1
|
Gorzin M, Saeidi M, Javidi S, Seow EK, Abedinia A. Nanoencapsulation of Oliveria decumbens Vent./basil essential oils into gum arabic/maltodextrin: Improved in vitro bioaccessibility and minced beef meat safety. Int J Biol Macromol 2024; 270:132288. [PMID: 38735604 DOI: 10.1016/j.ijbiomac.2024.132288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
This study investigated the functional properties of freeze-dried encapsulated Oliveria decumbens Vent. (OEO) and basil (BEO) essential oils (EOs) in maltodextrin/gum arabic coating solution (1:1). Nanoencapsulated EOs were evaluated in terms of size, polydispersity, encapsulation efficiency, morphology, antioxidant, and antibacterial activities (AOA and ABA), and sensory characteristics in vitro compared to the control. The TPC (30.43 to 32.41 mg GAE/g DW) and AOA (25.97 to 26.42 %) were determined in free and encapsulated OEO, and ABA was observed, which were higher than BEO. Both free and encapsulated OEO and BEO demonstrated significant ABA against various Gram-positive and Gram-negative bacteria, with MIC values ranging from 0.25 to 1.25 mg/mL and MBC values ranging from 1.00 to 3.00 mg/mL. In minced meat, both free and encapsulated oils effectively reduced bacterial counts during refrigerated storage, with log reductions ranging from 1.00 to 6.48 CFU/g. Additionally, the pH and thiobarbituric acid values in meat samples were better maintained with the addition of oils. Sensory analysis showed that the encapsulated oils effectively masked their natural flavor and aroma, making them suitable for incorporation into food. Finally, OEO and BEO nanocapsules can improve the standard and safety of meat products due to their antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Mahdis Gorzin
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Mahboubeh Saeidi
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Sahar Javidi
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Eng-Keng Seow
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Food Science Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor Branch, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Ahmadreza Abedinia
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran; Department of Food Engineering, Inonu University, 44280 Malatya, Turkey.
| |
Collapse
|
2
|
Thongmee P, Ngernpimai S, Srichaiyapol O, Mongmonsin U, Teerasong S, Charoensri N, Wongwattanakul M, Lulitanond A, Kuwatjanakul W, Wonglakorn L, Kendal RP, Chompoosor A, Daduang J, Tippayawat P. The Evaluation of a Lateral Flow Strip Based on the Covalently Fixed "End-On" Orientation of an Antibody for Listeria monocytogenes Detection. Anal Chem 2024; 96:8543-8551. [PMID: 38748432 PMCID: PMC11140673 DOI: 10.1021/acs.analchem.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
In this study, the covalently fixed "end-on" orientation of a monoclonal Listeria monocytogenes antibody (mAb-Lis) to amino terminated oligo (ethylene glycol)-capped gold nanoparticles (NH2-TEG-AuNPs) was used to fabricate an in-house lateral flow strip (LFS), namely, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS. The aim was to evaluate the performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS in detecting L. monocytogenes. The proposed LFS enabled the sensitive detection of L. monocytogenes in 15 min with a visual limit of detection of 102 CFU/mL. Quantitative analysis indicated an LOD at 10 CFU/mL. The fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS showed no cross-reactivity with other pathogenic bacteria and practical performance across different food matrices, including human blood, milk, and mushroom samples. Furthermore, the clinical performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS for detecting L. monocytogenes was evaluated by using 12 clinical samples validated by the hemoculture method. It demonstrated excellent concordance with the reference methods, with no false-positive or false-negative results observed. Therefore, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS serves as a promising candidate for a point-of-care test (POCT), enabling the rapid, precise, and highly sensitive detection of L. monocytogenes in clinical samples and contaminated food.
Collapse
Affiliation(s)
- Patsara Thongmee
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawinee Ngernpimai
- Centre
for Innovation and Standard for Medical Technology and Physical Therapy,
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranee Srichaiyapol
- Centre
for Innovation and Standard for Medical Technology and Physical Therapy,
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Urairat Mongmonsin
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saowapak Teerasong
- Department
of Chemistry and Applied Analytical Chemistry Research Unit, School
of Science, King Mongkut’s Institute
of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nicha Charoensri
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Molin Wongwattanakul
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonlug Lulitanond
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Waewta Kuwatjanakul
- Clinical
Microbiology Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lumyai Wonglakorn
- Clinical
Microbiology Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Apiwat Chompoosor
- Department
of Chemistry and Centre of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Jureerut Daduang
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
4
|
Silva GBL, Campos FV, Guimarães MCC, Oliveira JP. Recent Developments in Lateral Flow Assays for Salmonella Detection in Food Products: A Review. Pathogens 2023; 12:1441. [PMID: 38133324 PMCID: PMC10747123 DOI: 10.3390/pathogens12121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Salmonellosis is a disease transmitted by contaminated food and is one of the leading causes of infections worldwide, making the early detection of Salmonella of crucial importance for public health. However, current detection methods are laborious and time-consuming, thus impacting the entire food supply chain and leading to production losses and economic sanctions. To mitigate these issues, a number of different biosensors have been developed, including lateral flow assays (LFAs), which have emerged as valuable tools in pathogen detection due to their portability, ease of use, time efficiency, and cost effectiveness. The performance of LFAs has been considerably enhanced by the development of new nanomaterials over the years. In this review, we address the principles and formats of the assay and discuss future prospects and challenges with an emphasis on LFAs developed for the detection of different Salmonella serovars in food.
Collapse
Affiliation(s)
| | | | | | - Jairo P. Oliveira
- Morphology Department, Health Sciences Center, Federal University of Espírito Santo, Av Marechal Campos 1468, Vitória 29040-090, Brazil; (G.B.L.S.); (F.V.C.); (M.C.C.G.)
| |
Collapse
|
5
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Mazur F, Tjandra AD, Zhou Y, Gao Y, Chandrawati R. Paper-based sensors for bacteria detection. NATURE REVIEWS BIOENGINEERING 2023; 1:180-192. [PMID: 36937095 PMCID: PMC9926459 DOI: 10.1038/s44222-023-00024-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
The detection of pathogenic bacteria is essential to prevent and treat infections and to provide food security. Current gold-standard detection techniques, such as culture-based assays and polymerase chain reaction, are time-consuming and require centralized laboratories. Therefore, efforts have focused on developing point-of-care devices that are fast, cheap, portable and do not require specialized training. Paper-based analytical devices meet these criteria and are particularly suitable to deployment in low-resource settings. In this Review, we highlight paper-based analytical devices with substantial point-of-care applicability for bacteria detection and discuss challenges and opportunities for future development.
