1
|
Magaji UF, Coremen M, Karabulut Bulan O, Sacan O, Yanardag R. Biochemical and Histological Effects of Moringa oleifera Extract against Valproate-Induced Kidney Damage. J Med Food 2024; 27:533-544. [PMID: 38836511 DOI: 10.1089/jmf.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Valproic acid is an effective treatment for generalized seizure and related neurological defects. Despite its efficacy and acceptability, its use is associated with adverse drug effects. Moringa oleifera leaves are rich in phytochemical and nutritional components. It has excellent antioxidant and ethnobotanical benefits, thus popular among folk medicines and nutraceuticals. In the present study, 70% ethanol extract of moringa leaves was assessed for its in vivo biochemical and histological effects against valproate-induced kidney damage. Female Sprague-Dawley rats were randomly divided into four groups: Group I: control animals given physiological saline (n = 8); Group II: Moringa extract-administered group (0.3 g/kg b.w./day, n = 8); Group III: valproate-administered animals (0.5 g/kg b.w./day, n = 15); and Group IV: valproate + moringa extract (given similar doses of both valproate and moringa extract, n = 12) administered group. Treatments were administered orally for 15 days, the animals were fasted overnight, anesthetized, and then tissue samples harvested. In the valproate-administered experimental group, serum urea and uric acid were elevated. In the kidney tissue of the valproate rats, glutathione was depleted, antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) disrupted, while oxidative stress biomarker, inflammatory proteins (Tumor necrosis factor-alpha and interleukin-6), histological damage scores, and the number of PCNA-positive cells were elevated. M. oleifera attenuated all these biochemical defects through its plethora of diverse antioxidant and therapeutic properties.
Collapse
Affiliation(s)
- Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Melis Coremen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
2
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Wang X, Wang Y, Liu Y, Cao X, Zhang F, Xia J, Wang Z. MOF-derived porous carbon nanozyme-based flexible electrochemical sensing system for in situ and real-time monitoring of H 2O 2 released from cells. Talanta 2024; 266:125132. [PMID: 37651906 DOI: 10.1016/j.talanta.2023.125132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
A novel flexible electrochemical sensor based on porous carbon nanosheets (PCNSs) nanozyme has been constructed for in situ and real-time monitoring of H2O2 released by cells. The PCNSs are prepared with the integration of thermal transformation, thermal activation and sonochemical exfoliation by using zeolitic imidazolate frameworks as template. The PCNSs exhibit high electrical conductivity, electrochemical activity and peroxidase-like catalytic properties, which is beneficial to H2O2 assay. With the transfer printing method, the flexible electrochemical sensor is obtained, which has excellent performances for H2O2 electrochemical detecting with wide linear range from 1 μM to 20 mM and a low detection limit of 0.76 μM. Owing to the great biocompatibility, the flexible sensor guarantees the growth of living cells for 72 h and realizes in situ and real-time monitoring the release of H2O2 from HeLa cells. The strategy of porous nanozyme preparation and flexible sensor construction provided a promising way for in situ and real-time assay of small molecules in the cellular microenvironment.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Yanan Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Yali Liu
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266000, PR China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
4
|
Tabish TA, Zhu Y, Shukla S, Kadian S, Sangha GS, Lygate CA, Narayan RJ. Graphene nanocomposites for real-time electrochemical sensing of nitric oxide in biological systems. APPLIED PHYSICS REVIEWS 2023; 10:041310. [PMID: 38229764 PMCID: PMC7615530 DOI: 10.1063/5.0162640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nitric oxide (NO) signaling plays many pivotal roles impacting almost every organ function in mammalian physiology, most notably in cardiovascular homeostasis, inflammation, and neurological regulation. Consequently, the ability to make real-time and continuous measurements of NO is a prerequisite research tool to understand fundamental biology in health and disease. Despite considerable success in the electrochemical sensing of NO, challenges remain to optimize rapid and highly sensitive detection, without interference from other species, in both cultured cells and in vivo. Achieving these goals depends on the choice of electrode material and the electrode surface modification, with graphene nanostructures recently reported to enhance the electrocatalytic detection of NO. Due to its single-atom thickness, high specific surface area, and highest electron mobility, graphene holds promise for electrochemical sensing of NO with unprecedented sensitivity and specificity even at sub-nanomolar concentrations. The non-covalent functionalization of graphene through supermolecular interactions, including π-π stacking and electrostatic interaction, facilitates the successful immobilization of other high electrolytic materials and heme biomolecules on graphene while maintaining the structural integrity and morphology of graphene sheets. Such nanocomposites have been optimized for the highly sensitive and specific detection of NO under physiologically relevant conditions. In this review, we examine the building blocks of these graphene-based electrochemical sensors, including the conjugation of different electrolytic materials and biomolecules on graphene, and sensing mechanisms, by reflecting on the recent developments in materials and engineering for real-time detection of NO in biological systems.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| | - Gurneet S. Sangha
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Dr., College Park, Maryland 20742, USA
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| |
Collapse
|
5
|
Qi C, Wang W, Dong Y. Synthesis of Se single atoms on nitrogen-doped carbon as novel electrocatalyst for sensitive nonenzymatic sensing of hydrogen peroxide. Anal Bioanal Chem 2023; 415:5391-5401. [PMID: 37432443 DOI: 10.1007/s00216-023-04814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Single-atom catalysts received increasing attention due to their maximum atom utilization efficiency. However, metal-free single atoms have not been used to construct electrochemical sensing interfaces. In this work, we demonstrated the use of Se single atoms (SA) as electrocatalyst for sensitive electrochemical nonenzymatic detection of H2O2. Se SA was synthesized and anchored on nitrogen-doped carbon (Se SA/NC) via a high-temperature reduction strategy. The structural properties of Se SA/NC were characterized by transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical techniques. The results showed that Se atoms were uniformly distributed on the surface of the NC. The obtained SA catalyst exhibited excellent electrocatalytic activity toward H2O2 reduction, and can be used to detect H2O2 in a wide linear range from 0.04 mM to 11.1 mM with a low detection limit of 0.018 mM and high sensitivity of 403.9 µA mM-1 cm-2. Moreover, the sensor can be used for the quantification of H2O2 concentration in real disinfectant samples. This work is of great significance for expanding the application of nonmetallic single-atom catalysts in the field of electrochemical sensing. Se single atoms (Se SA) as novel electrocatalyst were synthesized and anchored on nitrogen-doped carbon (NC) for sensitive electrochemical nonenzymatic detection of H2O2.
