacol 2022; 13:999935. [PMID: 36110518 PMCID: PMC9468745 DOI: 10.3389/fphar.2022.999935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) refers to one of the top 10 cancers in terms of morbidity and mortality globally, seriously influencing people’s lives. First recorded in Compendium of Materia Medica, liquidambaris fructus (LF) generates definite anti-liver tumor effect. However, its effective substances and mechanism remain to be elucidated.Methods: Serum pharmacochemistry and UPLC-QTOF-MS technologies were employed to explore the plasma of rats after intragastric administration of liquidambaris fructus extract (LFE) in order to find the active ingredients. Subsequently, DEN-induced rat liver cancer model was established with the purpose of investigating the anti-tumor activity of LFE from physiological, pathological and biochemical aspects. Finally, non-target metabonomics combined with q-PCR and Western blot methods were adopted for revealing the mechanism.Results: Totally 11 prototype blood transfused ingredients, including imperatorin and phellopterin were detected. LFE presents excellent impact on enhancing the quality of life, prolonging the life cycle, reducing inflammatory reaction, protecting hepatocytes, improving body immunity and killing liver tumor cells. Altogether 82 endogenous differential metabolites were found in metabonomics, suggesting that LFE can treat HCC by acting on key targets of PTEN/PI3K/Akt pathway and fatty acid metabolism. Further research also verified that LFE can upregulate the relative expression levels of PTEN, PDCD4, Caspase 9, Caspase 3, Bax and Bad as well as lower the relative expression levels of PI3K, AKT, VEGFA and Bcl-2.Conclusion: This study revealed the pharmacodynamic material basis of LFE in the treatment of HCC, and from the perspective of metabolomics proved that the effects of inhibiting the growth of tumor cells, promoting tumor cell apoptosis, reducing inflammatory reaction, protecting hepatocytes, improving the survival state of tumor rats, and prolonging the life cycle are related to its impact on PTEN/PI3K/Akt, fatty acid metabolism and other key signal pathways.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Xin-Xin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Tian-Jiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Lin Zhao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Yong-Rui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
- *Correspondence: Yong-Rui Bao, ; Xian-Sheng Meng,
| | - Xian-Sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
- *Correspondence: Yong-Rui Bao, ; Xian-Sheng Meng,
| |
Collapse
|
5
|
Plasma Sphingosine-1-Phosphate Levels Are Associated with Progression of Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413367. [PMID: 34948163 PMCID: PMC8703495 DOI: 10.3390/ijms222413367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients.
Collapse
|
6
|
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021; 139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenglang Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Miura K, Nagahashi M, Prasoon P, Hirose Y, Kobayashi T, Sakata J, Abe M, Sakimura K, Matsuda Y, Butash AL, Katsuta E, Takabe K, Wakai T. Dysregulation of sphingolipid metabolic enzymes leads to high levels of sphingosine-1-phosphate and ceramide in human hepatocellular carcinoma. Hepatol Res 2021; 51:614-626. [PMID: 33586816 DOI: 10.1111/hepr.13625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
AIM Sphingosine-1-phosphate (S1P) and ceramide are bioactive sphingolipids known to be important in regulating numerous processes involved in cancer progression. The aim of this study was to determine the absolute levels of sphingolipids in hepatocellular carcinoma (HCC) utilizing data obtained from surgical specimens. In addition, we explored the clinical significance of S1P in patients with HCC and the biological role of S1P in HCC cells. METHODS Tumors and normal liver tissues were collected from 20 patients with HCC, and sphingolipids were measured by mass spectrometry. The Cancer Genome Atlas (TCGA) cohort was utilized to evaluate gene expression of enzymes related to sphingolipid metabolism. Immunohistochemistry of phospho-sphingosine kinase 1 (SphK1), an S1P-producing enzyme, was performed for 61 surgical specimens. CRISPR/Cas9-mediated SphK1 knockout cells were used to examine HCC cell biology. RESULTS S1P levels were substantially higher in HCC tissue compared with normal liver tissue. Levels of other sphingolipids upstream of S1P in the metabolic cascade, such as sphingomyelin, monohexosylceramide and ceramide, were also considerably higher in HCC tissue. Enzymes involved in generating S1P and its precursor, ceramide, were found in higher levels in HCC compared with normal liver tissue. Immunohistochemical analysis found that phospho-SphK1 expression was associated with tumor size. Finally, in vitro assays indicated that S1P is involved in the aggressiveness of HCC cells. CONCLUSIONS Sphingolipid levels, including S1P and ceramide, were elevated in HCC compared with surrounding normal liver tissue. Our findings suggest S1P plays an important role in HCC tumor progression, and further examination is warranted.
