1
|
Lodha SR, Merchant JG, Pillai AJ, Gore AH, Patil PO, Nangare SN, Kalyankar GG, Shah SA, Shah DR, Patole SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024; 10:e41020. [PMID: 39759361 PMCID: PMC11697698 DOI: 10.1016/j.heliyon.2024.e41020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors. This review discusses the current scenario of the status of pharmaceuticals in the environment, limitations associated with traditional techniques employed for their detection, and benefits offered by CDs like easy surface modification and tunable optical properties for sensing applications. Several representative means by which CDs interact with other molecules such as inner filter effect (IFE), dynamic quenching (DQ), static quenching (SQ), Förster resonance energy transfer (FRET), among others, are also discussed along with co-referencing fluorophores to design sensors. Based on developments described herein, CDs-based sensors can be expected to sense pharmaceuticals ranging from nanogram to picogram, target real-time industrial and spiked sample analysis, etc., which provides direction for future research.
Collapse
Affiliation(s)
- Sandesh R. Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Jesika G. Merchant
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Arya J. Pillai
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Anil H. Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Pravin O. Patil
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N. Nangare
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Gajanan G. Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shailesh A. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Dinesh R. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
2
|
Salari R, Amjadi M. An efficient chemiluminescent probe based on Ni-doped CsPbBr 3 perovskite nanocrystals embedded in mesoporous SiO 2 for sensitive assay of L-cysteine. Sci Rep 2024; 14:20871. [PMID: 39242591 PMCID: PMC11379696 DOI: 10.1038/s41598-024-70624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
This study presents an efficient chemiluminescence (CL) probe based on perovskite nanocrystals (NCs) for detection of L-cysteine (L-Cys). It consists of nickel-doped CsPbBr3 NCs embedded in the mesoporous SiO2 matrix as CL reagent and cerium (IV) as an oxidant in aqueous environment. The probe was designed for the highly selective determination of L-Cys based on its remarkable enhancing effect on the CL intensity. The colloidal nanocomposite of nickel-doped CsPbBr3 NCs@SiO2 with photoluminescence quantum yield of 58% was fabricated by ligand-assisted re-precipitation method and characterized by using UV-Vis absorption, FT-IR, X-ray diffraction, and transmission electron microscopy. The sensor was utilized to determine L-Cys in the linear concentration range of 20-300 nM with a detection limit of 12.8 nM. Direct chemical oxidation of Ni-doped CsPbBr3 NCs@SiO2 by Ce(IV) was the single cause of the formation of the excited-state NCs and subsequent production of CL. The developed probe provides outstanding selectivity towards L-Cys over structurally related compounds. Accurate determination of L-Cys in human serum samples was achieved without interference, and the results were confirmed by HPLC method.
Collapse
Affiliation(s)
- Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
| |
Collapse
|
3
|
Biocic M, Kraljević T, Spassov TG, Kukoc-Modun L, Kolev SD. Sequential Injection Analysis Method for the Determination of Glutathione in Pharmaceuticals. SENSORS (BASEL, SWITZERLAND) 2024; 24:5677. [PMID: 39275587 PMCID: PMC11397749 DOI: 10.3390/s24175677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024]
Abstract
A sequential injection analysis method for the determination of glutathione (GSH) in pharmaceuticals has been developed. It is based on the reduction of the Cu(II)-neocuproine complex by GSH and the formation of an orange-yellow colored Cu(I)-neocuproine complex with maximum absorbance at 458 nm. Under optimal conditions the method is characterized by a linear calibration range of 6.0 × 10-7-8.0 × 10-5 mol L-1 (Amax = 3270 CGSH - 0.0010; R2 = 0.9983), limit of detection of 2.0 × 10-7 mol L-1, limit of quantification of 6.7 × 10-7 mol L-1, repeatability (expressed as relative standard deviation) of 3.8%, and sampling rate of 60 h-1. The newly developed method has been successfully applied to the determination of GSH in pharmaceutical samples with no statistically significant difference between the results obtained and those produced by the standard Pharmacopoeia method.