Collapse
Affiliation(s)
- Chengcheng Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
- School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yongping Dong
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
6
|
Banfalvi G. Apoptotic Janus-faced mycotoxins against thoracal and breast metastases. Apoptosis 2023; 28:754-768. [PMID: 37055605 DOI: 10.1007/s10495-023-01837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 04/15/2023]
Abstract
Abdominal organs (liver, kidney, spleen) are frequent targets of cancer cell invasion but their primary tumours are less known for their metastatic potential to other organs e.g. to the breast. Despite the known connection of the pathogenesis from breast cancer to liver metastasis, the study of the spread in the opposite direction has been neglected. The notion that breast cancer could be a metastasis besides being a primary tumour is based on rodents' tumour models upon implantation of tumour cells under the capsule of the kidney or under the Glisson's capsule of the liver of rats and mice. Tumour cells develop into a primary tumour at the site of subcutaneous implantation. The metastatic process starts with peripheral disruptions of blood vessels near the surface of primary tumours. Tumour cells released into the abdomen cross the apertures of the diaphragm, enter the thoracal lymph nodes and accumulate in parathymic lymph nodes. Abdominal colloidal carbon particles injected into the abdomen faithfully mimicked the migration of tumour cells and deposited in parathymic lymph nodes (PTNs). An explanation is provided why the connection between abdominal tumours and mammary tumours escaped attention, notably, parathymic lymph nodes in humans were referred to as internal mammary or parasternal lymph nodes. The apoptotic effect of Janus-faced cytotoxins is suggested to provide a new approach against the spread of abdominal primary tumours, and metastatic development.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology and Department of Physiology, University of Debrecen, 1 Egyetem Square, Life Sciences Building 1.102, Debrecen, 4010, Hungary.
| |
Collapse
|
7
|
Liguori A, Petri E, Gualandi C, Dolci LS, Marassi V, Petretta M, Zattoni A, Roda B, Grigolo B, Olivotto E, Grassi F, Focarete ML. Controlled Release of H 2S from Biomimetic Silk Fibroin-PLGA Multilayer Electrospun Scaffolds. Biomacromolecules 2023; 24:1366-1376. [PMID: 36749903 PMCID: PMC10015463 DOI: 10.1021/acs.biomac.2c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The possibility of incorporating H2S slow-release donors inside biomimetic scaffolds can pave the way to new approaches in the field of tissue regeneration and anti-inflammatory treatment. In the present work, GYY4137, an easy-to-handle commercially available Lawesson's reagent derivative, has been successfully incorporated inside biomimetic silk fibroin-based electrospun scaffolds. Due to the instability of GYY4137 in the solvent needed to prepare silk fibroin solutions (formic acid), the electrospinning of the donor together with the silk fibroin turned out to be impossible. Therefore, a multilayer structure was realized, consisting of a PLGA mat containing GYY4137 sandwiched between two silk fibroin nanofibrous layers. Before their use in the multilayer scaffold, the silk fibroin mats were treated in ethanol to induce crystalline phase formation, which conferred water-resistance and biomimetic properties. The morphological, thermal, and chemical properties of the obtained scaffolds were thoroughly characterized by SEM, TGA, DSC, FTIR, and WAXD. Multilayer devices showing two different concentrations of the H2S donor, i.e., 2 and 5% w/w with respect to the weight of PLGA, were analyzed to study their H2S release and biological properties, and the results were compared with those of the sample not containing GYY4137. The H2S release analysis was carried out according to an "ad-hoc" designed procedure based on a validated high-performance liquid chromatography method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer scaffolds and its tunability by acting on the donor's concentration inside the PLGA nanofibers. Finally, the devices were tested in biological assays using bone marrow-derived mesenchymal stromal cells showing the capacity to support cell spreading throughout the scaffold and prevent cytotoxicity effects in serum starvation conditions. The resulting devices can be exploited for applications in the tissue engineering field since they combine the advantages of controlled H2S release kinetics and the biomimetic properties of silk fibroin nanofibers.
Collapse
Affiliation(s)
- Anna Liguori
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Elisabetta Petri
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Chiara Gualandi
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| | - Luisa S. Dolci
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Valentina Marassi
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Mauro Petretta
- RegenHu
Company, Z.I Du Vivier
22, CH-1690 Villaz-St-Pierre, Switzerland
| | - Andrea Zattoni
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Barbara Roda
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Brunella Grigolo
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Eleonora Olivotto
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maria Letizia Focarete
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| |
Collapse
|
8
|
Amini-Khoei H, Nasiri Boroujeni S, Lorigooini Z, Salehi A, Sadeghian R, Rahimi-Madiseh M. Implication of nitrergic system in the anticonvulsant effects of ferulic acid in pentylenetetrazole-induced seizures in male mice. J Basic Clin Physiol Pharmacol 2023; 34:197-203. [PMID: 34412169 DOI: 10.1515/jbcpp-2020-0496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/17/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Seizures are abnormal discharge of neurons in the brain. Ferulic acid (FA) is a phenolic compound with antioxidant and neuroprotective effects. The present study aimed to investigate the role of the nitrergic system in the anticonvulsant effect of FA in pentylenetetrazol (PTZ)-induced seizures in male mice. METHODS 64 male Naval Medical Research Institute (NMRI) mice weighing 25-29 g were randomly divided into eight experimental groups (n=8). FA at doses 5, 10, and 40 mg/kg alone and in combination with L-nitro-arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) or L-arginine (L-arg) (nitric oxide [NO] precursor) was administrated (intraperitoneal). PTZ was injected (i.v. route) 30 min after drugs administration (1 mL/min). Seizure onset time was recorded and the nitrite levels of prefrontal cortex and serum were determined by the Griess method. RESULTS FA at doses of 10 and 40 mg/kg significantly increased the seizure threshold as well as reduced the serum and brain NO levels in comparison to the saline-received group. Co-administration of the effective dose of FA (10 mg/kg) plus L-arg significantly decreased the seizure threshold in comparison to the effective dose of FA alone. Co-injection of the sub-effective dose of FA (5 mg/kg) with L-NAME significantly increased the seizure threshold as well as significantly decreased the brain NO level in comparison to the sub-effective dose of FA alone. CONCLUSIONS We showed that the nitrergic system, partially at least, mediated the anticonvulsant effect of FA in PTZ-induced seizures in mice. We concluded that L-NAME potentiated while L-arg attenuated the anticonvulsant effect of FA.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shakiba Nasiri Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Salehi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
9
|
Ramesh A, Ajith A, Gudipati NS, Vanjari SRK, John SA, Biju V, Subrahmanyam C. Hybridization of Co 3S 4 and Graphitic Carbon Nitride Nanosheets for High-performance Nonenzymatic Sensing of H 2O 2. BIOSENSORS 2023; 13:108. [PMID: 36671943 PMCID: PMC9856010 DOI: 10.3390/bios13010108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The development of efficient H2O2 sensors is crucial because of their multiple functions inside and outside the biological system and the adverse effects that a higher concentration can cause. This work reports a highly sensitive and selective non-enzymatic electrochemical H2O2 sensor achieved through the hybridization of Co3S4 and graphitic carbon nitride nanosheets (GCNNS). The Co3S4 is synthesized via a hydrothermal method, and the bulk g-C3N4 (b-GCN) is prepared by the thermal polycondensation of melamine. The as-prepared b-GCN is exfoliated into nanosheets using solvent exfoliation, and the composite with Co3S4 is formed during nanosheet formation. Compared to the performances of pure components, the hybrid structure demonstrates excellent electroreduction towards H2O2. We investigate the H2O2-sensing performance of the composite by cyclic voltammetry, differential pulse voltammetry, and amperometry. As an amperometric sensor, the Co3S4/GCNNS exhibits high sensitivity over a broad linear range from 10 nM to 1.5 mM H2O2 with a high detection limit of 70 nM and fast response of 3 s. The excellent electrocatalytic properties of the composite strengthen its potential application as a sensor to monitor H2O2 in real samples. The remarkable enhancement of the electrocatalytic activity of the composite for H2O2 reduction is attributed to the synergistic effect between Co3S4 and GCNNS.
