1
|
Zhang Q, Li X, Yu L, Wang L, Wen Z, Su P, Sun Z, Wang S. Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions. J Environ Sci (China) 2025; 149:68-78. [PMID: 39181678 DOI: 10.1016/j.jes.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 08/27/2024]
Abstract
The presence of aluminum (Al3+) and fluoride (F-) ions in the environment can be harmful to ecosystems and human health, highlighting the need for accurate and efficient monitoring. In this paper, an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum (Al3+) and fluoride (F-) ions in aqueous solutions. The proposed method involves the synthesis of sulfur-functionalized carbon dots (C-dots) as fluorescence probes, with fluorescence enhancement upon interaction with Al3+ ions, achieving a detection limit of 4.2 nmol/L. Subsequently, in the presence of F- ions, fluorescence is quenched, with a detection limit of 47.6 nmol/L. The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python, followed by data preprocessing. Subsequently, the fingerprint data is subjected to cluster analysis using the K-means model from machine learning, and the average Silhouette Coefficient indicates excellent model performance. Finally, a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions. The results demonstrate that the developed model excels in terms of accuracy and sensitivity. This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment, making it a valuable tool for safeguarding our ecosystems and public health.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin Li
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Long Yu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Lingxiao Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhiqing Wen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Pengchen Su
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenli Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
2
|
Chhillar M, Kukkar D, Kumar Yadav A, Kim KH. Nitrogen doped carbon dots and gold nanoparticles mediated FRET for the detection of creatinine in human urine samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124752. [PMID: 38945007 DOI: 10.1016/j.saa.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Serum creatinine (CR) is regarded as one of the most sought out prognostic biomarkers in medical evaluation of chronic kidney disease (CKD). In light of the diagnostic significance of CR, the utility of a fluorescence biosensor for its detection in human urine specimens has been explored based on Förster resonance energy transfer (FRET) across nitrogen-doped carbon dots (N-CDs) and gold nanoparticles (GNPs). A straightforward microwave-assisted synthesis procedure has been adopted to prepare N-CDs (λexcitation = 400 nm, λemission = 540 ± 5 nm) with bright green emissions. On addition of pre-synthesized GNPs, the radiative emanation of the N-CDs is completely suppressed on account of FRET across the N-CDs and the GNPs. About 77 % of their fluorescence intensity is recovered after adding CR to GNPs@N-CDs nanocomposite. The limit of detection for CR sensing is estimated as 0.02 µg•mL-1. This biosensor is selective enough to recognize CR in the existence of potential interfering substances (e.g., ascorbic acid, glucose, glutathione, urea, and electrolytes). Its practical utility for CR detection has been validated further on the basis of satisfactory correlation with the benchmark Jaffe method, as observed in artificial/human urine specimens. Consequently, this manuscript marks a pioneering report on employing CDs and GNPs-based FRET for identifying CR in urine specimens of CKD patients.
Collapse
Affiliation(s)
- Monika Chhillar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India.
| | - Ashok Kumar Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
3
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
4
|
Buglak AA, Nguyen MT. Interactions of coinage metal nanoclusters with low-molecular-weight biocompounds. Biophys Rev 2024; 16:441-477. [PMID: 39309127 PMCID: PMC11415565 DOI: 10.1007/s12551-024-01200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 09/25/2024] Open
Abstract
Nowadays, coinage metal nanoclusters (NCs) are largely presented in diagnostics, bioimaging, and biocatalysis due to their high biocompatibility, chemical stability, and sensitivity to surrounding biomolecules. Silver and gold NCs are usually characterized by intense luminescence and photostability, which is in great demand in the detection of organic compounds, ions, pH, temperature, etc. The experimental synthesis of metal NCs often occurs on biopolymer templates, mostly DNA and proteins. However, this review mainly focuses on the interactions with small biomolecules (SBMs) of a molecular weight less than 1000 Da: amino acids, nucleobases, thiolates, oligopeptides, etc. Such molecules can serve as the templates for an eco-friendly facile one-pot synthesis of biocompatible luminescent NCs. The latter aspect makes NCs suitable for diagnostics and intracellular bioimaging. Another important aspect is the interaction of clusters with biomarkers, which is largely exploited by nanosensors: biomarker detection often occurs through either fluorescence emission "turn-on" or "turn-off" mechanisms. Moreover, as theoretical studies show, electronic absorption spectra and Raman spectra of the metal-organic complexes allow efficient detection of various analytes. In this regard, both theoretical and experimental studies of SBM complexes with metal NCs are in great demand. Therefore, this review aims to summarize up-to-date studies on the interaction of small biomolecules with coinage metal NCs from both theoretical and experimental viewpoints.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of Physics, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000 Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000 Vietnam
| |
Collapse
|
5
|
Lin H, Song X, Chai OJH, Yao Q, Yang H, Xie J. Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401002. [PMID: 38521974 DOI: 10.1002/adma.202401002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Metal nanoclusters (MNCs) can be synthesized with atomically precise structures and molecule formulae due to the rapid development of nanocluster science in recent decades. The ultrasmall size range (normally < 2 nm) endows MNCs with plenty of molecular-like properties, among which photoluminescent properties have aroused extensive attention. Tracing the research and development processes of luminescent nanoclusters, various photoluminescent analysis and characterization methods play a significant role in elucidating luminescent mechanism and analyzing luminescent properties. In this review, it is aimed to systematically summarize the normally used photoluminescent characterizations in MNCs including basic parameters and methods, such as excitation/emission wavelength, quantum yield, and lifetime. For each key parameter, first its definition and meaning is introduced and then the relevant characterization methods including measuring principles and the revelation of luminescent properties from the collected data are discussed. Then, it is discussed in details how to explore the luminescent mechanism of MNCs and construct NC-based applications based on the measured data. By means of these characterization strategies, the luminescent properties of MNCs and NC-based designs can be explained quantitatively and qualitatively. Hence, this review is expected to provide clear guidance for researchers to characterize luminescent MNCs and better understand the luminescent mechanism from the measured results.