Collapse
Affiliation(s)
- Maja Biocic
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Rudjera Boskovica 35, 21000 Split, Croatia
| | - Tomislav Kraljević
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Tony G Spassov
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Lea Kukoc-Modun
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Rudjera Boskovica 35, 21000 Split, Croatia
| | - Spas D Kolev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Asghar M, Yaqoob M, Munawar N, Nabi A. Determination of thiram residues in fresh water using flow injection diperiodatonickelate(IV)-quinine chemiluminescence detection. LUMINESCENCE 2022; 37:2041-2049. [PMID: 36150887 DOI: 10.1002/bio.4389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/17/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
This study developed a simple flow injection (FI) method based on diperiodatonickelate(IV)-sulfuric acid reaction using chemiluminescence (CL) detection for the determination of thiram (THI) fungicide in fresh water using quinine as the sensitizer. The possible mechanism of the CL reaction was described using UV-Vis. absorption and CL spectra. Experimental variables were optimized by applying a univariate approach, and a linear calibration curve was obtained in the range of 1.0 × 10-3 -2.0 mg L-1 (R2 = 0.9994, n = 9) with a limit of detection of 5.0 × 10-4 mg L-1 (S/N = 3) and an injection throughput of 200 h-1 . This approach was successfully applied to determine THI in fresh water by using solid-phase extraction and achieved a good recovery rate of 94%-110% with a relative standard deviation of 1.9%-3.7% (n = 4). The results obtained were compared with the reported FI-CL and high-performance liquid chromatography-ultraviolet methods, and the three methods did not differ significantly at the 95% confidence limit.
Collapse
Affiliation(s)
- Muhammad Asghar
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | - Mohammad Yaqoob
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | - Nusrat Munawar
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Abdul Nabi
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
5
|
An Innovative Simple Electrochemical Levofloxacin Sensor Assembled from Carbon Paste Enhanced with Nano-Sized Fumed Silica. BIOSENSORS 2022; 12:906. [PMID: 36291045 PMCID: PMC9599598 DOI: 10.3390/bios12100906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
A new electrochemical sensor for the detection of levofloxacin (LV) was efficiently realized. The aim was to develop a new, cheap, and simple sensor for the detection of LV, which is used in various infections due to its pharmacological importance. It consists of carbon paste (CP) enhanced with nano-sized fumed silica (NFS). NFS has a very low bulk density and a large surface area. The carbon paste-enhanced NFS electrode (NFS/CPE) showed great electrocatalytic activity in the oxidation of 1.0 mM LV in Britton–Robinson buffer (BR) at pH values ranging from 3.0 to 8.0. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used; the peak current value (Ip) of the NFS/CPE sensor was 2.7 times that of the bare electrode, ensuring its high electrocatalytic activity. Electrochemical impedance spectroscopy (EIS) was performed at a peak potential (Ep) of +1066 mV, yielding a resistance of 10 kΩ for the designed NFS/CPE sensor compared to 2461 kΩ for the bare electrode, indicating the high conductivity of the modified sensor and verifying the data observed using the CV technique. Surface descriptions were determined by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The variation in the concentration of LV (2.0 to 1000 µM) was considered in BR buffer (pH = 5.0) at a scan rate (SR) of 10 mV/s by the NFS/CPE. The detection and quantification limits were 0.09 µM and 0.30 µM, respectively. To evaluate the application of LV in real samples, this procedure was established on Quinostarmax 500 mg tablets and human plasma samples. Reasonable results were obtained for the detection of LV.