Collapse
Affiliation(s)
- Asha Ramesh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Ajay Ajith
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram, Dindigul 624302, Tamilnadu, India
| | - Neeraja Sinha Gudipati
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Siva Rama Krishna Vanjari
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - S. Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram, Dindigul 624302, Tamilnadu, India
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ch Subrahmanyam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
10
|
Arivazhagan M, Kannan P, Maduraiveeran G. Gold Nanoclusters Dispersed on Gold Dendrite-Based Carbon Fibre Microelectrodes for the Sensitive Detection of Nitric Oxide in Human Serum. BIOSENSORS 2022; 12:bios12121128. [PMID: 36551095 PMCID: PMC9776376 DOI: 10.3390/bios12121128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Herein, gold nanoclusters (Au NC) dispersed on gold dendrite (Au DS)-based flexible carbon fibre (AuNC@AuDS|CF) microelectrodes are developed using a one-step electrochemical approach. The as-fabricated AuNC@AuDS|CF microelectrodes work as the prospective electrode materials for the sensitive detection of nitric oxide (NO) in a 0.1 M phosphate buffer (PB) solution. Carbon microfibre acts as an efficient matrix for the direct growth of AuNC@AuDS without any binder/extra reductant. The AuNC@AuDS|CF microelectrodes exhibit outstanding electrocatalytic activity towards NO oxidation, which is ascribed to their large electrochemical active surface area (ECSA), high electrical conductivity, and high dispersion of Au nanoclusters. As a result, the AuNC@AuDS|CF microelectrodes attain a rapid response time (3 s), a low limit of detection (LOD) (0.11 nM), high sensitivity (66.32 µA µM cm-2), a wide linear range (2 nM-7.7 µM), long-term stability, good reproducibility, and a strong anti-interference capability. Moreover, the present microsensor successfully tested for the discriminating detection of NO in real human serum samples, revealing its potential practicability.
Collapse
Affiliation(s)
- Mani Arivazhagan
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
11
|
Yu Y, Pan M, Peng J, Hu D, Hao Y, Qian Z. A review on recent advances in hydrogen peroxide electrochemical sensors for applications in cell detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Li G, Yuan B, Chen S, Gan L, Xu C. Covalent Organic Frameworks-TpPa-1 as an Emerging Platform for Electrochemical Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172953. [PMID: 36079991 PMCID: PMC9457582 DOI: 10.3390/nano12172953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/07/2023]
Abstract
Covalent organic frameworks (COFs) are a new type of metal-free porous architecture with a well-designed pore structure and high stability. Here an efficient electrochemical sensing platform was demonstrated based on COFs TpPa-1 constructed by 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1), which possesses abundant nitrogen and oxo-functionalities. COFs TpPa-1 exhibited good water dispersibility and strong adsorption affinities for Pd2+ and thus was used as loading support to modify Pd2+. The Pd2+-modified COFs TpPa-1 electrode (Pd2+/COFs) showed high electrocatalytic activity for both hydrazine oxidation reaction and nitrophenol reduction reaction. In addition, TpPa-1-derived nitrogen-doped carbon presented high activity for the electro-oxidation of reduced glutathione (GSH), and sensitive electrochemical detection of GSH was achieved. The presented COFs TpPa-1 can be utilized as a precursor as well as support for anchoring electro-active molecules and nanoparticles, which will be useful for electrochemical sensing and electrocatalysis.
Collapse
|
13
|
Synthesis of Gold-Platinum Core-Shell Nanoparticles Assembled on a Silica Template and Their Peroxidase Nanozyme Properties. Int J Mol Sci 2022; 23:ijms23126424. [PMID: 35742866 PMCID: PMC9223353 DOI: 10.3390/ijms23126424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Bimetallic nanoparticles are important materials for synthesizing multifunctional nanozymes. A technique for preparing gold-platinum nanoparticles (NPs) on a silica core template (SiO2@Au@Pt) using seed-mediated growth is reported in this study. The SiO2@Au@Pt exhibits peroxidase-like nanozyme activity has several advantages over gold assembled silica core templates (SiO2@Au@Au), such as stability and catalytic performance. The maximum reaction velocity (Vmax) and the Michaelis–Menten constants (Km) were and 2.1 × 10−10 M−1∙s−1 and 417 µM, respectively. Factors affecting the peroxidase activity, including the quantity of NPs, solution pH, reaction time, and concentration of tetramethyl benzidine, are also investigated in this study. The optimization of SiO2@Au@Pt NPs for H2O2 detection obtained in 0.5 mM TMB; using 5 µg SiO2@Au@Pt, at pH 4.0 for 15 min incubation. H2O2 can be detected in the dynamic liner range of 1.0 to 100 mM with the detection limit of 1.0 mM. This study presents a novel method for controlling the properties of bimetallic NPs assembled on a silica template and increases the understanding of the activity and potential applications of highly efficient multifunctional NP-based nanozymes.