Collapse
Affiliation(s)
- Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| |
Collapse
|
7
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Ngernpimai S, Srijampa S, Thongmee P, Teerasong S, Puangmali T, Maleewong W, Chompoosor A, Tippayawat P. Insight into the Covalently Oriented Immobilization of Antibodies on Gold Nanoparticle Probes to Improve Sensitivity in the Colorimetric Detection of Listeria monocytogenes. Bioconjug Chem 2022; 33:2103-2112. [DOI: 10.1021/acs.bioconjchem.2c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sawinee Ngernpimai
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukanya Srijampa
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patsara Thongmee
- Center for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saowapak Teerasong
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Patcharaporn Tippayawat
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Kaushal S, Shrivastava S, Yun YR, Park Y, Thanh-Qui Nguyen T, Meeseepong M, Lee E, Jeon B, Gu MB, Yang S, Lee NE. Culture-Free Quantification of Bacteria Using Digital Fluorescence Imaging in a Tunable Magnetic Capturing Cartridge for Onsite Food Testing. ACS Sens 2022; 7:2188-2197. [PMID: 35930745 DOI: 10.1021/acssensors.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate, onsite detection of pathogenic bacteria from food matrices is required to rapidly respond to pathogen outbreaks. However, accurately detecting whole-cell bacteria in large sample volumes without an enrichment step remains a challenge. Therefore, bacterial samples must be concentrated, identified, and quantified. We developed a tunable magnetic capturing cartridge (TMCC) and combined it with a portable digital fluorescence reader for quick, onsite, quantitative detection of Staphylococcus aureus. The TMCC platform integrates an absorption pad impregnated with water-soluble polyvinyl alcohol (PVA) with an injection-molded polycarbonate (PC) plate that has a hard magnet on its back and an acrylonitrile-butadiene-styrene case. An S. aureus-specific antibody conjugated with magnetic nanoparticles was used to concentrate bacteria from a large-volume sample and capture bacteria within the TMCC. The retention time for capturing bacteria on the TMCC was adjusted by controlling the concentration and volume of the PVA solution. Concentrated bacterial samples bound to target-specific aptamer probes conjugated with quantum dots were loaded into the TMCC for a controlled time, followed by attachment of the bacteria to the PC plate and removal of unbound aptamer probes with wash buffer. The captured bacteria were quantified using a digital fluorescence reader equipped with an embedded program that automatically counts fluorescently tagged bacteria. The bacterial count made using the TMCC was comparable to a standard plate count (R2 = 0.9898), with assay sensitivity and specificity of 94.3 and 100%, respectively.
Collapse
Affiliation(s)
- Sandeep Kaushal
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Young-Ran Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Younghyeon Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Korea
| | - Thi Thanh-Qui Nguyen
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Eunghyuk Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Byeungwoo Jeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,School of Mechanical Engineering, GIST, Gwangju 610005, Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| |
Collapse
|
10
|
Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022; 11:foods11121760. [PMID: 35741961 PMCID: PMC9222551 DOI: 10.3390/foods11121760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a serious public health hazard responsible for the foodborne illness listeriosis. L. monocytogenes is ubiquitous in nature and can become established in food production facilities, resulting in the contamination of a variety of food products, especially ready-to-eat foods. Effective and risk-based environmental monitoring programs and control strategies are essential to eliminate L. monocytogenes in food production environments. Key elements of the environmental monitoring program include (i) identifying the sources and prevalence of L. monocytogenes in the production environment, (ii) verifying the effectiveness of control measures to eliminate L. monocytogenes, and (iii) identifying the areas and activities to improve control. The design and implementation of the environmental monitoring program are complex, and several different approaches have emerged for sampling and detecting Listeria monocytogenes in food facilities. Traditional detection methods involve culture methods, followed by confirmation methods based on phenotypic, biochemical, and immunological characterization. These methods are laborious and time-consuming as they require at least 2 to 3 days to obtain results. Consequently, several novel detection approaches are gaining importance due to their rapidness, sensitivity, specificity, and high throughput. This paper comprehensively reviews environmental monitoring programs and novel approaches for detection based on molecular methods, immunological methods, biosensors, spectroscopic methods, microfluidic systems, and phage-based methods. Consumers have now become more interested in buying food products that are minimally processed, free of additives, shelf-stable, and have a better nutritional and sensory value. As a result, several novel control strategies have received much attention for their less adverse impact on the organoleptic properties of food and improved consumer acceptability. This paper reviews recent developments in control strategies by categorizing them into thermal, non-thermal, biocontrol, natural, and chemical methods, emphasizing the hurdle concept that involves a combination of different strategies to show synergistic impact to control L. monocytogenes in food production environments.
Collapse
|
11
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Huang Q. Simultaneous quantitative analysis of Listeria monocytogenes and Staphylococcus aureus based on antibiotic-introduced lateral flow immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5866-5874. [PMID: 34877941 DOI: 10.1039/d1ay01467f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food poisoning caused by microorganisms has caused widespread concern. Herein, a highly sensitive on-site screening test strip for the detection of different pathogenic microorganisms (Listeria monocytogenes and Staphylococcus aureus) was designed. In this analysis platform, colloidal gold-coupled vancomycin was used as a signal unit to label Gram-positive bacteria, and highly sensitive polyclonal antibodies were used as recognition molecules to capture these specific strains. Compared with the traditional dual-antibody sandwich model, this new type of antibiotic-pathogen-antibody sandwich model is low-cost and can simultaneously detect multiple microorganisms. Under optimal conditions, this strategy showed satisfactory sensitivity and a wide linear range (L. monocy and S. aure could be directly assayed within linear ranges of 5 × 104 to 107 and 5 × 102 to 107 CFU mL-1, and the visual detection limits were 105 and 103 CFU mL-1, respectively). The analytical performance and practicability of this sensor system have been further studied. This developed biosensor was applied to bacteria-contaminated water, milk and broth with satisfactory results. All of these attractive characteristics make the assay possess potential applications in food safety, medical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Qiong Huang
- Shanxi Technology and Business College, 030006 Taiyuan, Shanxi Province, People's Republic of China.
| |
Collapse
|
13
|
Ying N, Wang Y, Song X, Yang L, Qin B, Wu Y, Fang W. Lateral flow colorimetric biosensor for detection of Vibrio parahaemolyticus based on hybridization chain reaction and aptamer. Mikrochim Acta 2021; 188:381. [PMID: 34654957 DOI: 10.1007/s00604-021-05031-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is the causative agent for acute hepatopancreatic necrosis disease (AHPND) of shrimp, and it is also a common seafood-borne pathogen for humans. Rapid and accurate identification of V. parahaemolyticus is helpful to diagnose the AHPND and ensure food safety. Common detection methods suffer the deficiency of time-consuming and complexed operation. Based on the increased development of aptamer and our previous study, a new detection assay of V. parahaemolyticus was introduced, in which the aptamer combined with magnetic nanoparticles (MNPs) was the recognizer, hybridization chain reaction (HCR) was the signal amplifier, and lateral flow nucleotide biosensor (LFNB) was the signal exporter. The assay possessed high specificity of distinguishing the target with other bacteria, and the calculated limit of detection was 2.6 × 103 cells. Furthermore, the whole process just needs 67 min, free of thermocycle instruments and signal readout instruments, which means it is suitable for low-resource laboratories or districts.