Collapse
Affiliation(s)
- Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Pankaj Prasoon
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Niigata, Japan
| | - Ali L Butash
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Shinjuku, Tokyo, Japan
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| |
Collapse
|
8
|
Li Z, Zhang L, Liu D, Wang C. Ceramide glycosylation and related enzymes in cancer signaling and therapy. Biomed Pharmacother 2021; 139:111565. [PMID: 33887691 DOI: 10.1016/j.biopha.2021.111565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023] Open
Abstract
Ceramides, the core of the sphingolipid metabolism, draw wide attention as tumor suppressor, and act directly on mitochondria to trigger apoptotic cell death. Ceramide-based therapies are being developed by using promote ceramide generating agents. The ceramide metabolism balance is regulated by multifaceted factors in cancer development. Ceramide metabolic enzymes can increase the elimination of ceramide and counteract the anti-tumor effects of ceramide. However, recent research showed that these metabolic enzymes were highly expressed in several cancers. Especially ceramide glycosyltransferases, they catalyze ceramide glycosylation and synthesis the skeleton of glycosphingolipids (GSLs), play an important role in regulating tumor progression and have a significant correlation with the poor prognosis of cancer patients. To further understand the biological characteristics of ceramide metabolism in tumor, this review focuses on the role of ceramide glycosylation and related enzymes in cancer signaling and therapy. Besides, the research on multidrug resistance and potential inhibitors of ceramide glycosyltransferases are also discussed. Advance study on the structure of ceramide glycosyltransferases and ceramide glycosylation signaling pathway will open the path to new therapies and treatments.
Collapse
Affiliation(s)
- Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
9
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
10
|
Liver Cirrhosis in Chronic Hepatitis B Patients Is Associated with Genetic Variations in DNA Repair Pathway Genes. Cancers (Basel) 2020; 12:cancers12113295. [PMID: 33171788 PMCID: PMC7694950 DOI: 10.3390/cancers12113295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary As DNA repair enzymes affect dynamics of liver damage and are involved in HBV viral replication, this study focused on the role of genetic variations within genes representing key DNA-repair pathways in HBV-induced liver cirrhosis. The obtained results have demonstrated that SNPs within XRCC1, ERCC2 genes may confer susceptibility to liver cirrhosis in chronic hepatitis B patients. Abstract Liver cirrhosis (LC), contributing to more than 1 million of deaths annually, is a major healthcare concern worldwide. Hepatitis B virus (HBV) is a major LC etiological factor, and 15% of patients with chronic HBV infection (CHB) develop LC within 5 years. Recently, novel host genetic determinants were shown to influence HBV lifecycle and CHB course. DNA repair enzymes can affect dynamics of liver damage and are involved in HBV covalently closed circular DNA (cccDNA) formation, an essential step for viral replication. This study aimed to evaluate the possible role of genes representing key DNA-repair pathways in HBV-induced liver damage. MALDI-TOF MS genotyping platform was applied to evaluate variations within XRCC1, XRCC4, ERCC2, ERCC5, RAD52, Mre11, and NBN genes. Apart from older age (p < 0.001), female sex (p = 0.021), portal hypertension (p < 0.001), thrombocytopenia (p < 0.001), high HBV DNA (p = 0.001), and high aspartate aminotransferase (AST) (p < 0.001), we found that G allele at rs238406 (ERCC2, p = 0.025), T allele at rs25487 (XRCC1, p = 0.012), rs13181 GG genotype (ERCC2, p = 0.034), and C allele at rs2735383 (NBN, p = 0.042) were also LC risk factors. The multivariate logistic regression model showed that rs25487 CC (p = 0.005) and rs238406 TT (p = 0.027) were independently associated with lower risk of LC. This study provides evidence for the impact of functional and potentially functional variations in key DNA-repair genes XRCC1 and ERCC2 in HBV-induced liver damage in a Caucasian population.