Collapse
|
14
|
Mihailova I, Gerbreders V, Krasovska M, Sledevskis E, Mizers V, Bulanovs A, Ogurcovs A. A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:424-436. [PMID: 35601536 PMCID: PMC9086496 DOI: 10.3762/bjnano.13.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 06/02/2023]
Abstract
This article describes the synthesis of nanostructured copper oxide on copper wires and its application for the detection of hydrogen peroxide. Copper oxide petal nanostructures were obtained by a one-step hydrothermal oxidation method. The resulting coating is uniform and dense and shows good adhesion to the wire surface. Structure, surface, and composition of the obtained samples were studied using field-emission scanning electron microscopy along with energy-dispersive spectroscopy and X-ray diffractometry. The resulting nanostructured samples were used for electrochemical determination of the H2O2 content in a 0.1 M NaOH buffer solution using cyclic voltammetry, differential pulse voltammetry, and i-t measurements. A good linear relationship between the peak current and the concentration of H2O2 in the range from 10 to 1800 μM was obtained. The sensitivity of the obtained CuO electrode is 439.19 μA·mM-1. The calculated limit of detection is 1.34 μM, assuming a signal-to-noise ratio of 3. The investigation of the system for sensitivity to interference showed that the most common interfering substances, that is, ascorbic acid, uric acid, dopamine, NaCl, glucose, and acetaminophen, do not affect the electrochemical response. The real milk sample test showed a high recovery rate (more than 95%). According to the obtained results, this sensor is suitable for practical use for the qualitative detection of H2O2 in real samples, as well as for the quantitative determination of its concentration.
Collapse
Affiliation(s)
- Irena Mihailova
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Vjaceslavs Gerbreders
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Marina Krasovska
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Eriks Sledevskis
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Valdis Mizers
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Andrejs Bulanovs
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Andrejs Ogurcovs
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
- Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga, LV-1063, Latvia
| |
Collapse
|
15
|
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022; 189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People's Republic of China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiao-Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
16
|
Khan RK, Silva TA, Fatibello‐Filho O, Collinson MM, Farghaly AA. Nanoporous Pt(Au) Alloys for the Enhanced, Non‐enzymatic Detection of Hydrogen Peroxide under Biofouling Conditions. ELECTROANAL 2022. [DOI: 10.1002/elan.202100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rezaul K. Khan
- Department of Chemistry Virginia Commonwealth University 23284-2006 Richmond Virginia United States
| | - Tiago A. Silva
- Department of Chemistry Federal University of São Carlos CEP: 13560-970 São Carlos SP Brazil
- Department of Chemistry Federal University of Viçosa CEP: 36570-900 Viçosa MG Brazil
| | - Orlando Fatibello‐Filho
- Department of Chemistry Federal University of São Carlos CEP: 13560-970 São Carlos SP Brazil
| | - Maryanne M. Collinson
- Department of Chemistry Virginia Commonwealth University 23284-2006 Richmond Virginia United States
| | - Ahmed A. Farghaly
- Chemical Sciences and Engineering Division Argonne National Laboratory 60439-4801 Lemont Illinois United States
- Chemistry Department, Faculty of Science Assiut University 71516 Assiut Egypt
| |
Collapse
|
17
|
Kaya SI, Yıldırım S, Cetinkaya A, Erkmen C, Uslu B, Ozkan SA. Nanomaterial-based electroanalytical sensors for the selected prohibited anabolic agents, hormones and metabolic modulators and their sensitive assays. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Nonenzymatic Hydrogen Peroxide Detection Using Surface-Enhanced Raman Scattering of Gold-Silver Core-Shell-Assembled Silica Nanostructures. NANOMATERIALS 2021; 11:nano11102748. [PMID: 34685187 PMCID: PMC8540490 DOI: 10.3390/nano11102748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022]
Abstract
Hydrogen peroxide (H2O2) plays important roles in cellular signaling and in industry. Thus, the accurate detection of H2O2 is critical for its application. Unfortunately, the direct detection of H2O2 by surface-enhanced Raman spectroscopy (SERS) is not possible because of its low Raman cross section. Therefore, the detection of H2O2 via the presence of an intermediary such as 3,3,5,5-tetramethylbenzidine (TMB) has recently been developed. In this study, the peroxidase-mimicking activity of gold–silver core–shell-assembled silica nanostructures (SiO2@Au@Ag alloy NPs) in the presence of TMB was investigated using SERS for detecting H2O2. In the presence of H2O2, the SiO2@Au@Ag alloy catalyzed the conversion of TMB to oxidized TMB, which was absorbed onto the surface of the SiO2@Au@Ag alloy. The SERS characteristics of the alloy in the TMB–H2O2 mixture were investigated. The evaluation of the SERS band to determine the H2O2 level utilized the SERS intensity of oxidized TMB bands. Moreover, the optimal conditions for H2O2 detection using SiO2@Au@Ag alloy included incubating 20 µg/mL SiO2@Au@Ag alloy NPs with 0.8 mM TMB for 15 min and measuring the Raman signal at 400 µg/mL SiO2@Au@Ag alloy NPs.
Collapse
|
19
|
Torrinha Á, Morais S. Electrochemical (bio)sensors based on carbon cloth and carbon paper: An overview. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Klekotka E, Kasztelan M, Palys B. Factors Influencing the Electrocatalytic Properties of Graphene Oxide – Gold Nanoparticles Hybrid System. ChemElectroChem 2021. [DOI: 10.1002/celc.202100791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ewelina Klekotka
- Faculty of Chemistry University of Warsaw Pasteur str. 1 02-093 Warsaw Poland
| | - Mateusz Kasztelan
- Faculty of Chemistry University of Warsaw Pasteur str. 1 02-093 Warsaw Poland
- Chemical Faculty Warsaw University of Technology Noakowskiego str. 3 00-664 Warsaw Poland
| | - Barbara Palys
- Faculty of Chemistry University of Warsaw Pasteur str. 1 02-093 Warsaw Poland
| |
Collapse
|
21
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Cao J, Chen Q, Wang X, Zhang Q, Yu HD, Huang X, Huang W. Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9863038. [PMID: 33982003 PMCID: PMC8086560 DOI: 10.34133/2021/9863038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/22/2021] [Indexed: 11/24/2022]
Abstract
Sensors, capable of detecting trace amounts of gas molecules or volatile organic compounds (VOCs), are in great demand for environmental monitoring, food safety, health diagnostics, and national defense. In the era of the Internet of Things (IoT) and big data, the requirements on gas sensors, in addition to sensitivity and selectivity, have been increasingly placed on sensor simplicity, room temperature operation, ease for integration, and flexibility. The key to meet these requirements is the development of high-performance gas sensing materials. Two-dimensional (2D) atomic crystals, emerged after graphene, have demonstrated a number of attractive properties that are beneficial to gas sensing, such as the versatile and tunable electronic/optoelectronic properties of metal chalcogenides (MCs), the rich surface chemistry and good conductivity of MXenes, and the anisotropic structural and electronic properties of black phosphorus (BP). While most gas sensors based on 2D atomic crystals have been incorporated in the setup of a chemiresistor, field-effect transistor (FET), quartz crystal microbalance (QCM), or optical fiber, their working principles that involve gas adsorption, charge transfer, surface reaction, mass loading, and/or change of the refractive index vary from material to material. Understanding the gas-solid interaction and the subsequent signal transduction pathways is essential not only for improving the performance of existing sensing materials but also for searching new and advanced ones. In this review, we aim to provide an overview of the recent development of gas sensors based on various 2D atomic crystals from both the experimental and theoretical investigations. We will particularly focus on the sensing mechanisms and working principles of the related sensors, as well as approaches to enhance their sensing performances. Finally, we summarize the whole article and provide future perspectives for the development of gas sensors with 2D materials.
