1
|
Saweres-Argüelles C, Sánchez-Calvo A, Serrano-Pertierra E, Matos M, Blanco-López MC. Nanolabels for biosensors based on lateral flow immunoassays. Anal Chim Acta 2025; 1340:343597. [PMID: 39863307 DOI: 10.1016/j.aca.2024.343597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
The COVID-19 outbreak was an important turning point in the development of a new generation of biosensing technologies. The synergistic combination of an immunochromatographic test (lateral flow immunoassays, LFIA) and signal transducers provides enhanced sensitivity and the ability to quantify in the rapid tests. This is possible due to the variety of nanoparticles that can be used as reporter labels. In this review, we first present an overview on the principles of a LFIA and its different formats. We analyze cutting-edge work on these platforms based on different types of nanoparticles used as labels and on the highly sensitive transducers to which they can be coupled. The works discussed herein have a beneficial impact on the fields of clinical analysis, food safety or environmental control, thus highlighting the relevance of the biosensors. Last, we provide insights into the barriers that need to be overcome when designing laboratory prototypes accessible to the society.
Collapse
Affiliation(s)
- C Saweres-Argüelles
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - A Sánchez-Calvo
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - E Serrano-Pertierra
- Department of Biochemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - M Matos
- Department of Chemical and Environmental Engineering & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - M C Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
2
|
Yang S, Hu W, Wang S, Li X, Lei L, Wei X, Lin H. Development of immunochromatographic and homogeneous assay based on quantum dot-functionalized polystyrene nanoprobes for the qualitative and quantitative screening of respiratory viruses. Biosens Bioelectron 2025; 267:116716. [PMID: 39316867 DOI: 10.1016/j.bios.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Accurately differentiating respiratory diseases caused by viruses is challenging because of the similarity in their early or clinical symptoms. Moreover, different infection sources require different treatments. However, the current diagnostic methods have limited differentiating efficiency and sensitivity. We developed a dual-system immunosensor with a bilayer fluorescent label as a signal amplifier for the on-site, sensitive, and accurate identification of multiple respiratory viruses (RVs). The nanomaterial, comprising a polystyrene (PS) nanosphere core encapsulated by two layers of CdSe@ZnS-COOH quantum dots (QDs), outperforms the conventional color and fluorescent labels in RV detection. The dual-system detection platform, comprising a PS@DQD-based lateral flow immunoassay (LFIA) and a PS@DQD-based homogeneous sensor, enables qualitative and quantitative screening of multiple respiratory viruses within 10 and 30 min, respectively, depending on the specific detection requirements for different application scenarios. This remarkable method provides 51.2 to 1000 times sensitivity improvement over commercial antigen detection kits and greater than 12.5 to 100 times improvement over QD-based immunosensors. Furthermore, we comprehensively evaluated the specificity, reproducibility, and stability of the integrated dual-system detection platform, demonstrating its reliability. Remarkably, the respiratory viral testing was validated using biological samples, thus illustrating its promise and convenience in the detection of respiratory viruses.