Collapse
Affiliation(s)
- Na Ying
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, 200090, China
| | - Xuefeng Song
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, 200090, China
| | - Liguo Yang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, 200090, China
| | - Bo Qin
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yanqing Wu
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, 200090, China
| | - Wenhong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
14
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
15
|
Min HJ, Mina HA, Deering AJ, Bae E. Development of a smartphone-based lateral-flow imaging system using machine-learning classifiers for detection of Salmonella spp. J Microbiol Methods 2021; 188:106288. [PMID: 34280431 DOI: 10.1016/j.mimet.2021.106288] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023]
Abstract
Salmonella spp. are a foodborne pathogen frequently found in raw meat, egg products, and milk. Salmonella is responsible for numerous outbreaks, becoming a frequent major public-health concern. Many studies have recently reported handheld and rapid devices for microbial detection. This study explored a smartphone-based lateral-flow assay analyzer which employed machine-learning algorithms to detect various concentrations of Salmonella spp. from the test line images. When cell numbers are low, a faint test line is difficult to detect, leading to misleading results. Hence, this study focused on the development of a smartphone-based lateral-flow assay (SLFA) to distinguish ambiguous concentrations of test line with higher confidence. A smartphone cradle was designed with an angled slot to maximize the intensity, and the optimal direction of the optimal incident light was found. Furthermore, the combination of color spaces and the machine-learning algorithms were applied to the SLFA for classifications. It was found that the combination of L*a*b and RGB color space with SVM and KNN classifiers achieved the high accuracy (95.56%). A blind test was conducted to evaluate the performance of devices; the results by machine-learning techniques reported less error than visual inspection. The smartphone-based lateral-flow assay provided accurate interpretation with a detection limit of 5 × 104 CFU/mL commercially available lateral-flow assays.
Collapse
Affiliation(s)
- Hyun Jung Min
- Applied Optics Laboratory, School of Mechanical Engineering, West Lafayette, IN 47907, USA
| | - Hansel A Mina
- Department of Food Science, West Lafayette, IN 47907, USA
| | | | - Euiwon Bae
- Applied Optics Laboratory, School of Mechanical Engineering, West Lafayette, IN 47907, USA.
| |
Collapse
|
16
|
Gupta Y, Ghrera AS. Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Arch Microbiol 2021; 203:3767-3784. [PMID: 34086107 DOI: 10.1007/s00203-021-02357-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Diagnosis of bacterial infections (BI) is becoming an increasingly difficult task in clinical practice due to their high prevalence and frequency, as well as the growth of antibiotic resistance worldwide. World Health Organization (WHO) reported antibiotic resistance is a major public health problem. BI becomes difficult or impossible to treat when the bacteria acquire immunity against antibiotics. Thus, there is a need for a quick and accurate technique to detect infection. Lateral flow immunoassay (LFIA) is an ideal technique for point-of-care testing of a disease or pathological changes inside the human body. In recent years, several LFIA based strips are being used for the detection of BI by targeting specific analytes which may range from the causative bacterium, whole-cell, DNA, or biomarker. Numerous nanoparticles like lipid-based nanoparticles, polymeric nanoparticles, and inorganic nanoparticles such as quantum dots, magnetic, ceramic, and metallic nanoparticles (copper, silver gold, iron) are widely being used in the advanced treatment of BI. Out of these gold nanoparticle (AuNPs), is being used for detection BI more effectively than other nanoparticles due to their surface functionalization, extraordinary chemical stability, biorecognition, and signal amplification properties and help to improve in conjugation with capture antibodies, and act as a color marker with unique optical properties on LFIA strips. Herein, a review that provides an overview of the principle of LFIA, how LFIA based strip is developed, and how it is helpful to detect a specific biomarker for bedside detection of the BI.
Collapse
Affiliation(s)
- Yachana Gupta
- Applied Science Department, The NorthCap University, Gurugram, India
| | | |
Collapse
|
17
|
Ramsey AV, Bischoff AJ, Francis MB. Enzyme Activated Gold Nanoparticles for Versatile Site-Selective Bioconjugation. J Am Chem Soc 2021; 143:7342-7350. [PMID: 33939917 DOI: 10.1021/jacs.0c11678] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new enzymatic method is reported for constructing protein- and DNA-AuNP conjugates. The strategy relies on the initial functionalization of AuNPs with phenols, followed by activation with the enzyme tyrosinase. Using an oxidative coupling reaction, the activated phenols are coupled to proteins bearing proline, thiol, or aniline functional groups. Activated phenol-AuNPs are also conjugated to a small molecule biotin and commercially available thiol-DNA. Advantages of this approach for AuNP bioconjugation include: (1) initial formation of highly stable AuNPs that can be selectively activated with an enzyme, (2) the ability to conjugate either proteins or DNA through a diverse set of functional handles, (3) site-specific immobilization, and (4) facile conjugation that is complete within 2 h at room temperature under aqueous conditions. The enzymatic oxidative coupling on AuNPs is applied to the construction of tobacco mosaic virus (TMV)-AuNP conjugates, and energy transfer between the AuNPs and fluorophores on TMV is demonstrated.
Collapse
Affiliation(s)
- Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Chen H, Zhang Y, Hua Y, Tian Y, Wang H, Xu Z, Tan X, Shen Y, Yang J. Development of a group-specific antibody-based immunoassay method for simultaneously detecting sildenafil-like adulterants in herbal spirit drinks. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:892-903. [PMID: 33938398 DOI: 10.1080/19440049.2021.1905185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Phosphodiesterase type 5 (PDE-5) inhibitors are commonly used to treat erectile dysfunction. There is a problem with synthesis and illegal use of a wide range of analogues of the licenced drugs and a simple class-wide analytical method is required. In this work, based on structural modelling, we developed an immunological method using norneovardenafil as a hapten as it contains only the general sub-structure and the common features of sildenafil-like adulterants, such as hydrophobic centres, hydrogen-bond donor atoms and hydrogen-bond acceptor atoms. Thus theoretically it could induce production of antibody which could recognise multiple sildenafil-like adulterants. By immunising rabbits, a group-specific polyclonal antibody was obtained with the desired broad-spectrum molecular recognition performance against sildenafil-like adulterants. Then, an indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed for the detection of sildenafil-like adulterants in herbal spirit drinks. Under the optimised conditions, the icELISA method showed broad linear ranges for acetildenafil, sildenafil and vardenafil respectively of 0.7 to 27.7 μg/kg, 1.0 to 70.7 μg/kg and 1.5 to 22.7 μg/kg, with half-maximal inhibition concentration (IC50) values of 4.5 μg/kg, 8.3 μg/kg and 5.7 μg/kg, respectively. For eleven herbal spirit drinks, there was good agreement between total levels of sildenafil-like adulterants measured by icELISA and levels of each of four individual adulterants determined by LC-MS/MS. In short, the developed icELISA can be employed for rapid and simple screening for adulteration of herbal spirit drinks with sildenafil-like compounds.