Collapse
Affiliation(s)
- Hongbin Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
6
|
Hun Seo Y, Elizabeth Aguilar Estrada D, Jang D, Baik S, Lee J, Ha Kim D, Kim S. Aggregation-induced emission carbon dots as Al 3+-mediated nanoaggregate probe for rapid and selective detection of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123925. [PMID: 38262297 DOI: 10.1016/j.saa.2024.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Worldwide abuse of tetracycline (TC) seriously threatens environmental safety and human health. Metal-TC complexes formed by residual TC in the environment can also contribute to the spread of antibiotic resistance. Therefore, monitoring of TC residues is still required. Here, we report novel aggregation-induced emission carbon dots (AIE-Cdots) as nanoaggregate probes for the rapid and selective detection of TC residue. Riboflavin precursors with rotational functional groups led to the development of AIE-Cdots. The aggregation of AIE-Cdots was induced selectively for Al3+, amplifying the fluorescence signals owing to the restricted rotation of the side chains on the AIE-Cdot surface. The fluorescence signal of such Al3+-mediated nanoaggregates (Al3+-NAs) was further triggered by the structural fixation of TC at the Al3+ active sites, suggesting the formation of TC-coordinated Al3+-NAs. A linear correlation was observed in the TC concentration range of 0-10 μM with a detection limit of 42 nM. In addition, the strong Al3+ binding affinity of AIE-Cdots produced similar NAs and enhanced fluorescence signals in Al3+-TC mixtures. These AIE-Cdots-based nanoplatforms have a rapid response, good selectivity, and reliable accuracy for detecting TC or aluminum complexes, meeting the requirements for hazardous substance monitoring and removal in environmental applications.
Collapse
Affiliation(s)
- Young Hun Seo
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken 66123, Germany.
| | | | - Dohyub Jang
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seungyun Baik
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken 66123, Germany
| | - Jaeho Lee
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken 66123, Germany
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea; Basic Sciences Research Institute (Priority Research Institute), Ewha Womans University, 52, Ewhayeodae-Gil, Seodaemun-gu, Seoul 03760, Republic of Korea; Nanobio Energy Materials Center (National Research Facilities and Equipment Center), Ewha Womans University, 52, Ewhayeodae-Gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Bereyhi M, Zare-Dorabei R. High-Sensitivity Creatinine Detection via a Dual-Emission Ratiometric Fluorescence Probe Incorporating Amino-MIL-53@Mo/ZIF-8 and Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5890-5899. [PMID: 38452371 DOI: 10.1021/acs.langmuir.3c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Quantifying creatinine (Cn) in biological fluids is crucial for clinically assessing renal insufficiency, thyroid irregularities, and muscle damage. Therefore, it is crucial for human health to have a simple, quick, and accurate Cn analysis technique. In this study, we have successfully synthesized a 3D ratiometric dual-metal-organic framework, namely, the amino-MIL-53@Mo/ZIF-8 and rhodamie B heterostructure, using an internal strategy for sustained growth. The dual-MOF functions as an adsorbent and preconcentrates Cn. The pH, reaction time, and volume ratio of amino-MIL-53@Mo/ZIF-8/rhodamie B were optimized using the one-variable-at-a-time technique in this study. The quantitative study of the Cn concentration for this RF biosensor was obtained under ideal conditions (R2 = 0.9962, n = 3), encompassing the linear range of 0.35-11.1 μM. The detection and quantitation limits were 0.18 and 0.54 nM, respectively. Both intra- and interday reproducibility showed high repeatability of the RF biosensor, UV-vis, and ZETA potential studies, and the Stern-Volmer relationship was used to clarify the fluorescence quenching process. These superior sensing capabilities and the benefits of simple manufacturing, acceptable stability, and practicality make the RF biosensor intriguing for ultrasensitive Cn detection in practical applications.
Collapse
Affiliation(s)
- Mohammad Bereyhi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
8
|
Bhatt P, Kukkar D, Yadav AK, Kim KH. Carbon dot-copper nanocomposite-based fluorescent sensor for detection of creatinine in urine samples of CKD patients. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123666. [PMID: 37992650 DOI: 10.1016/j.saa.2023.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Creatinine (CR) is accepted as a clinical biomarker of chronic kidney disease (CKD) such as renal injury and kidney failure. To help facilitate the prognosis of CKD, a highly luminescent carbon dot (CD)-based fluorescent (FL) sensor has been built and employed for CR detection in diverse media (e.g., artificial and human urine). CDs, synthesized from sucrose precursor by a rapid microwave-assisted method (average diameter 20 nm), exhibited highly luminescent green emission upon UV exposure (λexcitation = 390 nm, λemission = 453 nm) with excellent temporal stability over three months. The nanocomposites are formed between CDs and metal ions (e.g., Cu2+) to realize the optimum biosensing of CR. Although Cu2+ ions showcases a maximum quenching (73 %) of the CDs, Cu2+/CDs system restores 77 % of the original FL intensity upon the addition of CR. The linear detection range and limit of detection for CR are estimated as 10-5 to 0.1 mg·dL-1 (R2 = 0.936) and 5.1 × 10-16 mg·dL-1, respectively. Furthermore, our biosensor shows excellent reproducibility and selectivity for CR in urine samples of healthy subjects and CKD patients. The Bland-Altman analysis for urine samples (n = 30) showcased an excellent agreement (R2 = 0.95) between our method and the gold standard 'Jaffe' method. These observations supported the practical utility of our method proposed for detection of CR in clinical samples.
Collapse
Affiliation(s)
- Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India.
| | - Ashok Kumar Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
9
|
Mahmoud AM, Abu-Alrub SS, Al-Qarni AO, El-Wekil MM, Shahin RY. A reliable and selective ratiometric sensing probe for fluorometric determination of P 2O 74- based on AIE of GSH@CuNCs-assisted by Al-N@CQDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123850. [PMID: 38219614 DOI: 10.1016/j.saa.2024.123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
In this study, a novel composite material was developed for the ratiometric detection of pyrophosphate anion (P2O74-). This composite consisted of Al and nitrogen co-doped carbon dots (Al-N@CQDs) and glutathione-capped copper nanoclusters (GSH@CuNCs). The Al-N@CQDs component, with its high reserved coordination capacity of Al3+, induced the non-luminescent behavior of GSH@CuNCs, resulting in an aggregation-induced emission (AIE) effect. The hybrid material (Al-N@CQDs/GSH@CuNCs) exhibited dual-emission signals at 620 nm and 450 nm after integrating the two independent materials utilizing the AIE effect and the fluorescence resonance energy transfer (FRET) approach. This approach represents the first utilization of this composite for ratiometric detection. Nevertheless, upon the addition of P2O74-, the AIE and FRET processes were hindered due to the higher coordination interaction of Al3+ towards P2O74- compared to the amino/carboxyl groups on Al-N@CQDs. This successful interference of the AIE and FRET processes allowed for the effective estimation of P2O74-. The response ratio (F450/F620) increased with increasing the concentration of P2O74- in the range of 0.035-160 µM, with an impressive detection limit of 0.012 µM. This innovative approach of utilizing hybrid CQDs/thiolate-capped nanoclusters as a ratiometric fluorescent sensor for analytical applications introduces new possibilities in the field. The as-fabricated system was successfully applied to detect P2O74- in different real samples such as water, serum, and urine samples with acceptable results.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Samer S Abu-Alrub
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Al-Qarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Reem Y Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt
| |
Collapse
|
10
|
Bais S, Singh PK. Al 3+-Responsive Ratiometric Fluorescent Sensor for Creatinine Detection: Thioflavin-T and Sulfated-β-Cyclodextrin Synergy. ACS APPLIED BIO MATERIALS 2023; 6:4146-4157. [PMID: 37702182 DOI: 10.1021/acsabm.3c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Kidney disorders are a rising global health issue, necessitating early diagnosis for effective treatment. Creatinine, a metabolic waste product from muscles, serves as an ideal biomarker for kidney damage. The existing optical methods for creatinine detection often involve labor-intensive synthesis processes and present challenges with the aqueous solubility and sensitivity to experimental variations. In this study, we introduce a straightforward fluorescence "turn-on" ratiometric sensor system for creatinine detection in aqueous media with a limit of detection of 0.5 μM. The sensor is based on sulfated-β-cyclodextrin (SCD)-templated H-aggregate of a commercially available, ultrafast rotor dye thioflavin-T (ThT). The Al3+ ion-induced dissociation of ThT-SCD aggregates, followed by reassociation upon creatinine addition, generates a detectable signal. The modulation of monomer/aggregate equilibrium due to the disassembly/reassembly of the ThT-SCD system under Al3+/creatinine influence serves as the optimal strategy for ratiometric creatinine detection in aqueous media. Our sensor framework offers several advantages: utilization of the readily available dye ThT, which eliminates the need for a laborious synthesis of custom fluorescent probes; ratiometric sensing, which improves quantitative analysis accuracy; and compatibility with complex aqueous media. The sensor's practical utility has been successfully demonstrated in artificial urine samples. In summary, our sensor system represents a significant advancement in the rapid, selective, and sensitive detection of the clinically crucial bioanalyte creatinine, offering potential benefits for the early diagnosis and management of kidney disorders.