Collapse
Affiliation(s)
- Shixiang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Shengyang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Xiaxia Wei
- School of Medicine, Nankai University, Tianjin, 300350, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Li G, Wang X, Guo J, Wang Y, Liu X, Wei Q, Zhang Y, Sun Y, Fan L, Xing Y, Li Q, Zhang G. Differential detection of SARS-CoV-2 variants and influenza A viruses utilizing a dual lateral flow strip based on colloidal gold-labeled monoclonal antibodies. Int J Biol Macromol 2024; 280:136067. [PMID: 39341304 DOI: 10.1016/j.ijbiomac.2024.136067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the seasonal influenza virus are spreading among humans concurrently, especially with the ongoing replacement of mutant strains. It is challenging to differentiate between symptoms for therapy due to the comparable symptoms following infection with the SARS-CoV-2 variants and influenza viruses. Meanwhile, in order to achieve rapid point-of-care testing (POCT) to manage the spread of the disease, we developed a dual lateral flow strip based on colloidal gold-labeled monoclonal antibodies that can perform differential detection of SARS-CoV-2 variants and influenza A viruses (IAV) in this study. High-affinity monoclonal antibodies (mAbs) targeting SARS-CoV-2 and IAV were prepared to capture antigens and labeled with colloidal gold nanoparticles (AuNPs). Based on high-affinity mAbs, two targets were immobilized on one nitrocellulose (NC) membrane to establish the lateral flow strip (LFS) for differential diagnosis of SARS-CoV-2 and IAV. With no reactivity to other viruses, this LFS is extremely specific and can only identify SARS-CoV-2 and IAV. The LFS showed a limit of detection (LOD) of 4.88 ng/mL for the Omicron BA.2 RBD protein and 2.44 ng/mL for the nucleoprotein (NP) protein of H1N1. When analyzing 16 SARS-CoV-2 positive clinical samples, eight IAV positive clinical samples, and six negative samples that had already been pre-confirmed by commercial kits, its clinical application is effectively and accurately proven. These results demonstrated that the LFS integrated with AuNPs has great potential to facilitate quick, easy, and reliable POCT diagnosis for promoting the control of infectious diseases.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xun Wang
- College of Food and Drug, Luoyang Polytechnic, Luoyang 471023, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xiao Liu
- Henan Medical College, Zhengzhou 451191, China
| | - Qiang Wei
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yaning Sun
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lu Fan
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunrui Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingmei Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Tunakhun P, Ngernpimai S, Tippayawat P, Choowongkomon K, Anutrakulchai S, Charoensri N, Tavichakorntrakool R, Daduang S, Srichaiyapol O, Maraming P, Boonsiri P, Daduang J. A Highly Sensitive Lateral-Flow Strip Using Latex Microspheres to Detect NGAL in Urine Samples. ACS OMEGA 2024; 9:36475-36484. [PMID: 39220499 PMCID: PMC11359618 DOI: 10.1021/acsomega.4c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The incidence of kidney disease is increasing worldwide. Rapid and cost-effective approaches for early detection help prevent this disease. Neutrophil gelatinase-associated lipocalin protein (NGAL) is a novel biomarker for acute kidney injury (AKI) and chronic kidney disease (CKD). We aimed to develop a lateral flow strip (LFS) based on a lateral flow immunoassay method (LFIA), using latex microspheres (LMs) as a color labeling to detect NGAL in urine. The performance and potential of the developed LMs-LFS at a point-of-care (POC) testing were evaluated. The results showed that LMs-LFS successfully detected urinary NGAL within 15 min with high specificity without cross-reactivity to or interference from other endogenous substances in urine. The visual limit of detection (vLOD) was 18.75 ng/mL, and the limit of detection (LOD) was 1.65 ng/mL under the optimum condition. The LMs-LFS developed in this study showed a high correlation with the enzyme-linked immunosorbent assay (ELISA) method (R 2 = 0.973, n = 60 urine specimens) for detecting NGAL in urine. The LMs-LFS remained stable for at least six months at room temperature. The LMs-LFS can be a rapid, sensitive, and specific tool for the diagnosis and follow-up of renal disorders at the POC.