Collapse
Affiliation(s)
- Haoyu Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Yongyi Zhang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Yantao Hua
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Zhenlin Xu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Xuecai Tan
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Yudong Shen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Jinyi Yang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
19
|
Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021; 47:647-666. [PMID: 33896354 DOI: 10.1080/1040841x.2021.1911930] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is one of the most invasive foodborne pathogens and is responsible for numerous outbreaks worldwide. Most of the methods to detect this bacterium in food require selective enrichment using traditional bacterial culture techniques that can be time-consuming and labour-intensive. Moreover, molecular methods are expensive and need specific technical knowledge. In contrast, immunological approaches are faster, simpler, and user-friendly alternatives and have been developed for the detection of L. monocytogenes in food, environmental, and clinical samples. These techniques are dependent on the constitutive expression of L. monocytogenes antigens and the specificity of the antibodies used. Here, updated knowledge on pathogenesis and the key immunogenic virulence determinants of L. monocytogenes that are used for the generation of monoclonal and polyclonal antibodies for the serological assay development are summarised. In addition, immunological approaches based on enzyme-linked immunosorbent assay, immunofluorescence, lateral flow immunochromatographic assays, and immunosensors with relevant improvements are highlighted. Though the sensitivity and specificity of the assays were improved significantly, methods still face many challenges that require further validation before use.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns, Brasil
| | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Samira Bührer-Sékula
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
20
|
A Review on Recent Developments and Applications of Nanozymes in Food Safety and Quality Analysis. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Wu S, Du J, Xiang Q, Zhao D, Bai Y. Solvothermal synthesis of α-Fe 2O 3 polyhedrons and its application in an immunochromatographic strip test for the detection of foodborne pathogen Listeria monocytogenes. NANOTECHNOLOGY 2021; 32:085502. [PMID: 33202394 DOI: 10.1088/1361-6528/abcb30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The immunochromatographic strip test (ICST) is a powerful on-site detection technology due to its unique advantages of simplicity, rapidity, and readability by the naked eye. Here we illustrate the potential of α-Fe2O3 polyhedrons as a novel visual label, which exhibit advantages of high stability and economy, for the detection of Listeria monocytogenes (L. monocytogenes) as a model foodborne pathogen. A low-cost and simple one-step solvothermal approach was developed for the synthesis of α-Fe2O3 polyhedrons; the average diameter of the α-Fe2O3 polyhedrons is about 200 nm. The crystal structure and morphology of α-Fe2O3 polyhedrons were characterized by x-ray diffraction and transmission electron microscope. α-Fe2O3 polyhedrons were immunized with anti-L. monocytogenes antibody to prepare an antibody-colloidal α-Fe2O3 polyhedron ICST. Visual detection can be obtained directly by the naked eye within 10 min. The detection limit of L. monocytogenes by α-Fe2O3 polyhedron ICST assay was 3.8 × 106 and 5.6 × 106 CFU/ml of pure culture and artificially spiked orange juice drink sample, respectively. Results indicated that the antibody-colloidal α-Fe2O3 polyhedron ICST is a rapid, simple, and low-cost assay. This approach showed great potential in the application of foodborne pathogen detection concerning food safety.
Collapse
Affiliation(s)
- Shujing Wu
- College of Food and Biological Engineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Juan Du
- College of Food and Biological Engineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Biological Engineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Dianbo Zhao
- College of Food and Biological Engineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Biological Engineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
22
|
Sannigrahi S, Arumugasamy SK, Mathiyarasu J, Suthindhiran K. Development of magnetosomes-based biosensor for the detection of Listeria monocytogenes from food sample. IET Nanobiotechnol 2020; 14:839-850. [PMID: 33399117 DOI: 10.1049/iet-nbt.2020.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeriosis through contaminated food is one of the leading causes of premature deaths in pregnant women and new born babies. Here, the authors have developed a magnetosomes-based biosensor for the rapid, sensitive, specific and cost-effective detection of Listeria monocytogenes from food sample. Magnetosomes were extracted from Magnetospirillum sp. RJS1 and then directly bound to anti-Listeriolysin antibody (0.25-1 µg/ml), confirmed in spectroscopy. Listeriolysin (LLO) protein (0.01-7 µg/ml) was optimised in enzyme-linked immunosorbent assay. Magnetosomes was conjugated with LLO antibody (0.25 µg/ml) in optimum concentration to detect LLO protein (0.01 µg/ml). Magnetosomes-LLO antibody complex was 25% cost effective. The magnetosomes-LLO antibody complex was directly stabilised on screen printed electrode using external magnet. The significant increase in resistance (RCT value) on the electrode surface with increase in concentration of LLO protein was confirmed in impedance spectroscopy. The L. monocytogenes contaminated milk and water sample were processed and extracted LLO protein was detected in the biosensor. The specificity of the biosensor was confirmed in cross-reactivity assay with other food pathogens. The detection limit of 101 Cfu/ml in both water and milk sample manifests the sensitive nature of the biosensor. The capture efficiency and field emission scanning electron microscopy confirmed positive interaction of Listeria cells with magnetosomes-antibody complex.
Collapse
Affiliation(s)
- Sumana Sannigrahi
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT-Vellore, 632014 Tamil Nadu, India
| | - Shiva Kumar Arumugasamy
- Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Jayaraman Mathiyarasu
- Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Krishnamurthy Suthindhiran
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT-Vellore, 632014 Tamil Nadu, India.