Collapse
Affiliation(s)
- Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qiang Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Xiao Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| |
Collapse
|
23
|
Yu Y, Peng J, Pan M, Ming Y, Li Y, Yuan L, Liu Q, Han R, Hao Y, Yang Y, Hu D, Li H, Qian Z. A Nonenzymatic Hydrogen Peroxide Electrochemical Sensing and Application in Cancer Diagnosis. SMALL METHODS 2021; 5:e2001212. [PMID: 34928089 DOI: 10.1002/smtd.202001212] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/01/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Yan Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Meng Pan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yang Ming
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yan Li
- College of Optoelectronics Technology Chengdu University of Information Technology Chengdu 610225 China
| | - Liping Yuan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qingya Liu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yun Yang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - He Li
- College of Optoelectronics Technology Chengdu University of Information Technology Chengdu 610225 China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
24
|
Aydın EB, Aydın M, Sezgintürk MK. A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6. Talanta 2021; 222:121596. [DOI: 10.1016/j.talanta.2020.121596] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
|
25
|
Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal Bioanal Chem 2021; 413:727-762. [PMID: 33094369 PMCID: PMC7581469 DOI: 10.1007/s00216-020-03002-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The research interest in wearable sensors has tremendously increased in recent years. Amid the different biosensors, electrochemical biosensors are unparalleled and ideal for the design and manufacture of such flexible and wearable sensors because of their various benefits, including convenient operation, quick response, portability, and inherent miniaturization. A number of studies on flexible and wearable electrochemical biosensors have been reported in recent years for invasive/non-invasive and real-time monitoring of biologically relevant molecules such as glucose, lactate, dopamine, cortisol, and antigens. To attain this, novel two-dimensional nanomaterials and their hybrids, various substrates, and detection methods have been explored to fabricate flexible conductive platforms that can be used to develop flexible electrochemical biosensors. In particular, there are many advantages associated with the advent of two-dimensional materials, such as light weight, high stretchability, high performance, and excellent biocompatibility, which offer new opportunities to improve the performance of wearable electrochemical sensors. Therefore, it is urgently required to study wearable/flexible electrochemical biosensors based on two-dimensional nanomaterials for health care monitoring and clinical analysis. In this review, we described recently reported flexible electrochemical biosensors based on two-dimensional nanomaterials. We classified them into specific groups, including enzymatic/non-enzymatic biosensors and affinity biosensors (immunosensors), recent developments in flexible electrochemical immunosensors based on polymer and plastic substrates to monitor biologically relevant molecules. This review will discuss perspectives on flexible electrochemical biosensors based on two-dimensional materials for the clinical analysis and wearable biosensing devices, as well as the limitations and prospects of the these electrochemical flexible/wearable biosensors.Graphical abstract.
Collapse
Affiliation(s)
- Minu Mathew
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India
| | - Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India
| | - Antara Vaidyanathan
- Department of Chemistry, Ramnarain Ruia Autonomous College, Matunga, Mumbai, 40085, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 40085, India.
- Homi Bhabha National Institute, Mumbai, 40094, India.
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India.
| |
Collapse
|
26
|
Patel V, Kruse P, Selvaganapathy PR. Solid State Sensors for Hydrogen Peroxide Detection. BIOSENSORS 2020; 11:9. [PMID: 33375685 PMCID: PMC7823577 DOI: 10.3390/bios11010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Hydrogen peroxide (H2O2) is a key molecule in numerous physiological, industrial, and environmental processes. H2O2 is monitored using various methods like colorimetry, luminescence, fluorescence, and electrochemical methods. Here, we aim to provide a comprehensive review of solid state sensors to monitor H2O2. The review covers three categories of sensors: chemiresistive, conductometric, and field effect transistors. A brief description of the sensing mechanisms of these sensors has been provided. All three sensor types are evaluated based on the sensing parameters like sensitivity, limit of detection, measuring range and response time. We highlight those sensors which have advanced the field by using innovative materials or sensor fabrication techniques. Finally, we discuss the limitations of current solid state sensors and the future directions for research and development in this exciting area.
Collapse
Affiliation(s)
- Vinay Patel
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Peter Kruse
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
27
|
Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020; 25:E5787. [PMID: 33302537 PMCID: PMC7763225 DOI: 10.3390/molecules25245787] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the rise in public health awareness, research on point-of-care testing (POCT) has significantly advanced. Electrochemical biosensors (ECBs) are one of the most promising candidates for the future of POCT due to their quick and accurate response, ease of operation, and cost effectiveness. This review focuses on the use of metal nanoparticles (MNPs) for fabricating ECBs that has a potential to be used for POCT. The field has expanded remarkably from its initial enzymatic and immunosensor-based setups. This review provides a concise categorization of the ECBs to allow for a better understanding of the development process. The influence of structural aspects of MNPs in biocompatibility and effective sensor design has been explored. The advances in MNP-based ECBs for the detection of some of the most prominent cancer biomarkers (carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), Herceptin-2 (HER2), etc.) and small biomolecules (glucose, dopamine, hydrogen peroxide, etc.) have been discussed in detail. Additionally, the novel coronavirus (2019-nCoV) ECBs have been briefly discussed. Beyond that, the limitations and challenges that ECBs face in clinical applications are examined and possible pathways for overcoming these limitations are discussed.