Collapse
Affiliation(s)
- Paweena Tunakhun
- Biomedical
Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawinee Ngernpimai
- Center
for Innovation and Standard for Medical Technology and Physical Therapy
(CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Sirirat Anutrakulchai
- Department
of Medicine, Faculty of Medicine, Khon Kaen
University, Khon Kaen 40002, Thailand
| | - Nicha Charoensri
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ratree Tavichakorntrakool
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Division
of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranee Srichaiyapol
- Center
for Innovation and Standard for Medical Technology and Physical Therapy
(CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornsuda Maraming
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharee Boonsiri
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Jureerut Daduang
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Peng B, Wang Y, Xie Y, Dong X, Liu W, Li D, Chen H. An overview of influenza A virus detection methods: from state-of-the-art of laboratories to point-of-care strategies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4496-4515. [PMID: 38946516 DOI: 10.1039/d4ay00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Influenza A virus (IAV), a common respiratory infectious pathogen, poses a significant risk to personal health and public health safety due to rapid mutation and wide host range. To better prevent and treat IAV, comprehensive measures are needed for early and rapid screening and detection of IAV. Although traditional laboratory-based techniques are accurate, they are often time-consuming and not always feasible in emergency or resource-limited areas. In contrast, emerging point-of-care strategies provide faster results but may compromise sensitivity and specificity. Here, this review critically evaluates various detection methods for IAV from established laboratory-based procedures to innovative rapid diagnosis. By analyzing the recent research progress, we aim to address significant gaps in understanding the effectiveness, practicality, and applicability of these methods in different scenarios, which could provide information for healthcare strategies, guide public health response measures, and ultimately strengthen patient care in the face of the ongoing threat of IAV. Through a detailed comparison of diagnostic models, this review can provide a reliable reference for rapid, accurate and efficient detection of IAV, and to contribute to the diagnosis, treatment, prevention, and control of IAV.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yaqi Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510000, China
| | - Xiangyan Dong
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510000, China
| | - Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Yin J, Liu H, Chen Y, Zhou J, Liu Y, Liang Z, Zhu X, Liu H, Ding P, Liu E, Zhang Y, Wu S, Wang A. Development and application of a high-sensitivity immunochromatographic test strip for detecting pseudorabies virus. Front Microbiol 2024; 15:1399123. [PMID: 38765685 PMCID: PMC11099248 DOI: 10.3389/fmicb.2024.1399123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Pseudorabies (PR) is a multi-animal comorbid disease caused by pseudorabies virus (PRV), which are naturally found in pigs. At the end of 2011, the emergence of PRV variant strains in many provinces in China had caused huge economic losses to pig farms. Rapid detection diagnosis of pigs infected with the PRV variant helps prevent outbreaks of PR. The immunochromatography test strip with colloidal gold nanoparticles is often used in clinical testing due to its low cost and high throughput. Methods This study was designed to produce monoclonal antibodies targeting PRV through immunization of mice using the eukaryotic system to express the gE glycoprotein. Subsequently, paired monoclonal antibodies were screened based on their sensitivity and specificity for use in the preparation of test strips. Results and discussion The strip prepared in this study was highly specific, only PRV was detected, and there was no cross-reactivity with glycoprotein gB, glycoprotein gC, glycoprotein gD, and glycoprotein gE of herpes simplex virus and varicellazoster virus, porcine epidemic diarrhea virus, Senecavirus A, classical swine fever virus, porcine reproductive and respiratory syndrome virus, and porcine parvovirus. Moreover, it demonstrated high sensitivity with a detection limit of 1.336 × 103 copies/μL (the number of viral genome copies per microliter); the coincidence rate with the RT-PCR detection method was 96.4%. The strip developed by our laboratory provides an effective method for monitoring PRV infection and controlling of PR vaccine quality.