| |
Collapse
|
23
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic Lateral Flow Immunoassays. Diagnostics (Basel) 2020; 10:E288. [PMID: 32397264 PMCID: PMC7278001 DOI: 10.3390/diagnostics10050288] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
A new generation of magnetic lateral flow immunoassays is emerging as powerful tool for diagnostics. They rely on the use of magnetic nanoparticles (MNP) as detecting label, replacing conventional gold or latex beads. MNPs can be sensed and quantified by means of external devices, allowing the development of immunochromatographic tests with a quantitative capability. Moreover, they have an added advantage because they can be used for immunomagnetic separation (IMS), with improvements in selectivity and sensitivity. In this paper, we have reviewed the current knowledge on magnetic-lateral flow immunoassay (LFIA), coupled with both research and commercially available instruments. The work in the literature has been classified in two categories: optical and magnetic sensing. We have analysed the type of magnetic nanoparticles used in each case, their size, coating, crystal structure and the functional groups for their conjugation with biomolecules. We have also taken into account the analytical characteristics and the type of transduction. Magnetic LFIA have been used for the determination of biomarkers, pathogens, toxins, allergens and drugs. Nanocomposites have been developed as alternative to MNP with the purpose of sensitivity enhancement. Moreover, IMS in combination with other detection principles could also improve sensitivity and limit of detection. The critical analysis in this review could have an impact for the future development of magnetic LFIA in fields requiring both rapid separation and quantification.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
24
|
Qian J, Xing C, Ge Y, Li R, Li A, Yan W. Gold nanostars-enhanced Raman fingerprint strip for rapid detection of trace tetracycline in water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118146. [PMID: 32086043 DOI: 10.1016/j.saa.2020.118146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 05/25/2023]
Abstract
Rapid and accurate detection of antibiotics at trace levels in food represents a great challenge. Tetracycline (TC), as a sort of broad-spectrum antibiotic, has been extensively used in animal infection therapy and animal husbandry as growth promoters. Large amounts of TC residues in animal-derived foods affect food quality and safety, and cause undesirable side effects such as allergic reactions and bacterial antibiotic resistance. Here, a Raman fingerprint strip sensor was reported based on surface-enhanced Raman scattering technology and demonstrated for ultrasensitive detection of TC. In this approach, 4-aminothiophenol (4-ATP) modified gold nanostars (GNSs) were used as a strong Raman reporter, which was coated with anti-TC monoclonal antibody serving as a biorecognition to acquire both visual and Raman signals on the test line. To demonstrate the performance of this strip, TC standard solutions with concentrations ranging from 0.5 to 50 ng/mL was detected, the limit of the detection (LOD) for the Raman signal was 0.04 ng/mL, which was 100 times more sensitive than those of color intensity quantifications. The other analogues, oxytetracycline, and chlortetracycline were detected using this method, making them suitable for the samples with TC analogues screening.
Collapse
Affiliation(s)
- Jing Qian
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changrui Xing
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yonghui Ge
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Li
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aitong Li
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Yan
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Silva NFD, Neves MMPS, Magalhães JMCS, Freire C, Delerue-Matos C. Electrochemical immunosensor towards invasion-associated protein p60: An alternative strategy for Listeria monocytogenes screening in food. Talanta 2020; 216:120976. [PMID: 32456897 DOI: 10.1016/j.talanta.2020.120976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
This work reports the development of an electrochemical immunosensor for rapid, specific and decentralized detection of the invasion-associated protein p60 secreted by Listeria monocytogenes, a life-threatening foodborne pathogen. A disposable screen-printed electrode was used as transducer surface and monoclonal and polyclonal antibodies that specifically recognize Listeria monocytogenes p60 protein and Listeria spp. p60 proteins, respectively, were used as the sandwich immuno-pair. The reaction was detected with the aid of an additional secondary antibody conjugated with the enzyme reporter (alkaline phosphatase) and using 3-indoxyl phosphate/silver ions as the mixture substrate. The analytical signal was acquired through the voltammetric stripping of the enzymatically deposited silver, which was directly correlated to p60 concentration in the sample. In optimized conditions, a limit of detection and quantification of 1.5 ng mL-1 and 5.1 ng mL-1 were achieved, respectively, in a useful time (<3 h). As proof-of-concept, the proposed immunosensor was successfully applied to spiked milk samples, demonstrating to be a suitable device for further use in real sample detection of Listeria monocytogenes in food products.
Collapse
Affiliation(s)
- Nádia F D Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal; REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto (FCUP), Rua do Campo Alegre, S/n, 4169-007, Porto, Portugal
| | - Marta M P S Neves
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| | - Júlia M C S Magalhães
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cristina Freire
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto (FCUP), Rua do Campo Alegre, S/n, 4169-007, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| |
Collapse
|
26
|
Jung Y, Heo Y, Lee JJ, Deering A, Bae E. Smartphone-based lateral flow imaging system for detection of food-borne bacteria E.coli O157:H7. J Microbiol Methods 2020; 168:105800. [DOI: 10.1016/j.mimet.2019.105800] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
|
27
|
Tominaga T, Ishii M. Detection of microorganisms with lateral flow test strips. METHODS IN MICROBIOLOGY 2020. [DOI: 10.1016/bs.mim.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G. Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Mikrochim Acta 2019; 187:70. [PMID: 31853644 DOI: 10.1007/s00604-019-3822-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
Abstract
This review (with 187 refs.) summarizes the progress that has been made in the design of lateral flow biosensors (LFBs) based on the use of micro- and nano-materials. Following a short introduction into the field, a first section covers features related to the design of LFBs, with subsections on strip-based, cotton thread-based and vertical flow- and syringe-based LFBs. The next chapter summarizes methods for sample pretreatment, from simple method to membrane-based methods, pretreatment by magnetic methods to device-integrated sample preparation. Advances in flow control are treated next, with subsections on cross-flow strategies, delayed and controlled release and various other strategies. Detection conditionst and mathematical modelling are briefly introduced in the following chapter. A further chapter covers methods for reliability improvement, for example by adding other validation lines or adopting different detection methods. Signal readouts are summarized next, with subsections on color-based, luminescent, smartphone-based and SERS-based methods. A concluding section summarizes the current status and addresses challenges in future perspectives. Graphical abstractRecent development and breakthrough points of lateral flow biosensors.
Collapse
Affiliation(s)
- Yan Huang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Wenqian Wang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China
| | - Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China. .,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,School of Biomedical Engineering, Shenzhen University Healthy Science Center, Shenzhen, Guangdong, 518060, People's Republic of China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
29
|
Guo L, Liu L, Xu L, Kuang H, Cui G, Xu C. Gold Immunochromatography Assay for the Rapid Detection of Spiramycin in Milk and Beef Samples Based on a Monoclonal Antibody. Biotechnol J 2019; 15:e1900224. [DOI: 10.1002/biot.201900224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lingling Guo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Liqiang Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Gang Cui
- Department of BiotechnologyYancheng Teachers University Yancheng 22400 P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
30
|
Guo L, Wu X, Liu L, Kuang H, Xu C. Gold Immunochromatographic Assay for Rapid On-Site Detection of Lincosamide Residues in Milk, Egg, Beef, and Honey Samples. Biotechnol J 2019; 15:e1900174. [PMID: 31468703 DOI: 10.1002/biot.201900174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/14/2019] [Indexed: 12/21/2022]
Abstract
Lincosamides (LMs), include clindamycin (CLIN), lincomycin (LIN), and pirlimycin (PIR), that are widely used as veterinary drugs. LM residues in edible animal origin foods endanger human health and are in urgent need of establishing fast, simple, and highly sensitive detection methods. A gold immunochromatographic strip is prepared to detect CLIN, LIN, and PIR residues simultaneously with a single monoclonal antibody. This antibody is obtained with the design of a novel Hapten and can simultaneously recognize CLIN, LIN, and PIR. Under optimized conditions, the strip results can be semi-quantitatively evaluated with the naked eye within 15 min, with cut-off values in phosphate-buffered saline of 1 ng mL-1 for CLIN, 10 ng mL-1 for LIN, and 25 ng mL-1 for PIR, respectively. Besides, the strip can also be quantified using a hand-held strip scanner, and the spiked samples are used for establishing matrix curves. The limits of detection for CLIN, LIN, and PIR in spiked milk, egg, beef, and honey samples can satisfy the detection requirement. The utility of this strip is also confirmed by positive honey sample. In short, this strip should be expected to be a useful tool for the rapid on-site screening of lincosamide residues in milk, egg, beef, and honey samples.