Collapse
|
6
|
Srinithi S, Balakumar V, Chen SM. In-situ fabrication of polypyrrole composite with MoO 3: An effective interfacial charge transfers and electrode materials for degradation and determination of acetaminophen. CHEMOSPHERE 2022; 291:132977. [PMID: 34801570 DOI: 10.1016/j.chemosphere.2021.132977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical wastes, acetaminophen (AP) widely used in medical fields, is often discharged into water, causing harm to human health. Hence, there is an urgent need to effectively remove AP from wastewater systems. In this paper, polypyrrole (PPy) composite with MoO3 has been synthesized via an in-situ polymerization method. The as-prepared materials were thoroughly characterized by XRD, FT-IR, UV-DRS, SEM, TEM and mapping techniques. The as-prepared MoO3@PPy composite was utilized to removal of AP via photocatalytic degradation and electrochemical determination. Under optimized composite, MoO3@PPy (2) showed an excellent photocatalytic degradation and electrochemical determination of AP compared to pure MoO3 and all other composites. The higher catalytic activity was ascribed to the effective interfacial charges transfer, reduce the recombination and enhance the active surface area of electrode via a synergistic effect. The photocatalytic degradation mechanism, rate and kinetic of the reaction were investigated and discussed. The major active degradation species and an effective charge transfer properties were confirmed by trapping experiments and photocurrent spectra. In addition, the MoO3@PPy (2) modified GCE exhibit the AP determination activity by DPV with a linear range of 0.05-546 μM. The limit of detection and sensitivity of electrode were 0.0007 μM and 0.242 μM-1 cm-2 respectively. Moreover, the proposed electrode showed good selectivity, stability and reproducibility. This method was useful for the determination of AP in real samples.
Collapse
Affiliation(s)
- Subburaj Srinithi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, ROC, Taiwan
| | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, ROC, Taiwan.
| |
Collapse
|
7
|
Afsharipour R, Dadfarnia S, Haji Shabani AM, Kazemi E, Pedrini A, Verucchi R. Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles. Talanta 2021; 226:122055. [PMID: 33676641 DOI: 10.1016/j.talanta.2020.122055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs), and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs were dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at 530 nm decreased, and a new peak at a higher wavelength of 680 nm appeared. The effective parameters on cysteine quantification were optimized via response surface methodology using the central composite design. Under optimum conditions, the absorbance ratio (A680/A530) has a linear proportionality with cysteine concentration in the range of 0.04-1.20 μmol L-1 with a limit of detection of 0.009 μmol L-1. The fabrication of the reported nanosensor is simple, fast, and is capable of efficient quantification of ultra traces of cysteine in human serum and urine real samples.
Collapse
Affiliation(s)
- Roya Afsharipour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | | | - Elahe Kazemi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Alessandro Pedrini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Roberto Verucchi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Trento Unit C/o Fondazione Bruno Kessler, Via Alla Cascata 56/C, Povo, Trento IT-38123, Italy
| |
Collapse
|
8
|
Ahmed Z, Yaqoob M, Asghar M, Ali S, Munawar N, Achakzai AKK, Nabi A. Flow-Injection Lucigenin–Cu(III) Complex Chemiluminescence Determination of Cysteine and Glutathione in Pharmaceutical Formulations. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821040134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Synergistic enhanced of carbon dots and eosin Y on fenton chemiluminescence for the determination of methionine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Determination of glutathione and glutathione disulfide using zone fluidics and fluorimetric detection. Talanta 2021; 222:121559. [DOI: 10.1016/j.talanta.2020.121559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 01/23/2023]
|
11
|