Collapse
Affiliation(s)
- Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| |
Collapse
|
28
|
Ling Y, Lyu Q, Zhai Q, Zhu B, Gong S, Zhang T, Dyson J, Cheng W. Design of Stretchable Holey Gold Biosensing Electrode for Real-Time Cell Monitoring. ACS Sens 2020; 5:3165-3171. [PMID: 32957779 DOI: 10.1021/acssensors.0c01297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In bioelectronics, gold thin films have been widely used as sensing electrodes for probing biological events due to their high conductivity, chemical inertness, biocompatibility, wide electrochemical window, and facile surface modification. However, they are intrinsically not stretchable, which limits their applications in detecting biological reactions when a soft biological system is mechanically deformed. Here, we report on a nanosphere lithography-based strategy to generate ordered microhole gold thin-film electrodes supported by elastomeric substrates. Both experimental and theoretical studies show that the presence of microholes substantially suppresses the catastrophic crack propagation-the main reason for electrical failure for a continuous gold film. As a result, the holey gold film achieves a ∼94% stretchable limit, after which the conductivity is lost, in contrast to ∼4% for the nonstructured counterpart. Furthermore, the pinhole gold electrode is successfully used to monitor the H2O2 released from living cells under dynamic stretching conditions.
Collapse
Affiliation(s)
- Yunzhi Ling
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Quanxia Lyu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Qingfeng Zhai
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Bowen Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shu Gong
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tian Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jennifer Dyson
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Ultra-fine nickel sulfide nanoclusters @ nickel sulfide microsphere as enzyme-free electrode materials for sensitive detection of lactic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Wang M, Wang C, Liu Y, Hu B, He L, Ma Y, Zhang Z, Cui B, Du M. Nonenzymatic amperometric sensor for hydrogen peroxide released from living cancer cells based on hierarchical NiCo2O4-CoNiO2 hybrids embedded in partially reduced graphene oxide. Mikrochim Acta 2020; 187:436. [DOI: 10.1007/s00604-020-04419-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 06/27/2020] [Indexed: 01/18/2023]
|
31
|
Safaei Z, Shayesteh A. Ab Initio Calculations on Sequential Reactions of Nitric Oxide with Titanium Ions in the Gas Phase. J Phys Chem A 2020; 124:5194-5203. [PMID: 32466646 DOI: 10.1021/acs.jpca.0c03461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potential energy surfaces of sequential reactions of NO with Ti+ ion in the gas phase were investigated for various spin multiplicities using the coupled-cluster and the multireference configuration interaction methods. The mechanisms of Ti+ reactions with up to four NO molecules were fully determined, with all transition-state structures being found by relaxed surface scans and confirmed by the intrinsic reaction coordinate (IRC) calculations. The reaction mechanisms are consistent with the products observed in mass spectrometric experiments. In the first reaction, the nitrogen atom and TiO+ ion are produced with intersystem crossings for singlet and triplet states. The OTi(NO)+ complex is formed in the second reaction, and the third reaction involves N-N bond formation, yielding the N2O molecule and TiO2+ ion. The fourth NO molecule reacts with the TiO2+ ion in an electron-transfer reaction to produce final products TiO2 and NO+. The coupled-cluster relative energies were used as a reference to evaluate the overall performance of common density functionals for this particular reaction.
Collapse
Affiliation(s)
- Zahra Safaei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Shayesteh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
32
|
Elewi AS, Al-Shammaree SAW, AL Sammarraie AKM. Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles–screen printed carbon electrode. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Lee JH, Luo J, Choi HK, Chueng STD, Lee KB, Choi JW. Functional nanoarrays for investigating stem cell fate and function. NANOSCALE 2020; 12:9306-9326. [PMID: 32090229 PMCID: PMC7671654 DOI: 10.1039/c9nr10963c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stem cells show excellent potential in the field of tissue engineering and regenerative medicine based on their excellent capability to not only self-renew but also differentiate into a specialized cell type of interest. However, the lack of a non-destructive monitoring system makes it challenging to identify and characterize differentiated cells before their transplantation without compromising cell viability. Thus, the development of a non-destructive monitoring method for analyzing cell function is highly desired and can significantly benefit stem cell-based therapies. Recently, nanomaterial-based scaffolds (e.g., nanoarrays) have made possible considerable advances in controlling the differentiation of stem cells and characterization of the differentiation status sensitively in real time. This review provides a selective overview of the recent progress in the synthesis methods of nanoarrays and their applications in controlling stem cell fate and monitoring live cell functions electrochemically. We believe that the topics discussed in this review can provide brief and concise guidelines for the development of novel nanoarrays and promote the interest in live cell study applications. A method which can not only control but also monitor stem cell fate and function will be a promising technology that can accelerate stem cell therapies.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Ross N, Civilized Nqakala N. Electrochemical Determination of Hydrogen Peroxide by a Nonenzymatic Catalytically Enhanced Silver-Iron (III) Oxide/Polyoxometalate/Reduced Graphene Oxide Modified Glassy Carbon Electrode. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1745223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Natasha Ross
- SensorLab, Department of Chemistry, University of Western Cape, Bellville, Cape Town, South Africa
| | - Noniko Civilized Nqakala
- SensorLab, Department of Chemistry, University of Western Cape, Bellville, Cape Town, South Africa
| |
Collapse
|
35
|
Aleksovska A, Lönnecke P, Hey-Hawkins E. Zn- and Cd-based coordination polymers with a novel anthracene dicarboxylate ligand for highly selective detection of hydrogen peroxide. Dalton Trans 2020; 49:4817-4823. [PMID: 32215416 DOI: 10.1039/d0dt00333f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-dimensional {[Zn(L)(DMF)2]}n (1) and a three-dimensional {[Cd(L)(DMF)]·DMF}n (2) coordination polymer based on the novel anthracene derivative H2L (H2L = 4,4'-(9,10-anthracenediyl)dicinnamic acid) were obtained by solvothermal synthesis and charaterised by single-crystal and powder X-ray diffraction, thermogravimetry, and infrared spectroscopy. The anthracene derivative H2L and coordination polymers 1 and 2 were used to modify a glassy carbon electrode and as such served as an active material for detection of H2O2. Cyclic voltammograms in the potential range from 0 to -0.5 V revealed concentration-dependent cathodic current in all three cases with a lower detection limit of 200 μM. The electrode modified with compound 2 showed the best performance towards hydrogen peroxide detection. The results suggest that the development of electrodes modified with inorganic polymers based on highly conjugated ligands can serve as potential electrocatalytic materials.