Collapse
Affiliation(s)
- Jiajia Yin
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Huimin Liu
- Longhu Laboratory, Zhengzhou, China
- College of Basic Science, Zhengzhou University of Technology, Zhengzhou, Henan, China
| | - Yumei Chen
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Jingming Zhou
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Yankai Liu
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Zhenglun Liang
- Longhu Laboratory, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Xifang Zhu
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Hongliang Liu
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Peiyang Ding
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Enping Liu
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Ying Zhang
- Longhu Laboratory, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Sixuan Wu
- Longhu Laboratory, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Aiping Wang
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| |
Collapse
|
7
|
Liu Y, Wang Z, Wang Z, Zhou J, Han J, Lu C, Liu B, Yu R, Sun X, Zhang Z, Wang R, Su X. Rapid and simultaneous multiepitope antigen-based detection of Enterococcus by microscale thermophoresis and immunomagnetic separation. Front Microbiol 2024; 15:1341451. [PMID: 38322321 PMCID: PMC10844561 DOI: 10.3389/fmicb.2024.1341451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Background Generally, enterococci bacteria cause nosocomial infections and are major indicators of bacterial contamination in marine bathing beach. However, a method for the rapid and simultaneous detection of multiple pathogenic enterococci has not been developed on account of the wide variety of pathogenic enterococci and their existence in complex matrices. Methods Immunoinformatics tools were used to design a multi-epitope antigen for the detection of various pathogenic enterococci by using the sequence of dltD gene on enterococci lipoteichoic acid (LTA) surface, which is associated with toxicological effects. The multi-epitopes included enterococci such as Enterococcus faecalis, E. gallinarum, E. raffinosus, E. durans, E. faecium, E. hirae, E. thailandicus, E. casseliflavus, E. avium, E. mundtii, E. lactis, E. solitarius, E. pseudoavium, and E. malodoratum. Microscale thermophoresis (MST) and western blot were carried out to detect the affinity between multi-epitope antigens and antibodies and between multi-epitope antibodies and bacteria. Furthermore, the detection of pathogenic enterococci was carried out by using immunomagnetic beads (IMBs) and immune chromatographic test strip (ICTS). Results The multi-epitope antibody had a satisfactory affinity to the antigen and enterococci. IMBs and ICTS were detected with a minimum of 101 CFU/mL and showed incompatibility for Vibrio parahemolyticus, V. vulnifcus, V. harveyi, V. anguillarum, and Edwardsiella tarda. Implication The present study demonstrated that the multi-epitope antigens exhibited excellent specificity and sensitivity, making them highly suitable for efficient on-site screening of enterococci bacteria in marine bathing beaches.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Bing Liu
- Vigor Health Products Co., Ltd., Shenzhen, China
| | - Rongxian Yu
- Vigor Health Products Co., Ltd., Shenzhen, China
| | - Xiaoling Sun
- Vigor Health Products Co., Ltd., Shenzhen, China
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rixin Wang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
9
|
Li G, Li Q, Wang X, Liu X, Zhang Y, Li R, Guo J, Zhang G. Lateral flow immunoassays for antigens, antibodies and haptens detection. Int J Biol Macromol 2023; 242:125186. [PMID: 37268073 PMCID: PMC10232721 DOI: 10.1016/j.ijbiomac.2023.125186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Lateral flow immunoassay (LFIA) is widely used as a rapid point-of-care testing (POCT) technique in food safety, veterinary and clinical detection on account of the accessible, fast and low-cost characteristics. After the outbreak of the coronavirus disease 2019 (COVID-19), different types of LFIAs have attracted considerable interest because of their ability of providing immediate diagnosis directly to users, thereby effectively controlling the outbreak. Based on the introduction of the principles and key components of LFIAs, this review focuses on the major detection formats of LFIAs for antigens, antibodies and haptens. With the rapid innovation of detection technologies, new trends of novel labels, multiplex and digital assays are increasingly integrated with LFIAs. Therefore, this review will also introduce the development of new trends of LFIAs as well as its future perspectives.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Liu
- Henan Medical College, Zhengzhou 451191, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
10
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Alhabbab RY. Economical and Easily Obtainable Tools to Manually Develop Lateral Flow Immunoassay Strips. ACS OMEGA 2023; 8:9170-9178. [PMID: 36936315 PMCID: PMC10018695 DOI: 10.1021/acsomega.2c07014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The development of inexpensive and highly functional lateral flow devices, which utilize simple and affordable tools, can make them accessible to many populations with insufficient resources. Therefore, this study aims to provide a method to overcome the cost challenges associated with using expensive manufacturing technologies and machinery, particularly during pandemics and upon urgent need. Here, in-house lateral flow strips to detect serum antibodies were developed using low-priced and easily available tools such as adhesive tape and CytoSep layers. The developed lateral flow immunoassay strips presented here produced signals with 93.3 and 96.6% sensitivity for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies, respectively. The specificity obtained from the developed strips was 96.6% for SARS-CoV-2 nucleocapsid protein-specific IgM and 100% for the IgG antibodies by applying only 5 μL from the serum samples. The proposed design was entirely made manually to ensure a method that would make lateral flow devices available to many populations in need around the globe.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Vaccines
and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Ren L, Feng W, Hong F, Wang Z, Huang H, Chen Y. One-step homogeneous micro-orifice resistance immunoassay for detection of chlorpyrifos in orange samples. Food Chem 2022; 386:132712. [PMID: 35339078 DOI: 10.1016/j.foodchem.2022.132712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 11/19/2022]
Abstract
In this work, a one-step homogeneous micro-orifice resistance immunoassay has been proposed for chlorpyrifos detection by integrating functionalized polystyrene (PS) microsphere probes with particle counting technology. The particle counter is highly sensitive and accurate for detecting the state of PS microspheres, where the particles of different states exhibit significant differences in resistance. The state of the functionalized PS microspheres is altered from dispersed to aggregated during the antigen-antibody recognition. Based on the degree of aggregation of the functionalized PS microsphere probes, chlorpyrifos can be quantitatively detected through the competitive immune response between PS antibodies and PS complete antigens. This one-step homogeneous micro-orifice resistance immunoassay simplified the procedures and greatly increased the sensitivity of detection, which has been successfully applied to detect chlorpyrifos in orange samples within 0.5 h, with the detection limit of 0.058 ng/mL.