Collapse
|
11
|
Frohlich J, Kovacovicova K, Mazza T, Emma MR, Cabibi D, Foti M, Sobolewski C, Oben JA, Peyrou M, Villarroya F, Soresi M, Rezzani R, Cervello M, Bonomini F, Alisi A, Vinciguerra M. GDF11 induces mild hepatic fibrosis independent of metabolic health. Aging (Albany NY) 2020; 12:20024-20046. [PMID: 33126224 PMCID: PMC7655202 DOI: 10.18632/aging.104182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Growth Differentiation Factor 11 (GDF11) is an anti-aging factor, yet its role in liver diseases is not established. We evaluated the role of GDF11 in healthy conditions and in the transition from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). RESULTS GDF11 mRNA levels positively correlated with NAFLD activity score and with CPT1, SREBP, PPARγ and Col1A1 mRNA levels, and associated to portal fibrosis, in morbidly obese patients with NAFLD/NASH. GDF11-treated mice showed mildly exacerbated hepatic collagen deposition, accompanied by weight loss and without changes in liver steatosis or inflammation. GDF11 triggered ALK5-dependent SMAD2/3 nuclear translocation and the pro-fibrogenic activation of HSC. CONCLUSIONS GDF11 supplementation promotes mild liver fibrosis. Even considering its beneficial metabolic effects, caution should be taken when considering therapeutics that regulate GDF11. METHODS We analyzed liver biopsies from a cohort of 33 morbidly obese adults with NAFLD/NASH. We determined the correlations in mRNA expression levels between GDF11 and genes involved in NAFLD-to-NASH progression and with pathological features. We also exposed wild type or obese mice with NAFLD to recombinant GDF11 by daily intra-peritoneal injection and monitor the hepatic pathological changes. Finally, we analyzed GDF11-activated signaling pathways in hepatic stellate cells (HSC).
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jude A. Oben
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| | - Maurizio Soresi
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, Brescia, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, Brescia, Italy
| | - Anna Alisi
- Research Area for Multifactorial Diseases, Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom
| |
Collapse
|
12
|
Tsuchida J, Nagahashi M, Nakajima M, Katsuta E, Rashid OM, Qi Q, Yan L, Okuda S, Takabe K, Wakai T. Sphingosine Kinase 1 is Associated With Immune Cell-Related Gene Expressions in Human Breast Cancer. J Surg Res 2020; 256:645-656. [PMID: 32810665 DOI: 10.1016/j.jss.2020.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although previous experiments have implicated sphingosine-1-phosphate (S1P) as a links between immune reactions and cancer progression, the exact mechanism of this interaction has not comprehensively studied in clinical human samples. This study sought to evaluate the S1P regulation by sphingosine kinase 1 (SPHK1), an S1P-producing enzyme, in the immunity/immuno-reactivity of clinical human breast cancer surgical specimens. METHODS S1P levels were examined in tumor, peritumoral, and normal human breast samples using mass spectrometry. Genomics Data Commons data portal of The Cancer Genome Atlas cohort was used to assess the expression of S1P-related and immune-related genes. RESULTS S1P levels were significantly higher in tumor samples compared to peritumoral (P < 0.05) or normal human breast samples (P < 0.001). SPHK1 gene expression was elevated in tumoral samples compared to normal breast samples (P < 0.01). Furthermore, the elevated expression of SPHK1 in breast cancer tissue was associated with an increased expression of the different kinds of immune-related genes, such as CD68, CD163, CD4, and FOXP3 (forkhead box P3), in HER2-negative breast cancer. Network analysis showed the central role of SPHK1 in the interaction of S1P signaling and expression of immune cell-related proteins. CONCLUSIONS We demonstrated that S1P is mainly produced by tumor tissue, rather than peritumoral tissue, in breast cancer patients. Our data revealed the involvement of S1P signaling in the regulation of immune-related genes, suggesting the links between S1P and complicated immune-cancer interactions in breast cancer patients.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan.
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Eriko Katsuta
- Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Omar M Rashid
- Division of Surgical Oncology, Holy Cross Hospital Michael and Dianne Bienes Comprehensive Cancer Center, Fort Lauderdale, Florida; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Surgery, Nova Southeastern University School of Medicine, Fort Lauderdale, Florida
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan; Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, New York
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| |
Collapse
|
13
|
Fang H, Feng Q, Shi Y, Zhou J, Wang Q, Zhong L. Hepatic insulin resistance induced by mitochondrial oxidative stress can be ameliorated by sphingosine 1-phosphate. Mol Cell Endocrinol 2020; 501:110660. [PMID: 31759099 DOI: 10.1016/j.mce.2019.110660] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/22/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
The bioactive lipid mediator sphingosine 1-phosphate (S1P) is considered to be involved in the development of insulin resistance (IR) via effects on oxidative stress; the mechanism however is not yet fully revealed. To this end, we investigated the role and mechanism of S1P on hepatic IR. We found that treatment of the normal human liver cell LO2 with 1000 nM insulin for 48 h reduced glucose uptake and increased serine phosphorylation of insulin receptor substrate-1, indicating a reduction in insulin receptor signaling. Moreover, the same concentration of insulin caused accumulation of reactive oxygen species (ROS) in the cytosol and mitochondria, and enhanced expression of the antioxidant transcription factor (Nrf2) and upregulated Nrf2 nuclear translocation. Using known inhibitors and donors of ROS (H2O2, ·O2-, ·OH), the results demonstrated the differential roles for the specific ROS in regulating IR in LO2 cells, with H2O2 having a more significant inhibitory role compared with ·O2- and ·OH. Cell treatment with S1P at 0.1-5.0 μM reversed the effects of high insulin concentrations on ROS generation, glucose uptake, and insulin signaling. H2O2 also reversed the beneficial effects of S1P in alleviating IR. These results show that H2O2 signaling plays a key determinant in hepatic IR induced by insulin. S1P can ameliorate hepatic IR by reducing mitochondrial ROS generation, and the possible anti-IR effect mechanism may be involved in H2O2 signaling.