Collapse
Affiliation(s)
- Sujata Bais
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
11
|
Bai HJ, Qi DY, Li HW, Wu Y. Assembly-Induced Emission Enhancement in Glutathione-Capped Bimetallic Gold and Copper Nanoclusters by Al 3+ Ions and Further Application in Myricetin Determination. Molecules 2023; 28:758. [PMID: 36677816 PMCID: PMC9864343 DOI: 10.3390/molecules28020758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
A significant emission enhancement (>100-fold) of glutathione-capped bimetallic gold and copper nanoclusters (AuCuNC@GSH) was achieved by assembling with Al3+ ions and by assembly-induced emission enhancement (AIEE). Further chelation of myricetin to Al3+ resulted in emission quenching of AuCuNC-Al3+, which was applied to specifically detect myricetin. Two linear responses were shown in the range of 0−1.5 μM and 1.5−50 μM, separately, leading to a low limit of detection at 8.7 nM. The method was successfully and accurately applied to myricetin determination in grape juice, which showed good application for real samples. Finally, the in-depth mechanism revealed that both the chelation of myricetin and Al3+ and the inner filter effect (IFE) between myricetin-Al3+ and AuCuNC-Al3+ greatly contributed to the quenching response of myricetin. Therefore, the present study provides an easy way to improve the fluorescence property of metal nanoclusters. Additionally, it supplies a cost-effective and easily performed approach to detect myricetin with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Hao-Jie Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China
| | - De-Yan Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China
| |
Collapse
|
12
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
13
|
Borse S, Murthy Z, Kailasa SK. Synthesis of red emissive copper nanoclusters with 2-mercaptopyrimidine for promoting selective and sensitive fluorescent sensing of creatinine as a kidney disease biomarker in biofluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Wang L, Yang W, Li L, Hu S, Yuan M, Yang Z, Han K, Wang H, Xu X. Simultaneous Observation of Visible Upconversion and Near-Infrared Downconversion in SrF 2:Nd 3+/Yb 3+/Er 3+ Nanocrystals and Their Application for Detecting Metal Ions under Dual-Wavelength Excitation. ACS OMEGA 2022; 7:27230-27238. [PMID: 35967025 PMCID: PMC9366768 DOI: 10.1021/acsomega.2c01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In this work, a sequence of Nd3+, Yb3+, and Er3+ tridoped SrF2 nanocrystals (NCs) is synthesized by a hydrothermal method. Both the efficient near-infrared downconversion luminescence (DCL) and visible upconversion luminescence (UCL) of the Er3+ and Nd3+ ions are simultaneously observed and systematically demonstrated under dual-wavelength excitation (808 and 980 nm continuous-wave lasers). Subsequently, the SrF2:Nd3+/Yb3+/Er3+ (15/4/0.2 mol %) NCs with the strongest luminescence were utilized for detecting the metal ion concentrations under 808 nm excitation. The results reveal that both the UCL and DCL gradually decrease as the metal ion concentrations increase, and high sensitivity is obtained for Cu2+ ions with a detection limit of 0.22 nM (∼650 nm) and 0.63 nM (∼976 nm). In addition, these SrF2:Nd3+/Yb3+/Er3+ NCs are further demonstrated to achieve a solid-state display under 980 nm excitation, exhibiting obvious "red" and "green" patterns by varying the doping rare earth ion concentrations.