Wang HB, Mao AL, Li YH, Gan T, Liu YM. A turn-on fluorescence strategy for biothiols determination by blocking Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. LUMINESCENCE 2020; 35:1296-1303. [PMID: 32510805 DOI: 10.1002/bio.3891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 01/27/2023]
Abstract
Fluorescent adenine (A)-rich DNA-templated gold nanoclusters were demonstrated to be a novel probe for determination of biothiols (including cysteine, glutathione, and homocysteine). Fluorescence intensity of adenine-rich DNA-templated gold nanoclusters could be greatly quenched by Hg(II) ions through the formation of a gold nanoclusters-Hg(II) system. When biothiols (cysteine as the model) were introduced into the system, the fluorescence intensity recovered due to the formation of a more stable Hg(II)-thiol coordination complex using Hg-S metal-ligand bonds, which inhibited the Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. Based on this fluorescence phenomenon, an on-off-on fluorescence strategy was designed for the sensitive determination of biothiols. The method allowed sensitive detection of cysteine with a linear detection range from 100 nM to 5 μM and a limit of detection of 30 nM. Additionally, the assay can be applied for detection of biothiol levels in human plasma samples. Therefore, it can provide a simple and rapid fluorescent platform for biothiol detection.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yong-Hong Li
- School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
12
|
An electrochemical sensor based on plasma-treated zinc oxide nanoflowers for the simultaneous detection of dopamine and diclofenac sodium. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Determination of levofloxacin in pharmaceutical formulations and urine at reduced graphene oxide and carbon nanotube-modified electrodes. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04589-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Beker SA, Truskewycz A, Cole I, Ball AS. Green synthesis of Opuntia-derived carbon nanodots for the catalytic decolourization of cationic dyes. NEW J CHEM 2020. [DOI: 10.1039/d0nj03013a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Carbon nanodots, rich in functional groups and synthesised using green precursors, catalyse the decolourization of dyes under mild conditions.
Collapse
Affiliation(s)
- Sabrina A. Beker
- Centre for Environmental Sustainability and Remediation
- School of Science
- RMIT University
- Bundoora
- Australia
| | - Adam Truskewycz
- Advanced Manufacturing and Fabrication
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - Ivan Cole
- Advanced Manufacturing and Fabrication
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - Andrew S. Ball
- Centre for Environmental Sustainability and Remediation
- School of Science
- RMIT University
- Bundoora
- Australia
| |
Collapse
|
15
|
Chemiluminescent determination of L-cysteine with the lucigenin-carbon dot system. Mikrochim Acta 2019; 187:50. [PMID: 31848712 DOI: 10.1007/s00604-019-3965-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023]
Abstract
This work describes a new chemiluminescence (CL) system that is composed of lucigenin and carbon dots (CDs). The CDs display absorption peak at 260 nm and fluorescence with a emission peak centered at 524 nm (photo-excited at 470 nm). They were synthesized by hydrothermal treatment of starch and characterized by Fourier transform infrared spectroscopy, high resolution transmission electron microscopy, UV-vis absorption spectra and fluorescence spectra. The effects of oxygen and free radical scavengers on the CL system and on the CL spectra were investigated to elucidate the CL mechanism. It is found that L-cysteine (Cys) enhances the blue CL of the lucigenin-CD system by 59%. The finding was used to design a method for the determination of Cys. CL increases linearly in the 10.0 to 100 μM Cys concentration range, and the detection limit is 8.8 μM (at an S/N ratio of 3). The assay is highly selective over other amino acids. Conceivably, this novel CL system paves the way to numerous new assays based on the use of lucigenin. Graphical abstractSchematic representation of the carbon dots enhanced lucigenin chemiluminesence.