Collapse
Affiliation(s)
- Hongjuan Fang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiong Feng
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Yunxiang Shi
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Jiping Zhou
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Qiang Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China.
| | - Liyong Zhong
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
14
|
Simon J, Ouro A, Ala-Ibanibo L, Presa N, Delgado TC, Martínez-Chantar ML. Sphingolipids in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. Int J Mol Sci 2019; 21:40. [PMID: 31861664 PMCID: PMC6982102 DOI: 10.3390/ijms21010040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the main causes of chronic liver disease worldwide. NAFLD comprises a group of conditions characterized by the accumulation of hepatic lipids that can eventually lead to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), the fifth most common cancer type with a poor survival rate. In this context, several works have pointed out perturbations in lipid metabolism and, particularly, changes in bioactive sphingolipids, as a hallmark of NAFLD and derived HCC. In the present work, we have reviewed existing literature about sphingolipids and the development of NAFLD and NAFLD-derived HCC. During metabolic syndrome, considered a risk factor for steatosis development, an increase in ceramide and sphigosine-1-phosphate (S1P) have been reported. Likewise, other reports have highlighted that increased sphingomyelin and ceramide content is observed during steatosis and NASH. Ceramide also plays a role in liver fibrosis and cirrhosis, acting synergistically with S1P. Finally, during HCC, metabolic fluxes are redirected to reduce cellular ceramide levels whilst increasing S1P to support tumor growth.
Collapse
Affiliation(s)
- Jorge Simon
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48980 Leioa, Bizkaia, Spain; (A.O.); (N.P.)
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Lolia Ala-Ibanibo
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48980 Leioa, Bizkaia, Spain; (A.O.); (N.P.)
| | - Teresa Cardoso Delgado
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| |
Collapse
|
15
|
Ming XL, Feng YL, He DD, Luo CL, Rong JL, Zhang WW, Ye P, Chai HY, Liang CZ, Tu JC. Role of BCYRN1 in hepatocellular carcinoma pathogenesis by lncRNA-miRNA-mRNA network analysis and its diagnostic and prognostic value. Epigenomics 2019; 11:1209-1231. [PMID: 31339046 DOI: 10.2217/epi-2018-0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: This study aimed to excavate the roles of BCYRN1 in hepatocellular carcinoma (HCC). Methods: A comprehensive strategy of microarray data mining, computational biology and experimental verification were adopted to assess the clinical significance of BCYRN1 and identify related pathways. Results: BCYRN1 was upregulated in HCC and its expression was positively associated with both tumor, node, metastasis and worse survival rate in patients with HCC. Through combing plasma BCYRN1 with alpha fetoprotein, the diagnosis of HCC was remarkably improved. BCYRN1 may regulate some cancer-related pathways to promote HCC initiation via an lncRNA-miRNA-mRNA network. Conclusion: Our results propose BCYRN1 as a potential diagnostic and prognostic biomarker and offer a novel perspective to explore the etiopathogenesis of HCC.