Collapse
Affiliation(s)
- Linxuan Wang
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- State
Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Weiqiang Yang
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- Institute
of Optics and Electronics, Chinese Academy
of Sciences, Chengdu 610209, China
- Key
Laboratory of Optical Engineering, Chinese
Academy of Sciences, Chengdu 610209, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Li
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- State
Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Shuai Hu
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- State
Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Maohui Yuan
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- State
Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Zining Yang
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- State
Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
- Hunan
Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Kai Han
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- State
Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
- Hunan
Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Hongyan Wang
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- State
Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
- Hunan
Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Xiaojun Xu
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha 410073, China
- State
Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
- Hunan
Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
15
|
Anselmo S, De Luca G, Ferrara V, Pignataro B, Sancataldo G, Vetri V. Insight into mechanisms of creatinine optical sensing using fluorescein-gold complex. Methods Appl Fluoresc 2022; 10. [PMID: 35901805 DOI: 10.1088/2050-6120/ac8524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022]
Abstract
Creatinine level in biological fluids is a clinically relevant parameter to monitor vital functions and it is well assessed that measuring creatinine levels in the human body can be of great utility to evaluate renal, muscular, or thyroid dysfunctions. The accurate detection of creatinine levels may have a critical role in providing information on health status and represents a tool for the early diagnosis of severe pathologies. Among different methods for creatinine detection that have been introduced and that are evolving with increasing speed, fluorescence-based and colorimetric sensors represent one of the best alternatives, thanks to their affordability, sensitivity and easy readability. In this work, we demonstrate that the fluorescein-Au3+ complex provides a rapid, selective, and sensitive tool for the quantification of creatinine concentrations in ranges typical of sweat and urine. UV-visible absorption, diffuse reflectance spectroscopy, steady state and time resolved fluorescence spectroscopy were used to shed light on the molecular mechanisms involved in the changes of optical properties, which underlie the multiplexed sensor analytical reply. Interestingly, sensing can be performed in solution or on solid nylon support accessing different physiological concentrations from micromolar to millimolar range. As a proof-of-concept, the nylon-based platform was used to demonstrate its effectiveness in creatinine detection on a solid and flexible substrate, showing its analytical colorimetric properties as an easy and disposable creatinine point-of-care test.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Giuseppe De Luca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, viale delle Scienze ed. 16, Palermo, 90128, ITALY
| | - Vittorio Ferrara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica, University of Palermo, viale delle Scienze ed. 18, Palermo, Sicilia, 90128, ITALY
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| |
Collapse
|
16
|
Luo L, Xie Y, Hou SL, Ma Y, Zhao B. Recyclable Luminescent Sensor for Detecting Creatinine Based on a Lanthanide-Organic Framework. Inorg Chem 2022; 61:9990-9996. [PMID: 35715016 DOI: 10.1021/acs.inorgchem.2c00850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Creatinine is an important clinical marker for human health, but detecting it by a luminescent sensor based on metal-organic frameworks is rarely investigated. In this work, we synthesized a new lanthanide-organic framework {[Tb(L)(CH3COO)(H2O)]·0.5DMF}n (1) (H2L = 3,5-bis(4'-carboxy-phenyl)1,2,4-triazole) with good solvent and acid/alkaline stabilities. Experimental results indicate that 1 can be used in the detection of creatinine in an aqueous solution with a wide linear detection range from 3.27 to 371 μM, and the detection limit can reach 1.7 × 10-6 M based on the 3σ method, which is less than the pathogenic concentration in a real environment. In addition, this luminescent sensor can also monitor the concentration changes of creatinine in diluted serum solutions and can be recycled at least five times, suggesting that it has a potential application for clinical monitoring.
Collapse
Affiliation(s)
- Li Luo
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yao Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yue Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Mei H, Wang Q, Jiang J, Zhu X, Wang H, Qu S, Wang X. A novel ratiometric nanoprobe based on copper nanoclusters and graphitic carbon nitride nanosheets using Ce(III) as crosslinking agent and aggregation-induced effect initiator for sensitive detection of hydrogen peroxide and glucose. Talanta 2022; 248:123604. [PMID: 35653960 DOI: 10.1016/j.talanta.2022.123604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Herein, glutathione-capped copper nanoclusters (CuNCs) and graphitic carbon nitride nanosheets (g-C3N4 NSs) were synthesized by a facile one-pot chemical reduction and directly thermal pyrolysis following ultrasonic exfoliation approaches, respectively. The introduction of Ce(III) (Ce3+) played dual functions in constructing a fluorescence-enhanced ratiometric nanoprobe (g-C3N4 NSs-Ce3+-CuNCs), i.e., triggering aggregation-induced emission of CuNCs and conjugating g-C3N4 NSs with CuNCs by virtue of electrostatic and coordination interactions. The as-fabricated nanohybrid displayed 460 and 625 nm dual-emitting peaks, attributing to the emission of g-C3N4 NSs and CuNCs, respectively. Upon addition of H2O2, the 625 nm emission was dramatically quenched, whereas the 460 nm emission remained nearly unchanged, thereby causing obvious color changes from purple to blue under a 365-nm UV lamp. A ratiometric fluorescent assay, based on g-C3N4 NSs-Ce3+-CuNCs, was devised for sensitive and visual detection of H2O2, which spanned the linear range of 2-100 μM with a detection limit of 0.6 μM. In the presence of glucose oxidase, the ratiometric nanoprobe could be simultaneously employed to detect glucose across the linear range of 1.6-320 μM with a detection limit of 0.48 μM. In milk and human serum samples, the fortified recoveries for H2O2 and glucose by the nanoprobe were in the range of 95.5-103.6% with RSDs <3.8%. The real detection levels for glucose are consistent with those by a standard glucometer. As such, the ratiometric nanoprobe offers a promising methodology for several practical applications, such as point-of-care diagnosis and workplace health evaluations.
Collapse
Affiliation(s)
- He Mei
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou 325014, China.
| | - Qing Wang
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiahui Jiang
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaolei Zhu
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shugen Qu
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou 325014, China.
| | - Xuedong Wang
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
18
|
Sheikholeslami MN, Hamidipanah Y, Salehnia F, Arshian S, Hosseini M, Ganjali MR. Multiplex Detection of Antibiotic Residues in Milk: Application of MCR-ALS on Excitation-Emission Matrix Fluorescence (EEMF) Data Sets. Anal Chem 2022; 94:6206-6215. [PMID: 35427127 DOI: 10.1021/acs.analchem.1c05592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The presence of antibiotics and their metabolites in milk and dairy products is a serious concern because of their harmful effects on human health. In the current study, a novel synergistic bimetallic nanocluster with gold and silver as an emission fluorescence probe was investigated for the simultaneous determination of tetracycline (TC), ampicillin (AMP), and sulfacetamide (SAC) antibiotics in the milk samples using excitation-emission matrix fluorescence (EEMF) spectroscopy. The multivariate curve resolution-alternating least squares (MCR-ALS) method was implemented to analyze augmented EEMF data sets to quantify the multicomponent systems in the presence of interferences with considerable spectral overlap. A pseudo-univariate calibration curve of the resolved emission spectra intensity against the concentration of the mentioned antibiotics was linear in the range of 5-5000 ng mL-1 for AMP and 50-5000 ng mL-1 for TC and SAC. The calculated values of the limit of detection ranged between 1.4 and 14.6 ng mL-1 with a relative standard deviation (RSD) of less than 4.9%. The obtained results show that the EEMF/MCR-ALS methodology using an emission fluorescence probe is a powerful tool for the simultaneous quantification of TC, AMP, and SAC in complex matrices with highly overlapped spectra.
Collapse
Affiliation(s)
- Mahsa N Sheikholeslami
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| | - Yalda Hamidipanah
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| | - Foad Salehnia
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| | - Shayesteh Arshian
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| |
Collapse
|
19
|
Pourakbari R, Yousefi M, Khalilzadeh B, Irani-nezhad MH, Khataee A, Aghebati-Maleki L, Soleimanian A, Kamrani A, Chakari-Khiavi F, Abolhasan R, Motallebnezhad M, Jadidi-Niaragh F, Yousefi B, Kafil HS, Hojjat-Farsangi M, Rashidi MR. Early stage evaluation of colon cancer using tungsten disulfide quantum dots and bacteriophage nano-biocomposite as an efficient electrochemical platform. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00113-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Recently, biosensors have become popular analytical tools for small analytes due to their high sensitivity and wide analytical range. In the present work, development of a novel biosensing method based on tungsten disulfide quantum dots (WS2 QDs)-Au for rapidly and selectively detecting c-Met protein is introduced. As a proof of concept, M13 bacteriophage-based biosensors were used for the electrochemical detection of c-Met protein as a colon cancer biomarker.