Collapse
Affiliation(s)
- Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China
| |
Collapse
|
31
|
Identification and determination of glycoprotein of edible brid's nest by nanocomposites based lateral flow immunoassay. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Tang RH, Liu LN, Zhang SF, He XC, Li XJ, Xu F, Ni YH, Li F. A review on advances in methods for modification of paper supports for use in point-of-care testing. Mikrochim Acta 2019; 186:521. [PMID: 31289938 DOI: 10.1007/s00604-019-3626-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Paper is a widely used support for use in devices for point-of-care testing (POCT) in clinical diagnosis, food safety monitoring and environmental pollution. Paper is inexpensive, biocompatible, biodegradable and allows a sample fluid to flow by capillary force. Numerous method have been developed recently for chemical modification of papers in order to introduce different functionalities. This review (with 148 refs.) summarizes the recent progress in paper-based POCT devices. The introduction summarizes the state of the art of paper-based POCT devices and the physicochemical properties of existing unmodified materials (including cellulose, cellulose-based composites, cotton fibers, glass fibers, nitrocellulose, thread). Methods for paper modification for sample pretreatment are summarized next, with subsections on sample storage and collection, sample separation, nucleic acid extraction and sample preconcentration. Another main section covers approaches for paper modification for improving POCTs, with subsections on assays for proteins, nucleic acids, drugs, ion and organic molecules. The advantages and disadvantages of these approaches are compared. Several tables are presented that summarize the various modification techniques. A concluding section summarizes the current status, addresses challenges and gives an outlook on future perspectives of POCTs. Graphical abstract This review summarizes the progress that has been made in paper based point-of-care testing (POCT) and lateral flow assays (LFAs), quite often by using advanced nanomaterials for paper modification.
Collapse
Affiliation(s)
- Rui Hua Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Li Na Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Su Feng Zhang
- Key laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
- Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xiao Cong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiu Jun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX, 79968, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yong Hao Ni
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
- Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada.
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
33
|
Yu Q, Liu J, Zhao G, Dou W. A silica nanoparticle based 2-color immunochromatographic assay for simultaneous determination of clenbuterol and ractopamine. Mikrochim Acta 2019; 186:421. [PMID: 31187272 DOI: 10.1007/s00604-019-3529-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/19/2019] [Indexed: 01/06/2023]
Abstract
An immunochromatographic assay (ICA) is presented that can be applied to simultaneous detection of clenbuterol (CLE) and ractopamine (RAC). It is making use of two red and blue silica nanoparticles (SiNPs) that act as labels for encoding the antibodies. This design permits multiplexed analysis in a single test line and does not require an external source for photoexcitation. Anti-CLE was labeled with red SiNPs, and anti-RAC with blue SiNPs. The capture antigens CLE-BSA and RAC-BSA were placed onto the conjugate pad and the test line of the test strip, respectively. Under bare eye examination, no cross-colored lines or nonspecific bioconjugate adsorption were observed, and the visible limit of detections for CLE (red) and RAC (blue) are 3 and 2 ng‧mL-1, respectively. This design allows for multiplexed detection with reduced device dimensions and costs, and with easy integration and manufacturing. Conceivably, the method may be extended to simultaneous determination of numerous other analytes. Graphic abstract The principle of qualitative detection strategy of multiplex immunochromatographic assay for clenbuterol (CLE) and ractopamine (RAC) is schematically illustrated. Depending on the type and ratio of organic dyes, the color of colored silica nanoparticle can be tuned from red to purple and even to black (lower right corner).
Collapse
Affiliation(s)
- Qiongqiong Yu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jing Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
34
|
|
35
|
He F, Zou T, Yang J, Wang H, Deng L, Tian Y, Xu Z, Sun Y, Lei H, Tan X, Shen Y. Development of a skeleton-specific antibody and Au nanoparticle-based immunochromatographic sensor for simultaneous detection of various tadalafil adulterants in health food. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1585417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Fan He
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Tingting Zou
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Jinyi Yang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Lihua Deng
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Zhenlin Xu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Yuanming Sun
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Hongtao Lei
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, P. R. China
| | - Yudong Shen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
36
|
Huang Z, Xiong Z, Chen Y, Hu S, Lai W. Sensitive and Matrix-Tolerant Lateral Flow Immunoassay Based on Fluorescent Magnetic Nanobeads for the Detection of Clenbuterol in Swine Urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3028-3036. [PMID: 30793901 DOI: 10.1021/acs.jafc.8b06449] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lack of sensitivity and poor matrix tolerance are the main bottlenecks of the lateral flow immunoassay (LFIA). Here, a sensitive and matrix-tolerant method that integrated immunomagnetic separation and fluorescent lateral flow immunoassay (IMS-FLFIA) based on fluorescent magnetic nanobeads was developed to detect the clenbuterol (CLE) residue in swine urine. The limit of detection (LOD) of IMS-FLFIA is 4 times lower than that of traditional colloidal gold LFIA. This method, which exhibits similar LOD and linearity range in both phosphate-buffered saline and urine swine, is highly correlated with liquid chromatography-tandem mass spectrometry for the detection of real swine urine samples. The result indicated that IMS-FLFIA has a universal resistance to the swine urine matrix. The merits of this assay, high sensitivity, matrix tolerance, accuracy, and specificity, ensure a promising future in detection of veterinary drug residues.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Zhijuan Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Song Hu
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| |
Collapse
|
37
|
Bian H, Xu F, Jia Y, Wang L, Deng S, Jia A, Tang Y. A new immunochromatographic assay for on-site detection of porcine epidemic diarrhea virus based on monoclonal antibodies prepared by using cell surface fluorescence immunosorbent assay. BMC Vet Res 2019; 15:32. [PMID: 30658643 PMCID: PMC6339306 DOI: 10.1186/s12917-019-1773-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/02/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is a highly effective pathogen that can cause death of new-born piglet, resulting in big economical loss in pig farming industry. For rapid detection of PEDV, a new immunochromatographic assay (ICA) based on monoclonal antibodies (mAbs) was developed in this study. RESULTS The mAbs were prepared by using PEDV positive hybridoma cells that were selected by using cell surface fluorescence immunosorbent assay (CSFIA). Fourteen mAbs against PEDV strain isolated from south of China were prepared. The optimal mAb 4A11 was coated on NC membrane as the capturing reagent and the mAb A11H7 was coupled to gold nanoparticles (AuNPs) as detection reagent for the new ICA. The new ICA was used to measure PEDV in phosphate buffer containing tween-20. Results indicated that the limit of detection (LOD) of the new ICA was 0.47 μg/mL (5.9 × 103 TCID50/mL) and the liner detection range of the ICA was 0.625-10 μg/mL (7.8 × 103-105 TCID50/mL). The specificity analysis results showed that this new ICA had no cross reaction in the presence of other porcine viruses. The ICA was also validated for the detection of PEDV in swine stool samples with little interference from swine stool. To compare its accuracy to other traditional detection methods, 27 swine stool samples from south of China were investigated with the new developed ICA, commercial strip and RT-PCR. Results showed that the new ICA was more comparable to RT-PCR than commercial test strip. CONCLUSIONS A new ICA based on mAbs prepared by CSFIA was developed in this study. It was a sensitive, specific and rapid method that could be used for on-site detection of PEDV and therefore was useful for the diagnosis and prevention of PED.