Collapse
Affiliation(s)
- Xin-Liang Ming
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Yan-Lin Feng
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Ding-Dong He
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Chang-Liang Luo
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Jia-Ling Rong
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Wu-Wen Zhang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Peng Ye
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Hong-Yan Chai
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Chun-Zi Liang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Jian-Cheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
16
|
Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T. The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci 2018; 109:3671-3678. [PMID: 30238699 PMCID: PMC6272099 DOI: 10.1111/cas.13802] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Many inflammatory mediators are involved in the process of carcinogenesis and cancer progression. In addition to cytokines and chemokines, lipid mediators have recently attracted attention as signaling molecules associated with inflammatory diseases. Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that regulates cell survival and migration, immune cell recruitment, angiogenesis and lymphangiogenesis. S1P also plays a significant role in inflammation and cancer. The gradation of S1P concentration in the blood, lymph and tissue regulates lymphocyte trafficking, an important component of inflammation. Furthermore, cancer cells produce elevated levels of S1P, contributing to the tumor microenvironment and linking cancer and inflammation. Future technological advances may reveal greater detail about the mechanisms of S1P regulation in the tumor microenvironment and the contribution of S1P to cancer progression. Considering the critical role of S1P in linking inflammation and cancer, it is possible that the S1P signaling pathway could be a novel therapeutic target for cancers with chronic inflammation.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
| | - Manabu Abe
- Department of Animal Model DevelopmentBrain Research InstituteNiigata UniversityNiigata CityJapan
| | - Kenji Sakimura
- Department of Animal Model DevelopmentBrain Research InstituteNiigata UniversityNiigata CityJapan
| | - Kazuaki Takabe
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
- Breast SurgeryRoswell Park Cancer InstituteBuffaloNew York
- Department of SurgeryUniversity at BuffaloThe State University of New York Jacobs School of Medicine and Biomedical SciencesBuffaloNew York
| | - Toshifumi Wakai
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
| |
Collapse
|
17
|
Ansari S, Gantuya B, Tuan VP, Yamaoka Y. Diffuse Gastric Cancer: A Summary of Analogous Contributing Factors for Its Molecular Pathogenicity. Int J Mol Sci 2018; 19:2424. [PMID: 30115886 PMCID: PMC6121269 DOI: 10.3390/ijms19082424] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related deaths and ranks as the fifth most common cancer worldwide. Incidence and mortality differ depending on the geographical region and gastric cancer ranks first in East Asian countries. Although genetic factors, gastric environment, and Helicobacter pylori infection have been associated with the pathogenicity and development of intestinal-type gastric cancer that follows the Correa's cascade, the pathogenicity of diffuse-type gastric cancer remains mostly unknown and undefined. However, genetic abnormalities in the cell adherence factors, such as E-cadherin and cellular activities that cause impaired cell integrity and physiology, have been documented as contributing factors. In recent years, H. pylori infection has been also associated with the development of diffuse-type gastric cancer. Therefore, in this report, we discuss the host factors as well as the bacterial factors that have been reported as associated factors contributing to the development of diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
| | - Boldbaatar Gantuya
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Internal Medicine, Gastroenterology unit, Mongolian National University of Medical Sciences, Ulaanbaatar-14210, Mongolia.
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Hanyu T, Nagahashi M, Ichikawa H, Ishikawa T, Kobayashi T, Wakai T. Expression of phosphorylated sphingosine kinase 1 is associated with diffuse type and lymphatic invasion in human gastric cancer. Surgery 2018; 163:1301-1306. [DOI: 10.1016/j.surg.2017.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/26/2017] [Accepted: 11/22/2017] [Indexed: 01/28/2023]
|
19
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of liver disorders encompassing simple hepatic steatosis and its more aggressive forms of nonalcoholic steatohepatitis and cirrhosis. It is a rapidly growing health concern and the major cause for the increasing incidence of primary liver tumors. Unequivocal evidence shows that sphingolipid metabolism is altered in the course of the disease and these changes might contribute to NAFLD progression. Recent data provide solid support to the notion that deregulated ceramide and sphingosine-1-phosphate metabolism are present at all stages of NAFLD, i.e., steatosis, nonalcoholic steatohepatitis, advanced fibrosis, and hepatocellular carcinoma (HCC). Insulin sensitivity, de novo lipogenesis, and the resulting lipotoxicity, fibrosis, and angiogenesis are all seemingly regulated in a manner that involves either ceramide and/or sphingosine-1-phosphate. Sphingolipids might also participate in the onset of hepatocellular senescence. The latter has been shown to contribute to the advancement of cirrhosis to HCC in the classical cases of end-stage liver disease, i.e., viral- or alcohol-induced; however, emerging evidence suggests that senescence is also involved in the pathogenicity of NAFLD possibly via changes in ceramide metabolism.