Method
The M13 bacteriophage (virus), as the biorecognition element, was immobilized on glassy carbon electrodes which were modified by WS2 QDs-functionalized gold nanoparticles. The stepwise presence of the WS2 QDs, gold nanoparticles, and immobilized phage on glassy carbon electrodes were confirmed by scanning electron microscope (SEM) and square wave voltammetry (SWV) technique.
Results
The designed biosensor was applied to measure the amount of c-Met protein in standard solutions, and consequently the desirable detection limit of 1 pg was obtained. Finally, as a proof of concept, the developed platform was used for the evaluation of c-Met protein in serum samples of colon cancer-suffering patients and the results were compared with the results of the common Elisa kit.
Conclusions
As an interesting part of this study, some concentrations of the c-Met protein in colon cancer serum samples which could not be determined by Elisa, were easily analyzed by the developed bioassay system. The developed bioassay system has great potential to application in biomedical laboratories.
Graphical Abstract
Collapse
|
20
|
Qian S, Wang Z, Zuo Z, Wang X, Wang Q, Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214268] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Ratiometric fluorescence determination of chlortetracycline based on the aggregation of copper nanoclusters triggered by aluminum ion. Mikrochim Acta 2021; 189:28. [PMID: 34907464 DOI: 10.1007/s00604-021-05093-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The aggregation-induced emission (AIE) characteristic of copper nanoclusters (CuNC) was for the first time used to construct a ratiometric fluorescence probe (CuNC-Al3+) for detection of chlortetracycline (CTC). Aluminum ion (Al3+) can aggregate free CuNC and make it emit a bright and stable red fluorescence. A slight excess of Al3+ in CuNC-Al3+ solution can form a CTC-Al3+ complex to limit the conformational rotation of CTC molecule and enhance CTC fluorescence. So, the red fluorescence of CuNC-Al3+ probe and the enhanced CTC fluorescence are used as a reference signal and a response signal to detect CTC, respectively. The method developed shows a good linear relationship between the CTC concentration and the fluorescence intensity ratio (I495/I575) in the range 0.1-3.0 µM, and the detection limit is 25.3 nM (S/N = 3). In addition, the fluorescent color of CuNC-Al3+ probe changes from red to yellow-green as the concentration of CTC increases. Based on this observation, a fluorescent test paper has also been fabricated. Schematic illustration of Al3+ inducing CuNC to produce AIE performance and detecting CTC.
Collapse
|
22
|
Meng Z, Yin J, Li M, Liang Y, Wang X, Wu Y, Kou J, Wang Z, Yang Y. A Novel Schiff Base-Modified Dialdehyde Cellulose-Based Fluorescent Probe for Al 3+ and Its Application in Environmental Analysis. Macromol Rapid Commun 2021; 43:e2100608. [PMID: 34699661 DOI: 10.1002/marc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Cellulose is the most abundant natural polymer with good biodegradability and biocompatibility. In this paper, a novel fluorescent probe DAC-SD-NA for aluminum (Al3+ ) detection is successfully synthesized based on dialdehyde cellulose (DAC). DAC-SD-NA exhibited a remarkable "turn-on" fluorescence response to Al3+ in a wide pH range, and the fluorescence color of DAC-SD-NA solution turned from colorless to bright blue at the presence of Al3+ . The detection limit for Al3+ is computed to be 6.06×10-7 m. The reaction mechanism of DAC-SD-NA towards Al3+ is confirmed by Job's plot, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations. In view of DAC-SD-NA exhibited good sensitivity and selectivity, it is applied to detect Al3+ in real water. What's more, DAC-SD-NA-loaded fluorescent hydrogel can serve as a convenient tool for the detection of Al3+ .
Collapse
Affiliation(s)
- Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jie Yin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingxin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoyuan Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yangmei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiali Kou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
23
|
Anand SK, Mathew MR, Girish Kumar K. A dual channel optical sensor for biliverdin and bilirubin using glutathione capped copper nanoclusters. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Xue S, Xie Z, He J. 1-[(2-Hydroxy-phenylimino)-methyl]-naphthalen-2-ol: application in detection and adsorption of aluminum ions. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04514-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharm Sin B 2021; 11:1175-1199. [PMID: 34094827 PMCID: PMC8144895 DOI: 10.1016/j.apsb.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic nanoparticles are designed to enhance efficacy, real-time monitoring, targeting accuracy, biocompatibility, biodegradability, safety, and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials. Recently, bio-inspired metal nanoclusters (NCs) consisting of several to roughly dozens of atoms (<2 nm) have attracted increasing research interest, owing to their ultrafine size, tunable fluorescent capability, good biocompatibility, variable metallic composition, and extensive surface bio-functionalization. Hybrid core-shell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules, such as proteins (enzymes, antigens, and antibodies), DNA, and specific cells, create fluorescently visualized molecular nanoparticle. The resultant nanoparticles possess combinatorial properties and synergistic efficacy, such as simplicity, active bio-responsiveness, improved applicability, and low cost, for combination therapy, such as accurate targeting, bioimaging, and enhanced therapeutic and biocatalytic effects. In contrast to larger nanoparticles, bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems. Notably, advances in nanoscience, interfacial chemistry, and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes. The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications, with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds. In the different hybrid platform, we summarize the current challenges and emerging perspectives, which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.
Collapse
Affiliation(s)
- Peng Gao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Chang
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Hao Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
26
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
27
|
Romeo MV, López-Martínez E, Berganza-Granda J, Goñi-de-Cerio F, Cortajarena AL. Biomarker sensing platforms based on fluorescent metal nanoclusters. NANOSCALE ADVANCES 2021; 3:1331-1341. [PMID: 36132872 PMCID: PMC9419537 DOI: 10.1039/d0na00796j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/10/2021] [Indexed: 05/07/2023]
Abstract
Metal nanoclusters (NCs) and their unique properties are increasing in importance and their applications are covering a wide range of areas. Their remarkable fluorescence properties and easy synthesis procedure and the possibility of functionalizing them for the detection of specific targets, such as biomarkers, make them a very interesting biosensing tool. Nowadays the detection of biomarkers related to different diseases is critical. In this context, NCs scaffolded within an appropriate molecule can be used to detect and quantify biomarkers through specific interactions and fluorescence properties of the NCs. These methods include analytical detection and biolocalization using imaging techniques. This review covers a selection of recent strategies to detect biomarkers related to diverse diseases (from infectious, inflammatory, or tumour origin) using fluorescent nanoclusters.