Collapse
Affiliation(s)
- Liangqiong Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wanxian Feng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen, China.
| | - Hanying Huang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen, China.
| |
Collapse
|
13
|
Singh R, Singh M. Design of imprinting matrix for dual template sensing via electropolymerized polythiophene films. J Mol Recognit 2022; 35:e2962. [PMID: 35561008 DOI: 10.1002/jmr.2962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/31/2022]
Abstract
This work presents the design of 3-thiophene acetic acid (3-TAA) polymer matrix based molecularly imprinted polymer (MIP)/reduced graphene oxide (RGO) composite for sensitive and selective detection of antipyrine (AnP) and ethionamide (ETH) simultaneously. Dual drug embedded molecularly imprinted polymer (MIP) based electrochemical sensor was developed via electropolymerization of 3-TAA. AnP and ETH were embedded inside a polymer matrix based on their 3-D orientation and interaction(s) with functional monomer(s). Their extraction from polymeric matrix generates cavities complimentary to shape and size of AnP and ETH. The extraction of templates was confirmed by differential pulse voltammetry (DPV) as well as high-performance liquid chromatography (HPLC). The designed sensor selectively captures and produces the electrochemical signal for imprinted drugs. The electrochemical behaviour of AnP and ETH was investigated by DPV technique. The sensitivity for both drug molecules was commendable on a single polymeric composite with RGO on GC electrode (LOD of 0.117 μM for AnP and 0.15 μM for ETH). Also, the sensor exhibited excellent selectivity towards AnP and ETH in the presence of other analogous interferent molecules. Thus, the designed sensor showed high sensitivity as well as high selectivity for imprinted dual drug molecules on a single platform.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Meenakshi Singh
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Zhuang H, Xu C, Gao F, Li Y, Lei C, Yu C. Recent Advances in Silica-Nanomaterial-Assisted Lateral Flow Assay. Bioengineering (Basel) 2022; 9:bioengineering9070266. [PMID: 35877318 PMCID: PMC9311751 DOI: 10.3390/bioengineering9070266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 12/20/2022] Open
Abstract
Lateral flow assays (LFAs) have attracted much attention as rapid and affordable point-of-care devices for medical diagnostics. The global SARS-CoV-2 pandemic has further highlighted the importance of LFAs. Many efforts have been made to enhance the sensitivity of LFAs. In recent years, silica nanomaterials have been used to either amplify the signal of label materials or provide stability, resulting in better detection performance. In this review, the recent progress of silica-nanomaterial-assisted LFAs is summarized. The impact of the structure of silica nanomaterials on LFA performance, the challenges and prospects in this research area are also discussed.
Collapse
Affiliation(s)
- Han Zhuang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Fang Gao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
| | - Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
- Correspondence: (C.L.); (C.Y.)