Collapse
|
16
|
Asghar M, Yaqoob M, Siddiqui MA, Munawar N, Waseem A, Nabi A. Flow-injection determination of manganese (II) using surfactant enhanced diperiodatonickelate (IV)-rhodamine 6G chemiluminescence. LUMINESCENCE 2019; 35:79-89. [PMID: 31464007 DOI: 10.1002/bio.3700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/10/2022]
Abstract
Chemiluminescence (CL) of the rhodamine 6-G-diperiodatonickelate (IV) (Rh6-G-Ni(IV) complex) in the presence of Brij-35 was examined in an alkaline medium and implemented using flow-injection analysis to analyze Mn(II) in natural waters. Brij-35 was identified as the surfactant of choice that enhanced CL intensity by about 62% of the reaction. The calibration curves were linear in the range 1.7 × 10-3 - 0.2 (0.9990, n = 7) and 8.0 × 10-4 - 0.1 μg ml-1 (0.9990, n = 7) with limits of detection (LODs) (S:N = 3) of 5.0 × 10-4 and 2.4 × 10-4 μg ml-1 without and with using an in-line 8-hydroxyquinoline (8-HQ) resin mini-column, respectively. The sample throughput and relative standard deviation were 200 h-1 and 1.7-2.2% in the range studied respectively. Mn(II) concentrations in certified reference materials and natural water samples was successfully determined. A brief discussion about the possible CL reaction mechanism is also given. In addition, analysis of V(III), Cr(III) and Fe(II) was also performed without and with using an in-line 8-HQ column and selective elution of each metal ion was achieved by adjusting the pH of the sample carrier stream with aqueous HCl solution.
Collapse
Affiliation(s)
- Muhammad Asghar
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | - Mohammad Yaqoob
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | | | - Nusrat Munawar
- Department of Chemistry, Sardar Bahadur Khan Women' University Quetta, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Nabi
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
17
|
Song H, Su Y, Zhang L, Lv Y. Quantum dots‐based chemiluminescence probes: an overview. LUMINESCENCE 2019; 34:530-543. [DOI: 10.1002/bio.3633] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hongjie Song
- College of ChemistrySichuan University Chengdu Sichuan China
| | - Yingying Su
- Analytical & Testing CenterSichuan University Chengdu Sichuan China
| | - Lichun Zhang
- College of ChemistrySichuan University Chengdu Sichuan China
| | - Yi Lv
- College of ChemistrySichuan University Chengdu Sichuan China
- Analytical & Testing CenterSichuan University Chengdu Sichuan China
| |
Collapse
|
18
|
|
19
|
Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine. Mikrochim Acta 2019; 186:98. [DOI: 10.1007/s00604-019-3228-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/04/2019] [Indexed: 01/11/2023]
|
20
|
Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film. Mikrochim Acta 2018; 186:21. [PMID: 30554349 DOI: 10.1007/s00604-018-3146-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
The authors describe a simplified chemical precipitation method and silver mirror reaction to synthesize a nanocomposite consiting of silver nanoparticles on a thin and porous nickel oxide film. Placed on a glassy carbon electrode (GCE), it allows for the determination of levofloxacin (LEV) via square wave voltammetry (SWV). Under optimal detection conditions, the voltammetric signal (typically measured at around 0.96 V vs. SCE) increases linearly in the 0.25-100 μM LEV concentration range. And the detection limit was calculated as 27 nM (at S/N = 3). The sensor is highly selective, stable and repeatable. It was applied to the determination of LEV in spiked human serum samples, and the satisfactory results confirm the applicability of this sensor to practical analyses. Graphical abstract Schematic of a two-step method to synthesize a nanocomposite consisting of nickel oxide porous thin-film supported silver nanoparticles. The composite was used for improved voltammetric determination of levofloxacin.