Collapse
Affiliation(s)
- Angela Aleksovska
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, D-04103 Leipzig, Germany.
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, D-04103 Leipzig, Germany.
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, D-04103 Leipzig, Germany.
| |
Collapse
|
36
|
Efficient electrochemical biosensing of hydrogen peroxide on bimetallic Mo1-xWxS2 nanoflowers. J Colloid Interface Sci 2020; 566:248-256. [DOI: 10.1016/j.jcis.2020.01.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
|
37
|
Dong Y, Chen Q, Cheng X, Li H, Chen J, Zhang X, Kuang Q, Xie Z. Optimization of gold-palladium core-shell nanowires towards H 2O 2 reduction by adjusting shell thickness. NANOSCALE ADVANCES 2020; 2:785-791. [PMID: 36133255 PMCID: PMC9417247 DOI: 10.1039/c9na00726a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/30/2019] [Indexed: 05/12/2023]
Abstract
Designable bimetallic core-shell nanoparticles exhibit superb performance in many fields including industrial catalysis, energy conversion and chemical sensing, due to their outstanding properties associated with their tunable electronic structure. Herein, Au-Pd core-shell (AurichPd@AuPdrich) nanowires (NWs) were synthesized through a one-pot facile chemical reduction method in the presence of cetyltrimethyl ammonium bromide (CTAB) surfactant. The thickness of the Pd shell could be adjusted by directly controlling the Au/Pd feeding ratio while maintaining the nanowire morphology. The as-obtained Au75Pd25 core-shell NWs with a thin Pdrich shell showed significantly enhanced activities towards the reduction of hydrogen peroxide with the sensitivity reaching 338 μA cm-2 mM-1 and a linear range up to 10 mM. In sum, Pd shell thickness could be used to adjust the electronic structure, thereby optimizing the catalytic activity.
Collapse
Affiliation(s)
- Yongdi Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Qiaoli Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Xiqing Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Huiqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Jiayu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xibo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
38
|
Pan M, Yang J, Liu K, Yin Z, Ma T, Liu S, Xu L, Wang S. Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E209. [PMID: 31991797 PMCID: PMC7074850 DOI: 10.3390/nano10020209] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
Nanomaterials with unique physical and chemical properties have attracted extensive attention of scientific research and will play an increasingly important role in the future development of science and technology. With the gradual deepening of research, noble metal nanomaterials have been applied in the fields of new energy materials, photoelectric information storage, and nano-enhanced catalysis due to their unique optical, electrical and catalytic properties. Nanostructured materials formed by noble metal elements (Au, Ag, etc.) exhibit remarkable photoelectric properties, good stability and low biotoxicity, which received extensive attention in chemical and biological sensing field and achieved significant research progress. In this paper, the research on the synthesis, modification and sensing application of the existing noble metal nanomaterials is reviewed in detail, which provides a theoretical guidance for further research on the functional properties of such nanostructured materials and their applications of other nanofields.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Longhua Xu
- School of Food Science and Engineering, Shandong Agricultural University, Shandong 271018, China;
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
39
|
Electrochemically Reduced Graphene Oxide – Noble Metal Nanoparticles Nanohybrids for Sensitive Enzyme-Free Detection of Hydrogen Peroxide. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-019-00580-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
A magnetic electrode modified with hemoglobin for determination of hydrogen peroxide: distinctly improved response by applying a magnetic field. Mikrochim Acta 2020; 187:92. [PMID: 31900660 DOI: 10.1007/s00604-019-4061-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
A facile and highly sensitive biosensor was developed for the determination of hydrogen peroxide (H2O2) via electrochemical catalytic reduction of H2O2 by hemoglobin (Hb). Hb was enriched and immobilized simply in a chitosan (Chit) membrane on a magnetic electrode to construct an enzyme-like biosensor. The biosensor catalyzes the electrochemical reduction of H2O2 under an external magnetic field. The response improved roughly twice as Hb was adsorbed by Chit in an alkaline medium. The response of the biosensor under the magnetic field increased by 16% owing to the paramagnetism of Hb. The effect of pH values on Hb adsorption by Chit, as well as the effect of an external magnetic field on Hb configuration were investigated by UV-vis spectroscopy. The reduction peak current has linear and log-linear relationships with H2O2 concentration in the range of 5-250 μmol∙L-1 and 0.01-1 μmol∙L-1, respectively. The detection limit was 0.003 μmol∙L-1, with a good sensitivity of 0.227 μA∙μM-1∙cm-2. The biosensor was successfully applied to the determination of H2O2 in milk samples and in disinfectant solutions. Recoveries ranged from 96.3 to 105.4%, and from 95.3 to 107.7%, respectively. Graphical abstractConstruction of the biosensor, and principle of H2O2 determination based on Hb bioelectrocatalysis.
Collapse
|
41
|
Escamilla PR, Shen Y, Zhang Q, Hernandez DS, Howard CJ, Qian X, Filonov DY, Kinev AV, Shear JB, Anslyn EV, Yang Y. 2-Amino-3'-dialkylaminobiphenyl-based fluorescent intracellular probes for nitric oxide surrogate N 2O 3. Chem Sci 2020; 11:1394-1403. [PMID: 34123264 PMCID: PMC8148321 DOI: 10.1039/c9sc04304g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
Fluorescent probes for nitric oxide (NO), or more frequently for its oxidized surrogate dinitrogen trioxide (N2O3), have enabled scientists to study the contributions of this signaling molecule to many physiological processes. Seeking to improve upon limitations of other probes, we have developed a family of fluorescent probes based on a 2-amino-3'-dialkylaminobiphenyl core. This core condenses with N2O3 to form benzo[c]cinnoline structures, incorporating the analyte into the newly formed fluorophore, which results in product fluorescence with virtually no background contribution from the initial probe. We varied the substituents in the core in order to optimize both the reactivity of the probes with N2O3 and their cinnoline products' fluorescence wavelengths and brightness. The top candidates were then applied to cultured cells to verify that they could respond to NO within cellular milieus, and the top performer, NO530, was compared with a "gold standard" commercial probe, DAF-FM, in a macrophage-derived cell line, RAW 264.7, stimulated to produce NO. NO530 demonstrated similar or better sensitivity and higher selectivity for NO than DAF, making it an attractive potential alternative for NO tracking in various applications.