Collapse
Affiliation(s)
- María V Romeo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Elena López-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Jesús Berganza-Granda
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
28
|
Zhang Q, Mei H, Zhou W, Wang X. Cerium ion(III)-triggered aggregation-induced emission of copper nanoclusters for trace-level p-nitrophenol detection in water. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
MU J, YANG JL, ZHANG DW, JIA Q. Progress in Preparation of Metal Nanoclusters and Their Application in Detection of Environmental Pollutants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60082-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
|
31
|
Khataee A, Jalili R, Dastborhan M, Karimi A, Ebadi Fard Azar A. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118715. [PMID: 32731145 DOI: 10.1016/j.saa.2020.118715] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
We reported a novel dual-emission fluorescence probe fabricated by encapsulating both gold (AuNCs) and copper nanoclusters (CuNCs) into zeolitic imidazolate framework-8 (ZIF-8). Obtained composite (AuCuNCs@MOF) was utilized for ratiometric determination of Tetracycline (Tcy) antibiotic. Under excitation at 400 nm, the AuCuNCs@MOF composite displayed two emission peaks at 520 and 650 nm which were originated from AuNCs and CuNCs, respectively. Upon the addition of Tcy, the red emission intensity of the nanoparticles at 615 nm was significantly decreased, while the green emission at 520 nm stayed almost constant which resulted in a clear fluorescence color change from red to green under a UV lamp. The logarithm of the fluorescence ratio against the concentration of Tcy exhibited a satisfactory linear relationship from 20 to 650 nM with a detection limit (LOD) of 4.8 nM. Current probe was applied for Tcy quantification in milk samples with superior results.
Collapse
Affiliation(s)
- Alireza Khataee
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535 Tehran, Iran; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Roghayeh Jalili
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mahsa Dastborhan
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Afzal Karimi
- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | | |
Collapse
|
32
|
Huang X, Lan M, Wang J, Guo L, Lin Z, Sun N, Wu C, Qiu B. A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of β-galactosidase based on the effects of AIE and host-guest recognition. Biosens Bioelectron 2020; 169:112655. [DOI: 10.1016/j.bios.2020.112655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
|
33
|
Design of novel anthracene-based fluorescence sensor for sensitive and selective determination of iron in real samples. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112819] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Qu S, Cao Q, Ma J, Jia Q. A turn-on fluorescence sensor for creatinine based on the quinoline-modified metal organic frameworks. Talanta 2020; 219:121280. [DOI: 10.1016/j.talanta.2020.121280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
|
35
|
Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food Chem Toxicol 2020; 146:111806. [PMID: 33039435 DOI: 10.1016/j.fct.2020.111806] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/22/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Chloramphenicol (CLP) is a veterinary antibiotic that has been banned due to its severe side effects but it is still illegally used in animal husbandry. In this work, the fabrication of simple, fast-response and highly selective ratiometric probe for sensitive visual detection of CLP antibiotic at trace levels in both indoor and outdoor is reported. For the construction of the ratiometric fluorescence probe (mMIP@YBCDs), two kinds of different carbon dots with yellow emission (Y/CDs, 560 nm) and blue emission carbon dots (B/CDs, 440 nm) were used as target sensitive and as reference dyes respectively. Besides, molecularly imprinted mesoporous silica was used as a recognized part of the probe. Upon the addition of different concentrations of CLP, the fluorescence of Y/CDs was quenched significantly while the fluorescence intensity of B/CDs stayed constant which was accompanied by gradual fluorescence color change from yellow-to-blue. The ratiometric probe has a linear response in the range of 0.1-3 μgL-1 with a detection limit 0.035 μgL-1. The practicality of the ratiometric method was validated by the quantification of CLP in milk samples.
Collapse
|
36
|
An optimal method for measuring biomarkers: colorimetric optical image processing for determination of creatinine concentration using silver nanoparticles. 3 Biotech 2020; 10:416. [PMID: 32944491 DOI: 10.1007/s13205-020-02405-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Creatinine concentration is one of the important elements in the body for diagnosing kidney failure, muscular dystrophy, glomerular filtration rate, and diabetic nephropathy. The disadvantages of recently introduced analytical techniques, such as Jaffe's, spectroscopic, colorimetric, and chromatographic methods, for quantifying creatinine in urine involve toxicity, the high cost, interference, and the complexity of the design. In this paper, we designed and fabricated a new colorimetric assay for the measurement of creatinine concentration based on color differentiation generated by mixing different concentrations of creatinine with synthesized silver nanoparticles (AgNPs) coated with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA). An isolated box is designed for the uniform optical imaging of solutions, the captured images are processed in real time, and the quantitative and qualitative results are displayed. For colorimetric processing, a variety of color systems, such as RGB (red, green, blue), CMYK (cyan, magenta, yellow, black), and grayscale (Gr), have been evaluated, indicating that the combination of green (G) and grayscale (Gr) provides the best results for this experiment. TEM analysis and spectroscopy were used to confirm the results of the experiment. Linear range and limit of detection (LOD) were obtained for AgNPs/PVP 0.03-1 mg/dl and 0.024 mg/dl and for AgNPs/PVA 0.01-1 mg/dl and 0.014 mg/dl, respectively, indicating the superiority of our proposed method over recently introduced methods. In this experiment, the detectable resolution with AgNPs/PVP is 40, while it is 71 with AgNPs/PVA. The designed system is simple to use, small in size, and cost-effective for measuring creatinine concentration, while it can be used as a portable system.
Collapse
|
37
|
Facile Synthesis of Ultrastable Fluorescent Copper Nanoclusters and Their Cellular Imaging Application. NANOMATERIALS 2020; 10:nano10091678. [PMID: 32859115 PMCID: PMC7558839 DOI: 10.3390/nano10091678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Copper nanoclusters (Cu NCs) are generally formed by several to dozens of atoms. Because of wide range of raw materials and cheap prices, Cu NCs have attracted scientists’ special attention. However, Cu NCs tend to undergo oxidation easily. Thus, there is a dire need to develop a synthetic protocol for preparing fluorescent Cu NCs with high QY and better stability. Herein, we report a one-step method for preparing stable blue-green fluorescent copper nanoclusters using glutathione (GSH) as both a reducing agent and a stabilizing agent. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrospray ionization mass spectrometer (ESI-MS) were used to characterize the resulting Cu NCs. The as-prepared Cu NCs@GSH possess an ultrasmall size (2.3 ± 0.4 nm), blue-green fluorescence with decent quantum yield (6.2%) and good stability. MTT results clearly suggest that the Cu NCs@GSH are biocompatible. After incubated with EB-labeled HEK293T cells, the Cu NCs mainly accumulated in nuclei of the cells, suggesting that the as-prepared Cu NCs could potentially be used as the fluorescent probe for applications in cellular imaging.