Collapse
Affiliation(s)
- Hongfen Bian
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fei Xu
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yumin Jia
- College of veterinary medicine, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Lei Wang
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shengchao Deng
- Guangdong Haid Institute of animal Husbandry & Veterinary, Guangzhou, 511400, People's Republic of China
| | - Aiqing Jia
- Guangdong Haid Institute of animal Husbandry & Veterinary, Guangzhou, 511400, People's Republic of China.
| | - Yong Tang
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, People's Republic of China. .,Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
38
|
Chen W, Huang Z, Hu S, Peng J, Liu D, Xiong Y, Xu H, Wei H, Lai W. Invited review: Advancements in lateral flow immunoassays for screening hazardous substances in milk and milk powder. J Dairy Sci 2019; 102:1887-1900. [PMID: 30660416 DOI: 10.3168/jds.2018-15462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Dairy-related food safety outbreaks, such as food-borne pathogen contamination, mycotoxin contamination, and veterinary drug contamination, sometimes happen and have been reported all over the world, affecting human health and, in some cases, leading to death. Thus, rapid yet robust detection methods are needed to monitor milk and milk powder for the presence of hazardous substances. The lateral flow immunoassay (LFI) is widely used in onsite testing because of its rapidity, simplicity, and convenience. In this review, we describe some traditional LFI used to detect hazardous substances in milk and milk powder. Furthermore, we discuss recent advances in LFI that aim to improve sensitivity or detection efficiency. These advances include the use of novel label materials, development of signal amplification systems, design of multiplex detection systems, and the use of nucleic acid-based LFI.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zheng Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
39
|
Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP). Mikrochim Acta 2019; 186:93. [DOI: 10.1007/s00604-019-3226-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023]
|
40
|
Hunsur Ravikumar C, Ira Gowda M, Balakrishna RG. An “OFF–ON” quantum dot–graphene oxide bioprobe for sensitive detection of micrococcal nuclease ofStaphylococcus aureus. Analyst 2019; 144:3999-4005. [DOI: 10.1039/c8an02116c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
mAb-Strep-QDs-GO probe in an OFF state due to energy transfer from QDs to GO turns into an ON state when the energy transfer is inhibited by MNase, thus allowing the sensing of MNase (Micrococcal Nuclease, an extracellular endonuclease ofStaphylococcus Aureus).
Collapse
|
41
|
Lu X, Mei T, Guo Q, Zhou W, Li X, Chen J, Zhou X, Sun N, Fang Z. Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles. Mikrochim Acta 2018; 186:2. [PMID: 30515570 DOI: 10.1007/s00604-018-3107-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Abstract
The sensitivity of lateral flow assays (LFA) was increased 30-fold by making use of spherical core-shell gold-silica nanoparticles (AuNP@SiO2 NPs). They can be prepared by silylation of surfactant stabilized AuNPs. The AuNP@SiO2 NPs are highly stable and can be used to label antibodies at virtually any concentration. The detection limit of an LFA for alpha-fetoprotein (AFP) can be decreased from 10 ng·mL-1 to 300 pg·mL-1 which makes it comparable to an enzyme-linked immunosorbent assay. To demonstrate the applicability to an immunoassay, a sandwich assay was developed for vanillin by covalent modification of the AuNP@SiO2 NPs with antibody. By using the method, vanillin can be detected visually in milk powder samples in concentrations as low as 100 ng·g-1. With unique optical property and great stability, this AuNP@SiO2 endows great potential in biosensing applications. Graphical abstract Controlled growth of AuNP@SiO2. The newly prepared AuNP has a negative hydration layer. This layer is further surrounded by a bilayer of CTAB through electrostatic attraction. The hydrophobic inner layer enables the access and assembling of APTES and MTTS. After the hydrolysis of siloxane, a thin layer of silica shell is formed around AuNP.
Collapse
Affiliation(s)
- Xuewen Lu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ting Mei
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Qi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China
| | - Wenjing Zhou
- Clinical Trials Center, Hong Kong University-ShenZhen hospital, Shenzhen, 518053, China
| | - Xiaomei Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Jitao Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Ning Sun
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Zhiyuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| |
Collapse
|
42
|
Li J, Zhai X, Ding C, Liu Y, Dong Q, Xu D, Wang X, Qiu J, Zhang Q, Pan J, Liu Q. Development of a Bacterial Macroarray for the Rapid Screening of Targeted Antibody-Secreted Hybridomas. SLAS DISCOVERY 2018; 24:190-198. [PMID: 30304643 DOI: 10.1177/2472555218804990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hybridoma screening is a key step for the successful generation of high-affinity analyte-specific monoclonal antibodies (MAbs). This work presents an innovative screening method, known as a bacterial macroarray, generated by contact printing of hybridoma cell supernatant samples on a nitrocellulose (NC) membrane initially coated with fluorescein isothiocyanate (FITC)-labeled bacteria. Given that bacterial fixation will be influenced by complex bacterial surface structures, we selected both gram-positive bacteria ( Staphylococcus aureus and Listeria monocytogenes) and gram-negative bacteria ( Escherichia coli O157:H7 and Cronobacter sakazakii) to optimize the fixation conditions for binding to the NC membrane, such as the aperture of the NC membrane, the concentration of bacteria, the dosage of glycerin in the spotting buffer, and the fixation time and temperature. As a result, we found that a better bacterial macroarray could be developed when the spotting buffer, containing 1011 CFU mL-1 of FITC-labeled bacteria and 15% (V/V) glycerol, was spotted onto a 0.45 µm NC membrane with an incubation of 2 h at 37 °C. Finally, we verified the stability and specificity of the prepared bacterial macroarray by detecting cell cultures with the addition of two MAbs ( Escherichia coli O157:H7 MAb E7 and Cronobacter sakazakii MAb 1E9) to simulate the screening experiments. Here, we describe a bacterial macroarray to efficiently screen the targeted antibody-secreted hybridomas.