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
- Correspondence: (C.L.); (C.Y.)
| |
Collapse
|
15
|
Jian L, Fu H, Zhao L, Zeng Y, Liu L, Feng L, Zhang T, Liang Q, Xiao X. A Novel Enzyme‐Free Biosensor for Hydrogen Peroxide Based on Black Phosphorus @Au‐Ag Nanohybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202200894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lishan Jian
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| | - Hanping Fu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| | - Ling Zhao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| | - Yating Zeng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| | - Liran Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| | - Li Feng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| | - Tianxiang Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| | - Qingshuang Liang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
| |
Collapse
|
16
|
Xu N, Zhu Q, Zhu J, Jia J, Wei X, Wang Y. Novel Latex Microsphere Immunochromatographic Assay for Rapid Detection of Cadmium Ion in Asparagus. Foods 2021; 11:foods11010078. [PMID: 35010203 PMCID: PMC8750861 DOI: 10.3390/foods11010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, concerns about heavy metal cadmium ion (Cd2+) residue in asparagus have been frequently reported, and there is an urgent need to develop an effective, sensitive, and rapid detection method for Cd2+. In this study, we innovatively combined molecular microbiology to carry out the comparative screening of Cd2+ chelators in a green, efficient, and specific way. The knock-out putative copper-transporter gene (pca1Δ) yeast strain with high sensitivity to Cd2+ was first used to screen the Cd2+ chelator, and the optimum chelator 1-(4-Isothiocyanatobenzyl)ethylenediamine-N,N,N,N′-tetraacetic acid (ITCBE) was obtained. Additionally, a rapid latex microsphere immunochromatographic assay (LMIA) was developed, based on the obtained monoclonal antibody (mAb) with high specificity and high affinity (affinity constant Ka = 1.83 × 1010 L/mol), to detect Cd2+ in asparagus. The 50% inhibitive concentration (IC50) of test strip was measured to be 0.2 ng/mL, and the limit of detection (IC10) for qualitative (LOD, for visual observation) and quantitative detection (LOQ, for data simulation) of the test strip was 2 ng/mL and 0.054 ng/mL, respectively. In all, the developed mAb-based LMIA shows a great potential for monitoring Cd2+ in asparagus, even in vegetable samples.
Collapse
Affiliation(s)
- Naifeng Xu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (N.X.); (Q.Z.); (J.Z.); (J.J.)
| | - Qiaojuan Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (N.X.); (Q.Z.); (J.Z.); (J.J.)
| | - Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (N.X.); (Q.Z.); (J.Z.); (J.J.)
| | - Jingze Jia
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (N.X.); (Q.Z.); (J.Z.); (J.J.)
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Correspondence: (X.W.); (Y.W.); Tel.: +86-021-3420-8533 (X.W.); +86-186-1618-4495 (Y.W.)
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (N.X.); (Q.Z.); (J.Z.); (J.J.)
- Correspondence: (X.W.); (Y.W.); Tel.: +86-021-3420-8533 (X.W.); +86-186-1618-4495 (Y.W.)