Collapse
|
20
|
Zhong L, Kong JN, Dinkins MB, Leanhart S, Zhu Z, Spassieva SD, Qin H, Lin HP, Elsherbini A, Wang R, Jiang X, Nikolova-Karakashian M, Wang G, Bieberich E. Increased liver tumor formation in neutral sphingomyelinase-2-deficient mice. J Lipid Res 2018; 59:795-804. [PMID: 29567647 DOI: 10.1194/jlr.m080879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, but not adjacent tissue, exhibited substantial accumulation of lipid droplets, suggesting that nSMase2 deficiency is associated with tumor growth and increased neutral lipid generation in the tumor. Tumor tissue expressed significantly increased levels of CD133 and EpCAM mRNA, two markers of liver cancer stem-like cells (CSCs) and higher levels of phosphorylated signal transducer and activator of transcription 3, an essential regulator of stemness. CD133(+) cells showed strong labeling for SM and ceramide. In conclusion, these results suggest that SMase-2 deficiency plays a role in the survival or proliferation of CSCs, leading to spontaneous tumors, which is associated with tumor-specific effects on lipid homeostasis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ji Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Haiyan Qin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Hsuan-Pei Lin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | | | - Xue Jiang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Rehabilitation Center, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | | | - Guanghu Wang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
21
|
Sphingosine-1-phosphate/sphingosine kinase 1-dependent lymph node metastasis in esophageal squamous cell carcinoma. Surg Today 2017; 47:1312-1320. [DOI: 10.1007/s00595-017-1514-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/21/2017] [Indexed: 01/06/2023]
|
22
|
Okamura Y, Sugiura T, Ito T, Yamamoto Y, Ashida R, Uesaka K. The optimal cut-off value of the preoperative prognostic nutritional index for the survival differs according to the TNM stage in hepatocellular carcinoma. Surg Today 2017; 47:986-993. [PMID: 28315008 DOI: 10.1007/s00595-017-1491-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022]
Abstract
PURPOSE To establish the optimal cut-off value of the preoperative prognostic nutritional index (PNI) for prognosis according to the Tumor Node Metastasis (TNM) stage of hepatocellular carcinoma (HCC) after curative resection. METHODS This retrospective study reviewed the records of 375 patients. The optimal cut-off value of the PNI was established according to the TNM stage, and overall survival was compared between the low and high PNI groups. RESULTS The optimal cut-off value of the PNI decreased with increasing TNM stage, with 52, 47, and 43 patients having stage I, II, and III HCC, respectively. A low preoperative PNI predicted a poorer overall survival than did a high PNI for stage I (P < 0.001) and II (P = 0.002), but not stage III disease (P = 0.052). Multivariate analysis revealed that the preoperative PNI was an independent predictor of overall survival for stage I and II HCC (hazard ratios: 6.96 and 3.57, P = 0.001 and P = 0.001, respectively). CONCLUSIONS The findings of this study show that the optimal cut-off value for the PNI for prognosis differs among the TNM stages and that the preoperative PNI is a favorable prognostic factor for stage I HCC.
Collapse
Affiliation(s)
- Yukiyasu Okamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan.
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Takaaki Ito
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Yusuke Yamamoto
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| |
Collapse
|
23
|
Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods. Heliyon 2016; 2:e00219. [PMID: 28054036 PMCID: PMC5198727 DOI: 10.1016/j.heliyon.2016.e00219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Background Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid mediator that regulates many physiological and pathological processes. It has been suggested that S1P gradient with high concentrations in the blood and lymphatic fluid and low concentrations in the peripheral tissue plays important roles in immune cell trafficking and potentially cancer progression. However, only a few reports have assessed S1P levels in the lymphatic fluid due to lack of an established easy-to-use method. Here, we report a simple technique for collection of lymphatic fluid to determine S1P. Materials and methods Lymphatic fluid was collected directly with a catheter needle (classical method) or was absorbed onto filter paper after incision of cisterna chyli (new method) in murine models. Blood, lymphatic fluid and mesenteric lymph nodes were corrected from wild type and sphingosine kinase 2 (SphK2) knockout mice to determine S1P levels by mass spectrometry. Results The volume of lymphatic fluid collected by the new method was at least three times greater than those collected by the classical method. S1P concentrations in lymphatic fluid are lower than in blood and higher than in lymph nodes. Interestingly, S1P levels in lymphatic fluid from SphK2 knockout mice were significantly higher than those in wild type, suggesting an important role of SphK2 and/or SphK1 to regulate S1P levels in lymphatic fluid. Conclusions In agreement with the previous theory, our results confirm “S1P gradient” among blood, lymphatic fluid and peripheral lymphatic tissues. Convenient methods for collection and measurement of sphingolipids in lymphatic fluid are expected to provide new insights on functions of sphingolipids.