Collapse
|
21
|
Wang DM, Lin KL, Huang CZ. Carbon dots-involved chemiluminescence: Recent advances and developments. LUMINESCENCE 2018; 34:4-22. [DOI: 10.1002/bio.3570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Dong Mei Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Ke Li Lin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
- Chongqing Key Laboratory of Biomedical Analysis, Chongqing Science and Technology Commission, College of Pharmaceutical Sciences; Southwest University; Chongqing P. R. China
| |
Collapse
|
22
|
Nakano K, Honda T, Yamasaki K, Tanaka Y, Taniguchi K, Ishimatsu R, Imato T. Carbon Quantum Dots as Fluorescent Component in Peroxyoxalate Chemiluminescence for Hydrogen Peroxide Determination. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koji Nakano
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayuki Honda
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kanako Yamasaki
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Tanaka
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiichi Taniguchi
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoichi Ishimatsu
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshihiko Imato
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
23
|
Lu X, Liu C, Wang Z, Yang J, Xu M, Dong J, Wang P, Gu J, Cao F. Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On⁻Off⁻On Fluorescent Sensors to Detect Fe(III) and Biothiols. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E443. [PMID: 29914212 PMCID: PMC6027355 DOI: 10.3390/nano8060443] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 01/19/2023]
Abstract
On⁻off⁻on fluorescent sensors based on emerging carbon nanoparticles (CNPs) or carbon dots (CDs) have attracted extensive attention for their convenience and efficiency. In this study, dumped silkworm excrement was used as a novel precursor to prepare fluorescent nitrogen-doped CNPs (N-CNPs) through hydrothermal treatment. The obtained N-CNPs showed good photoluminescent properties and excellent water dispersibility. Thus, they were applied as fluorescence “on⁻off⁻on” probes for the detection of Fe(III) and biothiols. The “on⁻off” process was achieved by adding Fe(III) into N-CNP solution, which resulted in the selective fluorescence quenching, with the detection limit of 0.20 μM in the linear range of 1⁻500 μM. Following this, the introduction of biothiols could recover the fluorescence efficiently, in order to realize the “off⁻on” process. By using glutathione (GSH) as the representative, the linear range was in the range of 1⁻1000 μM, and the limit of detection was 0.13 μM. Moreover, this useful strategy was successfully applied for the determination of amounts of GSH in fetal calf serum samples.
Collapse
Affiliation(s)
- Xingchang Lu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chen Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhimin Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junyi Yang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengjing Xu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun Dong
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ping Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiangjiang Gu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Feifei Cao
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Su M, Chen P, Sun H. Development and analytical application of chemiluminescence with some super normal metal complexes as oxidant. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Chi M, Chen S, Zhong M, Wang C, Lu X. Self-templated fabrication of FeMnO3 nanoparticle-filled polypyrrole nanotubes for peroxidase mimicking with a synergistic effect and their sensitive colorimetric detection of glutathione. Chem Commun (Camb) 2018; 54:5827-5830. [DOI: 10.1039/c8cc01574k] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A self-templated synthesis of FeMnO3 nanoparticle-filled polypyrrole nanotubes for peroxidase mimicking with a synergistic effect have been developed.
Collapse
Affiliation(s)
- Maoqiang Chi
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Sihui Chen
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
26
|
Tan Q, Zhang R, Kong R, Kong W, Zhao W, Qu F. Detection of glutathione based on MnO 2 nanosheet-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter. Mikrochim Acta 2017; 185:44. [PMID: 29594599 DOI: 10.1007/s00604-017-2603-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
The authors describe a novel method for the determination of glutathione (GSH). Detection is based on target induced release of glucose from MnO2 nanosheet-gated aminated mesoporous silica nanoparticles (MSNs). In detail, glucose is loaded into the pores of MSNs. Negatively charged MnO2 nanosheets are assembled on the MSNs through electrostatic interactions. The nanosheets are reduced by GSH, and this results in the release of glucose which is quantified by using a commercial electrochemical glucose meter. GSH can be quantified by this method in the 100 nM to 10 μM concentration range, with a 34 nM limit of detection. Graphical abstract Glucose is loaded into the pores of mesoporous silica nanoparticles (MSNs). MnO2 nanosheets are assembled on MSNs through electrostatic interactions. Glutathione (GSH) can reduce the nanosheets, and this results in the release of glucose which is quantified by using a commercial glucose meter.