| |
Collapse
|
17
|
Shen L, Zhang Q, Luo X, Xiao H, Gu M, Cao L, Zhao F, Chen Z. A rapid lateral flow immunoassay strip for detection of SARS-CoV-2 antigen using latex microspheres. J Clin Lab Anal 2021; 35:e24091. [PMID: 34741352 PMCID: PMC8646881 DOI: 10.1002/jcla.24091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a highly infectious and concealed virus that causes pneumonia, severe acute respiratory syndrome, and even death. Although the epidemic has been controlled since the development of vaccines and quarantine measures, many people are still infected, particularly in third‐world countries. Several methods have been developed for detection of SARS‐CoV‐2, but owing to its price and efficiency, the immune strip could be a better method for the third‐world countries. Methods In this study, two antibodies were linked to latex microspheres, using 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and N‐hydroxysuccinimide, as the bridge to decrease the cost further and improve the detection performance. The specificity of the lateral flow immunoassay strip (LFIA) was tested by several common viruses and respiratory bacterial infections. Besides, the reproducibility and stability of the LFIAs were tested on the same batch of test strips. Under optimal conditions, the sensitivity of LFIA was determined by testing different dilutions of the positive specimens. Results The proposed LFIAs were highly specific, and the limit of detection was as low as 25 ng/mL for SARS‐CoV‐2 antigens. The clinical applicability was evaluated with 659 samples (230 positive and 429 negative samples) by using both LFIA and rRT‐PCR. Youden’s index (J) was used to assess the performance of these diagnostic tests. The sensitivity and specificity were 98.22% and 97.93%, respectively, and J is 0.9615. The sensitivity and specificity were 98.22% and 97.93%, respectively, and J is 0.9615. In addition, the consistency of our proposed LFIA was analyzed using Cohen's kappa coefficient (κ = 0.9620). Conclusion We found disease stage, age, gender, and clinical manifestations have only a slight influence on the diagnosis. Therefore, the lateral flow immunoassay SARS‐CoV‐2 antigen test strip is suitable for point‐of‐care detection and provides a great application for SARS‐CoV‐2 epidemic control in the third‐world countries.
Collapse
Affiliation(s)
- Lin Shen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China
| | - Qihan Zhang
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China
| | - Xiaolu Luo
- Clinical Laboratory, The Fourth People's Hospital of Nanning, Nanning, China
| | - Haolin Xiao
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China
| | - Miao Gu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Liangli Cao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China
| | - Feijun Zhao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.,School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China
| |
Collapse
|
18
|
Hsiao WWW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, Sharma N, Lee CK, Chiang WH. Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. BIOSENSORS 2021; 11:295. [PMID: 34562885 PMCID: PMC8466143 DOI: 10.3390/bios11090295] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Dinh Minh Pham
- GENTIS JSC, 249A, Thuy Khue, Tay Ho, Hanoi 100000, Vietnam;
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Hui-Hsin Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| |
Collapse
|
19
|
Li G, Wang X, Li Q, Yang J, Liu X, Qi W, Guo J, Deng R, Zhang G. Development of an immunochromatographic strip for rapid detection of H7 subtype avian influenza viruses. Virol J 2021; 18:68. [PMID: 33827632 PMCID: PMC8025375 DOI: 10.1186/s12985-021-01537-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND H7N9 avian influenza virus (AIV) including highly and low pathogenic viruses have been detected in China since 2013. H7N9 AIV has a high mortality rate after infection in humans, and most human cases have close contacted with poultry in the live poultry market. Therefore, it is necessary to develop a rapid point-of-care testing (POCT) technique for H7N9 AIV detection. METHODS The H7N9 AIV was inactivated and purified, and was used as the antigen to immunize BALB/c. Twelve H7-HA specific monoclonal antibodies (McAbs) were produced through the hybridoma technique. The McAb 10A8 was conjugated with colloid gold as detecting antibody; McAb 9B6 was dispensed on the nitrocellulose membran as the capture test line and the Goat-anti mouse IgG antibody was dispensed as control line respectively. The immunochromatographic strip was prepared. RESULTS The analysis of ELISA and virus neutralization test showed that the obtained McAbs specifically recognized H7 HA. Based on the prepared strip, the detection of H7 AIV was achieved within 10 min. No cross-reaction occurred between H7 AIVs and other tested viruses. The detection limit of the strip for H7 was 2.4 log10EID50/0.1 mL for chicken swab samples. CONCLUSION The McAbs were specific for H7 and the immunochromatographic strip developed in this study was convenient, rapid and reliable for the detection of H7 AIV. The strip could provide an effective method for the rapid and early detection of H7 AIV.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Jifei Yang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Xiao Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510000 China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