Collapse
|
24
|
Nagahashi M, Yuza K, Hirose Y, Nakajima M, Ramanathan R, Hait NC, Hylemon PB, Zhou H, Takabe K, Wakai T. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J Lipid Res 2016; 57:1636-1643. [PMID: 27459945 PMCID: PMC5003161 DOI: 10.1194/jlr.r069286] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
Based on research carried out over the last decade, it has become increasingly evident that bile acids act not only as detergents, but also as important signaling molecules that exert various biological effects via activation of specific nuclear receptors and cell signaling pathways. Bile acids also regulate the expression of numerous genes encoding enzymes and proteins involved in the synthesis and metabolism of bile acids, glucose, fatty acids, and lipoproteins, as well as energy metabolism. Receptors activated by bile acids include, farnesoid X receptor α, pregnane X receptor, vitamin D receptor, and G protein-coupled receptors, TGR5, muscarinic receptor 2, and sphingosine-1-phosphate receptor (S1PR)2. The ligand of S1PR2, sphingosine-1-phosphate (S1P), is a bioactive lipid mediator that regulates various physiological and pathophysiological cellular processes. We have recently reported that conjugated bile acids, via S1PR2, activate and upregulate nuclear sphingosine kinase 2, increase nuclear S1P, and induce genes encoding enzymes and transporters involved in lipid and sterol metabolism in the liver. Here, we discuss the role of bile acids and S1P signaling in the regulation of hepatic lipid metabolism and in hepatobiliary diseases.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| | - Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| | - Rajesh Ramanathan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA 23298
| | - Nitai C Hait
- Surgical Oncology and Molecular and Cellular Biology Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 and McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23224
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 and McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23224
| | - Kazuaki Takabe
- Breast Surgery, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| |
Collapse
|
25
|
Serum metabolomic signatures discriminate early liver inflammation and fibrosis stages in patients with chronic hepatitis B. Sci Rep 2016; 6:30853. [PMID: 27498553 PMCID: PMC4976343 DOI: 10.1038/srep30853] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic HBV (CHB) infected patients with intermediate necroinflammation and fibrosis are recommended to receive antiviral treatment. However, other than liver biopsy, there is a lack of sensitive and specific objective method to determine the necroinflammation and fibrosis stages in CHB patients. This study aims to identify unique serum metabolomic profile associated with histological progression in CHB patients and to develop novel metabolite biomarker panels for early CHB detection and stratification. A comprehensive metabolomic profiling method was established to compare serum samples collected from health donor (n = 67), patients with mild (G < 2 and S < 2, CHB1, n = 52) or intermediate (G ≥ 2 or S ≥ 2, CHB2, n = 36) necroinflammation and fibrosis. Multivariate models were developed to differentiate CHB1 and CHB2 from controls. A set of CHB-associated biomarkers was identified, including lysophosphatidylcholines, phosphatidylcholines, phosphatidylinositol, phosphatidylserine, and bile acid metabolism products. Stratification of CHB1 and CHB2 patients by a simple logistic index, the PIPSindex, based on phosphatidylinositol (PI) and phosphatidylserine (PS), was achieved with an AUC of 0.961, which outperformed all currently available markers. A panel of serum metabolites that differentiate health control, CHB1 and CHB2 patients has been identified. The proposed metabolomic biosignature has the potential to be used as indicator for antiviral treatment for CHB management.
Collapse
|
26
|
Moro K, Nagahashi M, Ramanathan R, Takabe K, Wakai T. Resolvins and omega three polyunsaturated fatty acids: Clinical implications in inflammatory diseases and cancer. World J Clin Cases 2016; 4:155-164. [PMID: 27458590 PMCID: PMC4945585 DOI: 10.12998/wjcc.v4.i7.155] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a central process in several disorders and contributes to cancer progression. Inflammation involves a complex cascade of pro-inflammatory and anti-inflammatory signaling events with protein and lipid mediators. Recent advances in lipid detection have revealed the importance of lipid mediators in inflammation. Omega three polyunsaturated fatty acids (ω-3 PUFA) are found naturally in fish oil and have been extensively studied in multiple inflammatory diseases with improved outcomes. Resolvins are thought to be the active metabolites of ω-3 PUFA, and are responsible for facilitating the resolving phase of acute inflammation. Clinically, resolvins have been associated with resolution of acute kidney injury and acute lung injury, micro and macro vascular response to injury, and inhibition of microglia-activated inflammation in neurodegenerative disorders. In addition to inflammatory diseases, ω-3 PUFA and resolvins appear to modulate cancer progression. ω-3 PUFA intake has been associated with reduced inflammation in colorectal cancer, and favorable phenotype in breast cancer. Resolvins offer promising therapeutic potential as they may modulate inflammation with minimal side-effects, in contrast to currently available anti-inflammatory medications. This review describes the roles of ω-3 PUFA and resolvins in the inflammatory cascade, various inflammatory diseases, and specific cancers. Additionally, it will discuss the clinical therapeutic potential of resolvins as targets in inflammatory diseases and cancers.