Collapse
|
38
|
Chenaghlou S, Khataee A, Jalili R, Rashidi MR, Khalilzadeh B, Woo Joo S. Gold nanostar-enhanced electrochemiluminescence immunosensor for highly sensitive detection of cancer stem cells using CD133 membrane biomarker. Bioelectrochemistry 2020; 137:107633. [PMID: 32891010 DOI: 10.1016/j.bioelechem.2020.107633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Gold nanostars (AuNSs) demonstrate an intense electromagnetic field around tip of branches. In this research, we employed AuNSs-enhanced electrochemiluminescence (ECL) emission from graphitic carbon nitride nanosheets (g-CN nanosheets) to detect CD133 peptide as a cancer stem cell membrane biomarker. In this biosensor, the g-CN nanosheets were decorated with AuNSs (AuNSs@g-CN nanosheets). AuNSs@g-CN nanosheets exhibited strong and stable cathodic ECL emission compared to that of pure g-CN nanosheets. The ECL intensity from the AuNSs@g-CN nanosheets was over 30% higher than that of spherical gold nanoparticles (spherical AuNPs) decorated g-CN nanosheets. The additional ECL enhancement of AuNSs was due to the localized surface plasmon resonance (LSPR) effect located around multiple branch tips of AuNSs. The RSD of ECL curves intensities, obtained from successive potential scans for 10 cycles, were less than 4%, indicating the superior stability of the AuNSs@g-CN nanosheets. Under optimum conditions, the ECL intensity of GCE/AuNSs@g-CN nanosheets/anti-CD133 decreased linearly with CD133 peptide concentration in the range of 0.05-100 ng mL-1. The LOD achieved was 0.257 ng mL-1 (S/N = 3). The applicability of the designed biosensor in real samples was examined through the determination of CD133 peptide in spiked serum samples, from which satisfactory results were obtained.
Collapse
Affiliation(s)
- Salimeh Chenaghlou
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Roghayeh Jalili
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, 51666-14711 Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, 51666-14711 Tabriz, Iran; Biosensors and Bioelectronics Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea.
| |
Collapse
|
39
|
Copper nanoclusters@Al3+ complexes with strong and stable aggregation-induced emission for application in enzymatic determination of urea. Mikrochim Acta 2020; 187:457. [DOI: 10.1007/s00604-020-04438-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
|
40
|
An Y, Ren Y, Bick M, Dudek A, Hong-Wang Waworuntu E, Tang J, Chen J, Chang B. Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens Bioelectron 2020; 154:112078. [DOI: 10.1016/j.bios.2020.112078] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
41
|
Bai H, Tu Z, Liu Y, Tai Q, Guo Z, Liu S. Dual-emission carbon dots-stabilized copper nanoclusters for ratiometric and visual detection of Cr 2O 72- ions and Cd 2+ ions. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121654. [PMID: 31740316 DOI: 10.1016/j.jhazmat.2019.121654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 11/09/2019] [Indexed: 05/24/2023]
Abstract
The pollution of heavy metal increases greatly accompanying by the development of industries. So, it is very important to build up a quick and reliable technique for detection of heavy metal ions. In this work, we developed a simple and convenient method for ratiometric and visual detection of Cr2O72- ions and Cd2+ ions. We utilized glutathione as raw material to prepare cyan-emitting carbon dots (GSH@CDs). The GSH@CDs were further used as the template to prepare carbon dots-stabilized copper nanoclusters (GSH@CDs-Cu NCs) that displayed two well-separated emission peaks respectively at 450 nm and 750 nm. The GSH@CDs-Cu NCs can be applied for the ratiometric and visual detection of Cr2O72- and Cd2+ ions based on the fluorescence quenching or enhancement of GSH@CDs-Cu NCs at 750 nm. A linear range of 2-40 μmol L-1 with a detection limit of 0.9 μmol L-1 for Cr2O72- ions, and a linear range of 0-20 μmol L-1 with a detection limit of 0.6 μmol L-1 for Cd2+ ions were achieved based on this method. The fluorescent test strips for Cr2O72- ions were successfully prepared based on GSH@CDs-Cu NCs. Moreover, the GSH@CDs-Cu NCs were successfully applied to determine Cr2O72- and Cd2+ ions in real samples with promising results.
Collapse
Affiliation(s)
- Hanyu Bai
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Zaiqian Tu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Yitong Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Qunxi Tai
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Zhongkai Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China.
| |
Collapse
|
42
|
Incorporating of gold nanoclusters into metal-organic frameworks for highly sensitive detection of 3-nitrotyrosine as an oxidative stress biomarker. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112370] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Ding W, Peng L, Yun D, Gao S, Duan R, Gu Y, Wang C, Li W, Zeng X, Sun F. Aluminum-Enhanced Fluorescence of Cu8 Nanoclusters: An Effective Method for Sensitive Detection of Fluoride in Aqueous and Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:1712-1721. [DOI: 10.1021/acsabm.0c00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Weihua Ding
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Lizhong Peng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Ruihong Duan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yayun Gu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Chengniu Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Wenqing Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Xuhui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
44
|
Zhang CX, Tanner JA, Li HW, Wu Y. A novel fluorescence probe of Plasmodium vivax lactate dehydrogenase based on adenosine monophosphate protected bimetallic nanoclusters. Talanta 2020; 213:120850. [PMID: 32200917 DOI: 10.1016/j.talanta.2020.120850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 11/27/2022]
Abstract
Specific detection of Plasmodium vivax lactate dehydrogenase (PvLDH), an important biomarker of malaria, remains a significant challenge. Herein, adenosine monophosphate protected gold-silver bimetallic nanoclusters, Au-AgNCs@AMP were used as a specific and sensitive fluorescence probe to detect PvLDH. After optimizing, a linear response was shown over a wide concentration range (10-100 nM) and an extremely low limit of detection (LOD) at 0.10 nM (3.7 ng mL-1) was achieved finally. Albeit the method was able to detect PvLDH sensitively, it could not discriminate different types of LDHs. Consequently, Al3+ was employed as an "assistant agent", which induced an assay capacity to discriminate PvLDH from other LDHs. The bimetallic nanoclusters inhibited the activity of PvLDH, suggesting it bound near the active site of PvLDH with high affinity. Zeta potential and UV-vis absorption experiments showed that electrostatic interaction was the main driving force for the interaction between the nanoclusters and PvLDH. Through chemical modification it indicated free thiol groups in PvLDH played an implant role in the interaction. Overall, the fluorescence enhancement and blue-shift were attributed to assembly-induced emission enhancement (AIEE) and hydrophobic transfer. The present study provides a simple, robust, and easy-to-perform approach to detect PvLDH with high sensitivity and selectivity, with significant potential for malaria diagnosis in the developing world.