20
|
Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS NANO 2021; 15:3593-3611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lateral flow assays (LFAs) are paper-based point-of-care (POC) diagnostic tools that are widely used because of their low cost, ease of use, and rapid format. Unfortunately, traditional commercial LFAs have significantly poorer sensitivities (μM) and specificities than standard laboratory tests (enzyme-linked immunosorbent assay, ELISA: pM-fM; polymerase chain reaction, PCR: aM), thus limiting their impact in disease control. In this Perspective, we review the evolving efforts to increase the sensitivity and specificity of LFAs. Recent work to improve the sensitivity through assay improvement includes optimization of the assay kinetics and signal amplification by either reader systems or additional reagents. Together, these efforts have produced LFAs with ELISA-level sensitivities (pM-fM). In addition, sample preamplification can be applied to both nucleic acids (direct amplification) and other analytes (indirect amplification) prior to LFA testing, which can lead to PCR-level (aM) sensitivity. However, these amplification strategies also increase the detection time and assay complexity, which inhibits the large-scale POC use of LFAs. Perspectives to achieve future rapid (<30 min), ultrasensitive (PCR-level), and "sample-to-answer" POC diagnostics are also provided. In the case of LFA specificity, recent research efforts have focused on high-affinity molecules and assay optimization to reduce nonspecific binding. Furthermore, novel highly specific molecules, such as CRISPR/Cas systems, can be integrated into diagnosis with LFAs to produce not only ultrasensitive but also highly specific POC diagnostics. In summary, with continuing improvements, LFAs may soon offer performance at the POC that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Li Zhan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080 United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - James Sackrison
- 3984 Hunters Hill Way, Minnetonka, Minnesota 55345, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Director, Institute of Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Man Y, Ban M, Li A, Jin X, Du Y, Pan L. A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP. Food Chem 2021; 354:129578. [PMID: 33756331 DOI: 10.1016/j.foodchem.2021.129578] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022]
Abstract
A microfluidic colorimetric biosensor was developed using thiolated polystyrene microspheres (SH-PSs) for aggregating of gold nanoparticles (AuNPs), a novel hose-based microvalve for controlling the flow direction, and a smartphone imaging APP for monitoring colorimetric signals. Aptamer-PS-cysteamine conjugates were used as detection probes and reacted with Salmonella in samples. Complementary DNA - magnetic nanoparticle (cDNA - MNP) conjugates were used as capture probes, reacted with the free aptamer-PS-cysteamine conjugates. AuNPs were aggregated on the surface of Salmonella-aptamer-PS-cysteamine conjugates, resulting in a visible color change in the detection chamber, which indicating different concentrations of Salmonella. The limit of detection was low to 6.0 × 101 cfu/mL. The microfluidic biosensor exhibited a good specificity. It was evaluated by analyzing salad samples spiked with Salmonella. The recoveries ranged from 91.68% to 113.76%, which indicated its potential application in real samples.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Meijing Ban
- School of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Xinxin Jin
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Yuanfang Du
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
22
|
Li G, Wang A, Chen Y, Sun Y, Du Y, Wang X, Ding P, Jia R, Wang Y, Zhang G. Development of a Colloidal Gold-Based Immunochromatographic Strip for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Front Immunol 2021; 12:635677. [PMID: 33777026 PMCID: PMC7992422 DOI: 10.3389/fimmu.2021.635677] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
The outbreak and worldwide pandemic of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have a significant impact on global economy and human health. In order to reduce the disease spread, 16 monoclonal antibodies (McAbs) again SARS-CoV-2 were generated by immunized mice with the spike protein receptor binding domain (RBD), which was expressed in Chinese hamster ovary cell (CHO). A colloidal gold-based immunochromatographic strip was developed with two McAbs to detect SARS-CoV-2 spike protein, which can play a potential role in monitoring vaccine quality. The strip is highly specific, detecting only SARS-CoV-2 spike protein, and does not show any non-specific reactions with syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and other coronavirus and influenza viruses. The strip detected subunit vaccine in our laboratory with a detection limit of spike protein of 62.5 ng/mL. This strip provides an effective method in monitoring vaccine quality by detecting the antigen content of spike protein.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaning Sun
- Henan Zhongze Biological Engineering Co., Zhengzhou, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui Jia
- Henan Zhongze Biological Engineering Co., Zhengzhou, China
| | - Yanwei Wang
- Henan Zhongze Biological Engineering Co., Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|