Collapse
|
27
|
Tsuchida J, Nagahashi M, Nakajima M, Moro K, Tatsuda K, Ramanathan R, Takabe K, Wakai T. Breast cancer sphingosine-1-phosphate is associated with phospho-sphingosine kinase 1 and lymphatic metastasis. J Surg Res 2016; 205:85-94. [PMID: 27621003 DOI: 10.1016/j.jss.2016.06.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/14/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid mediator, has been implicated as a key regulatory molecule in cancer through its ability to promote cell proliferation, migration, angiogenesis, and lymphangiogenesis. Previous studies suggested that S1P produced by sphingosine kinase 1 (SphK1) in breast cancer plays important roles in progression of disease and metastasis. However, the associations between S1P and clinical parameters in human breast cancer have not been well investigated to date. MATERIALS AND METHODS We determined levels of S1P and other sphingolipids in breast cancer tissue by electrospray ionization-tandem mass spectrometry. Associations between S1P levels and clinicopathologic features of the tumors were analyzed. Expression of phospho-SphK1 (pSphK1) in breast cancer tissues was determined by immunohistochemical scoring. RESULTS Levels of S1P in breast cancer tissues were significantly higher in patients with high white blood cell count in the blood than those patients without. S1P levels were lower in patients with human epidermal growth factor receptor 2 overexpression and/or amplification than those patients without. Furthermore, cancer tissues with high pSphK1 expression showed significantly higher levels of S1P than cancer tissues without. Finally, patients with lymph node metastasis showed significantly higher levels of S1P in tumor tissues than the patients with negative nodes. CONCLUSIONS To our knowledge, this is the first study to demonstrate that high expression of pSphK1 is associated with higher levels of S1P, which in turn is associated with lymphatic metastasis in breast cancer.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kumiko Tatsuda
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Rajesh Ramanathan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia; Breast Surgery, Roswell Park Cancer Institute, Buffalo, New York
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| |
Collapse
|
28
|
Liu S, Koh SSY, Lee CGL. Hepatitis B Virus X Protein and Hepatocarcinogenesis. Int J Mol Sci 2016; 17:ijms17060940. [PMID: 27314335 PMCID: PMC4926473 DOI: 10.3390/ijms17060940] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the most associated factors in hepatocarcinogenesis. HBV is able to integrate into the host genome and encode the multi-functional hepatitis B virus x protein (HBx). Although the mechanism between HBx and carcinogenesis is still elusive, recent studies have shown that HBx was able to influence various signaling pathways, as well as epigenetic and genetic processes. This review will examine and summarize recent literature about HBx’s role in these various processes.
Collapse
Affiliation(s)
- Shuaichen Liu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Department of Hepatobiliary & Pancreas Surgery, The First Hospital, Jilin University, Changchun 130021, China.
| | - Samantha S Y Koh
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 169610 Singapore, Singapore.
| | - Caroline G L Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 169610 Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore, Singapore.
- Duke-NUS Graduate Medical School, 169857 Singapore, Singapore.
| |
Collapse
|
29
|
Nagahashi M, Tsuchida J, Moro K, Hasegawa M, Tatsuda K, Woelfel IA, Takabe K, Wakai T. High levels of sphingolipids in human breast cancer. J Surg Res 2016; 204:435-444. [PMID: 27565080 DOI: 10.1016/j.jss.2016.05.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/15/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sphingolipids, including sphingosine-1-phosphate (S1P) and ceramide, have emerged as key regulatory molecules that control various aspects of cell growth and proliferation in cancer. Although important roles of sphingolipids in breast cancer progression have been reported in experimental models, their roles in human patients have yet to be determined. The aims of this study were to determine the levels of sphingolipids including S1P, ceramides, and other sphingolipids, in breast cancer and normal breast tissue and to compare the difference in levels of each sphingolipid between the two tissues. MATERIALS AND METHODS Tumor and noncancerous breast tissue were obtained from 12 patients with breast cancer. Sphingolipids including S1P, ceramides, and their metabolites of sphingosine, sphingomyelin, and monohexosylceramide were measured by liquid chromatography-electrospray ionization-tandem mass spectrometry. RESULTS The levels of S1P, ceramides, and other sphingolipids in the tumor were significantly higher than those in normal breast tissue. There was a relatively strong correlation in the levels of S1P between the tumor and those of normal breast tissue from the same person. On the other hand, there was no correlation in the levels of most of the ceramide species between the tumor and those of normal breast tissue from the same person. CONCLUSIONS To our knowledge, this is the first study to reveal that levels of sphingolipids in cancer tissue are generally higher than those of normal breast tissue in patients with breast cancer. The correlation of S1P levels in these tissues implicates the role of S1P in interaction between cancer and the tumor microenvironment.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Miki Hasegawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kumiko Tatsuda
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Ingrid A Woelfel
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| |
Collapse
|