Collapse
Affiliation(s)
- Qingqing Tan
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Ruirui Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Rongmei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Weisu Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Wenzhi Zhao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
| |
Collapse
|
27
|
Colorimetric glutathione assay based on the peroxidase-like activity of a nanocomposite consisting of platinum nanoparticles and graphene oxide. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2429-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Hashemi M, Nazari Z, Bigdelifam D. A molecularly imprinted polymer based on multiwalled carbon nanotubes for separation and spectrophotometric determination of L-cysteine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2236-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Shah SNA, Lin JM. Recent advances in chemiluminescence based on carbonaceous dots. Adv Colloid Interface Sci 2017; 241:24-36. [PMID: 28139217 DOI: 10.1016/j.cis.2017.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/07/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Herein, a broad overview concerning the most recent progress of carbon dots (CDs) in chemiluminescence (CL) as well as the mechanisms and applications are presented. CDs have excellent optical and electronic properties and are very important advancement in the fast growing domain of nanotechnology. CDs enhance the ultraweak CL of different systems. The mechanisms and applications of these enhanced CL reactions are discussed. It is worthy to note that CDs participate in CL reactions as catalysts, energy acceptors or are directly involved in redox reactions with radicals in CL systems. Sometimes, these processes taking place simultaneously to enhance CL intensity. In this report, recent advances in CD based CL are comprehensively summarized and their applications in detection of various reagents and biological molecules are reviewed. The challenges and future prospects of this field are also discussed.
Collapse
|
30
|
Ko YC, Lin TL, Yeh CT, Sun NK, Shyue JJ, Liu GY, Chou SW, Liu YC, Hsu CH, Ho ML. Silver nanoprism-based paper as a ratiometric sensor for extending biothiol detection in serum. NEW J CHEM 2017. [DOI: 10.1039/c7nj02863f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A paper-based method with selectivity and a wider linear range for the detection of l-Cys in serum using DTNB-modified Ag nanoprisms (AgP-DTNB).
Collapse
Affiliation(s)
- Yu-Chien Ko
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Tien-Li Lin
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Chiu-Ting Yeh
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Ning-Kuei Sun
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Science, Academia Sinica
- Taipei 115
- Taiwan
| | - Guang-Yang Liu
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Shang-Wei Chou
- National Taiwan University, Department of Chemistry
- Taipei 106
- Taiwan
| | - Yu-Ci Liu
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Chia-Hui Hsu
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Mei-Lin Ho
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| |
Collapse
|
31
|
Wang Y, Wang W, Li G, Liu Q, Wei T, Li B, Jiang C, Sun Y. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1974-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Voltammetric paracetamol sensor using a gold electrode made from a digital versatile disc chip and modified with a hybrid material consisting of carbon nanotubes and copper nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1950-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Chen J, Shu J, Chen J, Cao Z, Xiao A, Yan Z. Highly luminescent S,N co-doped carbon quantum dots-sensitized chemiluminescence on luminol-H2O2system for the determination of ranitidine. LUMINESCENCE 2016; 32:277-284. [DOI: 10.1002/bio.3173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jianqiu Chen
- School of Science, China Pharmaceutical University; Nanjing China
| | - Juan Shu
- School of Science, China Pharmaceutical University; Nanjing China
| | - Jiao Chen
- School of Science, China Pharmaceutical University; Nanjing China
| | - Zhiran Cao
- School of Science, China Pharmaceutical University; Nanjing China
| | - An Xiao
- School of Science, China Pharmaceutical University; Nanjing China
| | - Zhengyu Yan
- School of Science, China Pharmaceutical University; Nanjing China
| |
Collapse
|
34
|
Graphene quantum dot coupled with gold nanoparticle based “off-on” fluorescent probe for sensitive and selective detection of L-cysteine. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1822-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Abstract
A dynamic development of methodologies of analytical flow injection measurements during four decades since their invention has reinforced the solid position of flow analysis in the arsenal of techniques and instrumentation of contemporary chemical analysis.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Methods
- Institute of Nuclear Chemistry and Technology
- 03-195 Warsaw
- Poland
- Department of Chemistry
| | - Kamila Kołacińska
- Laboratory of Nuclear Analytical Methods
- Institute of Nuclear Chemistry and Technology
- 03-195 Warsaw
- Poland
| |
Collapse
|