Collapse
Affiliation(s)
- Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
45
|
Shamsipur M, Molaei K, Molaabasi F, Hosseinkhani S, Taherpour A, Sarparast M, Moosavifard SE, Barati A. Aptamer-Based Fluorescent Biosensing of Adenosine Triphosphate and Cytochrome c via Aggregation-Induced Emission Enhancement on Novel Label-Free DNA-Capped Silver Nanoclusters/Graphene Oxide Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46077-46089. [PMID: 31718135 DOI: 10.1021/acsami.9b14487] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four fluorescent DNA-stabilized fluorescent silver nanoclusters (DNA-AgNCs) were designed and synthesized with differences in lengths of cytosine-rich DNA strand (as the stabilizing agent) and target-specific strand DNA aptamers for adenosine triphosphate (ATP) and cytochrome c (Cyt c). After their nanohybrid formation with graphene oxide (GO), it was unexpectedly found that, depending on the composition of the base and length of the strand DNA aptamer, the fluorescence intensity of three of the nanohybrids significantly enhanced. Our experimental observations and quantum mechanical calculations provided an insight into the mechanisms underlying the behavior of DNA-AgNCs/GO nanohybrids. The enhanced fluorescence was found to be attributed to the aggregation-induced emission enhancement (AIE) characteristic of the DNA-AgNCs adsorbed on the GO surface, as confirmed evidently by both fluorescence and transmission electron microscopies. The AIE is a result of hardness and oxidation properties of GO, which lead to enhanced argenophilic interaction and thus to increased Ag(I)-DNA complex shell aggregation. Consequently, two of the DNA-AgNCs/GO nanohybrids were successfully extended to construct highly selective, sensitive, label-free, and simple aptasensors for biosensing of ATP (LOD = 0.42 nM) and Cyt c (LOD = 2.3 nM) in lysed Escherichia coli DH5 α cells and mouse embryonic stem cells, respectively. These fundamental findings are expected to significantly influence the designing and engineering of new AgNCs/GO-based AIE biosensors.
Collapse
Affiliation(s)
- Mojtaba Shamsipur
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Karam Molaei
- Department of Chemistry , Tarbiat Modares University , Tehran 14115-111 , Iran
| | - Fatemeh Molaabasi
- Department of Biomaterials and Tissue Engineering, Breast Cancer Research Center , Motamed Cancer Institute, ACECR , Tehran 15179-64311 , Iran
| | - Saman Hosseinkhani
- Department of Biochemistry , Tarbiat Modares University , Al Ahmad Street , Tehran 14115-175 , Iran
| | - Avat Taherpour
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Morteza Sarparast
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Seyyed Ebrahim Moosavifard
- Department of Advanced Medical Sciences & Technologies, School of Medicine , Jahrom University of Medical Sciences (JUMS) , Jahrom 74148-46199 , Iran
| | - Ali Barati
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| |
Collapse
|
46
|
Assay of 1-hydroxypyrene via aggregation-induced quenching of the fluorescence of protamine-modified gold nanoclusters and 9-hydroxyphenanthrene-based sensitization. Mikrochim Acta 2019; 186:700. [PMID: 31617023 DOI: 10.1007/s00604-019-3810-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
This work describes a method for the determination of 1-hydroxypyrene (OH-Py) via aggregation-induced quenching of the emission of protamine-coated gold nanoclusters using 9-hydroxyphenanthrene (OH-Phe) as a sensitizer to boost the emission efficiency of nanoprobe. Under optimum conditions, the drop in fluorescence intensity at excitation/emission wavelengths of 300/596 nm is proportional to the concentrations of OH-Py in the range from 1.0 to 65 nM. The relative standard deviations are 4.2, 2.4 and 1.9% (for n = 11) at concentration levels of 8.0, 32 and 48 nM of OH-Py, respectively. The detection limit is 0.3 nM which is much lower than that of some previously reported methods. The recoveries from urine samples spiked with OH-Py ranged between 94.4 and 98.8%. Graphical abstract 1-Hydroxypyrene (OH-Py) can trigger the aggregation of protamine-gold nanoclusters (PRT-AuNCs), resulting in the emission quenching of PRT-AuNCs. 9-Hydroxyphenanthrene (OH-Phe) can boost the emission efficiency of nanoprobe. Thereby, a highly sensitive assay of OH-Py was established.
Collapse
|
47
|
Khan IM, Niazi S, Iqbal Khan MK, Pasha I, Mohsin A, Haider J, Iqbal MW, Rehman A, Yue L, Wang Z. Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115637] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Qu S, Li Z, Jia Q. Detection of Purine Metabolite Uric Acid with Picolinic-Acid-Functionalized Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34196-34202. [PMID: 31456392 DOI: 10.1021/acsami.9b07442] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Uric acid (UA) is a purine metabolite closely related to the metabolic function of human. Fluorescence analysis is a very effective method because of its high selectivity and sensitivity, but it still remains a great challenge for direct UA detection. In this work, a fluorescent sensor based on postfunctionalized metal-organic frameworks (UiO-PSM) was designed focusing on the direct detection of UA. UiO-PSM was synthesized from a zirconium-based metal-organic framework (UiO-66-NH2) and 2-picolinic acid through an amidation reaction. Because UA could quench the fluorescence of UiO-PSM through coordination, hydrogen bonding, and π-π interactions, the sensor could detect UA directly. UiO-PSM exhibited the advantages of short reaction time, high selectivity, high sensitivity, and wide linear range for UA detection. This work provided a novel method for UA detection and had potential application values in clinical diagnosis.
Collapse
|
49
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|
50
|
Aggregation-induced emission of copper nanoclusters triggered by synergistic effect of dual metal ions and the application in the detection of H 2O 2 and related biomolecules. Talanta 2019; 207:120289. [PMID: 31594584 DOI: 10.1016/j.talanta.2019.120289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023]
Abstract
Recently, the aggregation-induced emission (AIE) of nanoclusters triggered by metal ions has been received great attentions. However, the good AIE efficiency usually requires excessive metal ions, which may result in an undesired competition between metal ions and targets. In this work, by the synergistic effect of Pb2+ and Zr4+, a fewer amounts of metal ions can induce more aggregates of glutathione-capped Cu nanoclusters (CSH-CuNCs), resulting in a higher AIE efficiency. Next, by virtue of the oxidative property of H2O2, the AIE of GSH-CuNCs-Pb2+-Zr4+ system quenches linearly with the concentration of H2O2 from 1 to 60 μmol/L. Moreover, many biological substrates, such as glucose and cholesterol, can generate H2O2 in the presence of their specific oxidases and O2. Therefore, the detection of glucose or cholesterol can also be achieved by the proposed method, and the limits of detection of glucose and cholesterol are 0.37 and 2.7 μmol/L, respectively. Finally, this method has been validated to be sensitive and selective for glucose or cholesterol detection in human serum samples.
Collapse
|