Collapse
Affiliation(s)
- Jie Li
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - XuZhao Zhai
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chengchao Ding
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yali Liu
- 2 Lanzhou University Second Hospital, Lanzhou, China
| | - Qingli Dong
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Dongpo Xu
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiang Wang
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jingxuan Qiu
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Qi Zhang
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jing Pan
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Qing Liu
- 1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.,3 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
43
|
Luo K, Kim HY, Oh MH, Kim YR. Paper-based lateral flow strip assay for the detection of foodborne pathogens: principles, applications, technological challenges and opportunities. Crit Rev Food Sci Nutr 2018; 60:157-170. [PMID: 30311773 DOI: 10.1080/10408398.2018.1516623] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a representative colorimetic biosnesor, paper-based LFSA have emerged as a promising and robust tool that can easily and instansly detect the presence of target biological components in food sample. Recently, LFSAs have gained a considerable attention as an alternative method for rapid diagnosis of foodborne pathogens to the conventional culture-based assays such as plate counting and PCR. One major drawback of the current LFSAs for the detection of pathogenic bacteria is the low sensitivity, limiting its practical applications in POCT. Not like many other protein-based biomarkers that are present in nM or pM range, the number of pathogenic bacteria that cause disease can be as low as few CFU/ml. Here, we review current advances in LFSAs for the detection of pathogenic bacteria in terms of chromatic agents and analyte types. Furthermore, recent approaches for signal enhancement and modifications of the LFSA architecture for multiplex detection of pathogenic bacteria are included in this review, together with the advantages and limitations of each techniques. Finally, the technological challenges and future prospect of LFSA-based POCT for the detection of pathogenic bacteria are discussed.
Collapse
Affiliation(s)
- Ke Luo
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju 55365 Korea
| | - Young-Rok Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| |
Collapse
|
44
|
|
45
|
Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Mikrochim Acta 2018; 185:360. [PMID: 29978265 DOI: 10.1007/s00604-018-2896-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023]
Abstract
The authors describe a rapid colorimetric assay for Listeria monocytogenes (L. monocytogenes) based on the o-phenylenediamine-mediated deaggregation of gold nanoparticles. Silver nanoclusters are used as an artificial enzyme that can oxidize o-phenylenediamine to form o-benzoquinone diamine. Aptamer and IgY antibodies were chosen to conjugate with magnetic beads and silver nanoclusters, respectively, which can recognize and bind L. monocytogenes at different specific binding sites. This results in the disassembly of colloidal gold nanoparticles which is accompanied by a color change from blue to red, with peaks at 730 and 525 nm, respectively. The method allows L. monocytogenes to be colorimetrically determined in the 10 to 106 cfu·mL-1 concentration range without pre-enrichment, and the limit of detection is as low as 10 cfu·mL-1. Recoveries ranging from 97.4 to 101.3% are found when analyzing spiked food samples. The assay is rapid, sensitive and specific. Graphical abstract Schematic illustration of a colorimetric method for detection of L. monocytogenes based on silver nanoclusters-catalyzed oxidation of OPD and de-aggregation of GNPs. A color change from blue to red can be observed and correlated to the concentration of L. monocytogenes.
Collapse
|
46
|
Han J, Zhang L, Hu L, Xing K, Lu X, Huang Y, Zhang J, Lai W, Chen T. Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2018; 101:5770-5779. [DOI: 10.3168/jds.2018-14429] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/18/2018] [Indexed: 11/19/2022]
|
47
|
Immunochemical assay with monoclonal antibodies for detection of staphylococcal enterotoxin H. J Food Drug Anal 2018; 26:741-750. [PMID: 29567245 PMCID: PMC9322225 DOI: 10.1016/j.jfda.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/26/2017] [Accepted: 10/27/2017] [Indexed: 01/15/2023] Open
Abstract
Staphylococcal enterotoxins cause food poisoning of various degrees of severity. For milk and meat products, there is a high probability of contamination with staphylococcal enterotoxin H (SEH). In this regard specific and sensitive methods are required to be developed for its detection and monitoring. In this work, the gene seh was expressed and a preparation of recombinant toxin was obtained. Using hybridoma technology, a panel of high-affinity monoclonal antibodies (mAbs) to SEH was produced. The antibodies were characterized and shown to have no cross-reactivity towards the main staphylococcal enterotoxins (A, B, C1, D, E, G and I). Based on these mAbs, a method for specific and quantitative detection of SEH was developed in the format of sandwich enzyme immunoassay (linear range, 0.2–3 ng/ml). All the mAbs produced revealed SEH by immunoblotting. Immunochemical analysis of the culture fluids of staphylococcal isolates obtained from the milk of mastitis-infected cows by immunoblotting and sandwich enzyme immunoassay demonstrated the conformity of these methods. Using the developed method, the toxin was revealed in blood serum and liquid food products practically to 100%. From non-liquid foods, it was shown to be extracted to a maximum with a buffer of pH 4.0–4.5.
Collapse
|
48
|
Abstract
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line.
Collapse
|
49
|
Guo L, Wu X, Liu L, Kuang H, Xu C. Gold Nanoparticle-Based Paper Sensor for Simultaneous Detection of 11 Benzimidazoles by One Monoclonal Antibody. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1701782. [PMID: 29266723 DOI: 10.1002/smll.201701782] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/19/2017] [Indexed: 05/24/2023]
Abstract
A colloidal gold immunochromatographic assay based on a generic monoclonal antibody is developed for the simultaneous detection of benzimidazoles and metabolite residues in milk samples. The monoclonal antibody is prepared using 2-(methoxycarbonylamino)-3H-benzimidazole-5-carboxylic acid as the hapten, and it can recognize 11 types of benzimidazoles simultaneously. The immunochromatographic strip is assembled and labeled using gold nanoparticles. This strip can detect 11 benzimidazoles including albendazole, albendazole s-oxide, albendazole sulfone, fenbendazole, fenbendazole sulfone, flubendazole, mebendazole, parbendazole, oxfendazole, oxibendazole, and carbendazim within 15 min in milk samples. Results are obtained visually with the naked eye, and the cutoff values and the visual limit of detection values for these benzimidazoles are 25, 6.25, 12.5, 12.5, 50, 25, 50, 50, 50, 6.25, and 25 ng mL-1 , and 6.25, 3.125, 3.125, 1.56, 12.5, 6.25, 12.5, 12.5, 6.25, 0.78, and 12.5 ng mL-1 , respectively. Results are also obtained using a hand-held strip scan reader, with calculated limit of detection values for these benzimidazoles of 0.83, 0.77, 1.83, 0.98, 7.67, 3.50, 3.96, 5.71, 0.92, 0.59, and 1.69 ng mL-1 , respectively. In short, the developed paper sensor is a useful tool for rapid and simple screening of residues of benzimidazoles in milk samples.
Collapse
Affiliation(s)
- Lingling Guo
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
50
|
A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2527-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|