Collapse
Affiliation(s)
| | - Yanming Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Quanjuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Derek S Hernandez
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Cecil J Howard
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | | | | | - Jason B Shear
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
42
|
Abstract
Chymotrypsin is one of the most extensively known proteases participating in the pathogenesis of various diseases, which can be used in drug discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Haixia Shi
- P. E. Department
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Cheng Liu
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jingjie Cui
- School of Automation
- Hangzhou Dianzi University
- Hangzhou
- P. R. China
| | - Jia Cheng
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yuanwei Lin
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Li Gao
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease
- Chengdu Medical College
- Chengdu
- China
| |
Collapse
|
43
|
Tang S, Yao Y, Chen T, Kong D, Shen W, Lee HK. Recent advances in the application of layered double hydroxides in analytical chemistry: A review. Anal Chim Acta 2019; 1103:32-48. [PMID: 32081187 DOI: 10.1016/j.aca.2019.12.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
In recent years, layered double hydroxides (LDHs) have garnered a lot of attention in analytical chemistry, due to their advantages such as relatively simple synthesis, low cost, possession of large specific surface area and high catalytic activity, and biocompatibility. The most common applications of LDH in analytical chemistry such as sorbents in sample extraction, electrode materials in electrochemical sensing and color indicators in colorimetric detection have been well reported. Generally, the LDHs are prepared as composites with nanomaterials, or constructed with specific three-dimensional structures, befitting the applications desired for them. However, the applications of LDHs (as extraction sorbents, color indicators and in electrochemical sensing) are usually limited in these scenarios. To help address these challenges, future trends and developmental prospects of LDHs materials in analytical chemistry are discussed in this article. Besides, the strategies associated with the design of LDHs, including the structural aspects, for potential analytical applications are presented and reviewed.
Collapse
Affiliation(s)
- Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
44
|
Hou G, Yun Y, Wang M, Wang Y, Chen H, Zhang L, Wang F, Xia Q, Liu Y, Lu Z, Bao SJ. A coaxial nanocable textured by a cerium oxide shell and carbon core for sensing nitric oxide. Mikrochim Acta 2019; 186:789. [PMID: 31732798 DOI: 10.1007/s00604-019-3839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023]
Abstract
A corn-like CeO2/C coaxial cable textured by a cerium oxide shell and a carbon core was designed to sense NO. The carbon core possesses high electrical conductivity, and the CeO2 surface delivers excellent electrocatalytic activity. The sensor, typically operated at 0.8 V (vs. Ag/AgCl), exhibits a detection limit of 1.7 nM, which is 4-times lower than that of CeO2 nanotubes based one (at S/N = 3). It also displays wide linear response (up to 83 μM), a sensitivity of 0.81 μA μM-1 cm-2, and fast response (2 s). These values are highly competitive to that of a CeO2 tube (0.92 μA μM-1 cm-2 and 2 s). The sensor was used to quantify NO that is released by Aspergillus flavus. Graphical abstractSchematic representation of corn-like CeO2/C which can more sensitively and effectively detect NO released from A. flavus than when using CeO2 nanotubes, benefitting from its unique coaxial cable structure.
Collapse
Affiliation(s)
- Guorong Hou
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yanjing Yun
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Minqiang Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ying Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Chen
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Longcheng Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, No.1 Nongda South Road, Xibeiwang, Haidian District, 100193, People's Republic of China
| | - Zhisong Lu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Shu-Juan Bao
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
45
|
Brown MD, Schoenfisch MH. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chem Rev 2019; 119:11551-11575. [DOI: 10.1021/acs.chemrev.8b00797] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
46
|
Lyu Q, Zhai Q, Dyson J, Gong S, Zhao Y, Ling Y, Chandrasekaran R, Dong D, Cheng W. Real-Time and In-Situ Monitoring of H2O2 Release from Living Cells by a Stretchable Electrochemical Biosensor Based on Vertically Aligned Gold Nanowires. Anal Chem 2019; 91:13521-13527. [DOI: 10.1021/acs.analchem.9b02610] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quanxia Lyu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Qingfeng Zhai
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Jennifer Dyson
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
- Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia
| | - Shu Gong
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Yunmeng Zhao
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- The Melbourne Centre for Nanofabrication, Clayton, Victoria 3800, Australia
| | - Yunzhi Ling
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- The Melbourne Centre for Nanofabrication, Clayton, Victoria 3800, Australia
| | - Ramya Chandrasekaran
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Dashen Dong
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
- Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
- The Melbourne Centre for Nanofabrication, Clayton, Victoria 3800, Australia
| |
Collapse
|
47
|
Shi J, Tong L, Tong W, Chen H, Lan M, Sun X, Zhu Y. Current progress in long-term and continuous cell metabolite detection using microfluidics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Peng M, Zhao Y, Chen D, Tan Y. Free‐Standing 3D Electrodes for Electrochemical Detection of Hydrogen Peroxide. ChemCatChem 2019. [DOI: 10.1002/cctc.201900913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Peng
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Yang Zhao
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Dechao Chen
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Yongwen Tan
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
49
|
Mohammadniaei M, Park C, Min J, Sohn H, Lee T. Fabrication of Electrochemical-Based Bioelectronic Device and Biosensor Composed of Biomaterial-Nanomaterial Hybrid. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1064:263-296. [PMID: 30471039 PMCID: PMC7120487 DOI: 10.1007/978-981-13-0445-3_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of bioelectronics has paved the way for the development of biochips, biomedical devices, biosensors and biocomputation devices. Various biosensors and biomedical devices have been developed to commercialize laboratory products and transform them into industry products in the clinical, pharmaceutical, environmental fields. Recently, the electrochemical bioelectronic devices that mimicked the functionality of living organisms in nature were applied to the use of bioelectronics device and biosensors. In particular, the electrochemical-based bioelectronic devices and biosensors composed of biomolecule-nanoparticle hybrids have been proposed to generate new functionality as alternatives to silicon-based electronic computation devices, such as information storage, process, computations and detection. In this chapter, we described the recent progress of bioelectronic devices and biosensors based on biomaterial-nanomaterial hybrid.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul, South Korea
| | - Junhong Min
- School of Integrative Engineering Chung-Ang University, Seoul, South Korea
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, Seoul, South Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul, South Korea.
| |
Collapse
|
50
|
Zhou Y, Jiang W, Wu H, Liu F, Yin H, Lu N, Ai S. Amplified electrochemical immunoassay for 5-methylcytosine using a nanocomposite prepared from graphene oxide, magnetite nanoparticles and β-cyclodextrin. Mikrochim Acta 2019; 186:488. [DOI: 10.1007/s00604-019-3575-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|