1
|
Wang X, Wang L, Wu M, Zheng Y, Wang R, Shao T, Zeng S, Li A, Li R, Yue Q. Portable and intelligent ratio fluorometry and colorimetry for dual-mode detection of dopamine based on B, N-codoped carbon dots and machine learning. Talanta 2025; 294:128288. [PMID: 40344845 DOI: 10.1016/j.talanta.2025.128288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
A dual-mode approach was developed for dopamine (DA) assay based on boron (B) and nitrogen (N) co-doped carbon dots (B, N-CDs). This platform enabled highly sensitive and specific detection of DA in biological samples through collaborative ratio fluorometry and colorimetry. B, N-CDs were synthesized via a one-pot hydrothermal method using 3-aminobenzylboric acid (3-APBA) and proline (Pro) as precursors. B, N-CDs exhibited dark blue fluorescence under ultraviolet (UV) light excitation with a quantum yield (QY) of 0.05. In the presence of DA, the fluorescence of B, N-CDs displayed bright blue with the QY at 0.22. The original fluorescence peak intensity at 420 nm of B, N-CDs decreased, while a new peak at 465 nm increased significantly with the increasing concentration of DA. In this case, a ratio fluorometry for DA detection was constructed using B, N-CDs as fluorescence probes. On the other way, the color of B, N-CDs solution changed from colorless to brown with the addition of DA. A colorimetry for DA sensing was established based on the absorbance enhancement of B, N-CDs. There is excellent linear relationship within the concentration range of 2.5-500 μM for DA sensing with limit of detection (LOD) at 0.22 μM (ratio fluorometry) and 1.04 μM (colorimetry) and the relative standard deviations (RSD%) are 0.2170 and 0.02131, respectively. To enable the real-time visual and portable quantification of DA, two intelligent methods were explored by a program named RGB color analysis in a smartphone and machine learning. This dual-mode sensing strategy combined high sensitivity, wide linear range and ease of operation, offering a novel solution for rapid analysis of DA in complex biological substrates.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Mengnan Wu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Yihao Zheng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ruirui Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Tong Shao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Suyuan Zeng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Aifeng Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
2
|
Li X, Chen G, Hu A, Xiong Y, Yang T, Ma C, Li L, Gao H, Zhu C, Wu Y, Gu J, Wu H, Zhou Y, Guan W, Zhang W. Non-enzymatic Detection of Uric Acid in Serum and Urine by Fluorescent and Visual Dual-Mode Sensor Based on 3-aminophenylboric Acid Functionalized Carbon Dots. J Fluoresc 2025; 35:2309-2320. [PMID: 38538960 DOI: 10.1007/s10895-024-03666-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 04/30/2025]
Abstract
Herein, we developed a sophisticated dual-mode sensor that utilized 3-aminophenylboric acid functionalized carbon dots (APBA-CDs) to accurately detect uric acid (UA). Our innovative process involved synthesizing APBA-CDs that emitted at 369 nm using a one-step hydrothermal method with 3-aminophenylboric acid and L-glutamine as precursors, ethanol and deionized water as solvents. Once UA was introduced to the APBA-CDs, the fluorescence of the system became visibly quenched. The results of Zeta potential, Fourier transformed infrared (FTIR) spectra, fluorescence lifetime, and other characteristics were analyzed to determine that the reaction mechanism was static quenching. This meant that after UA was mixed with APBA-CDs, it combined with the boric acid function on the surface to form complexes, resulting in a decrease in fluorescence intensity and a blue shift in the absorption peak at about 295 nm in the Ultraviolet-visible (UV-vis) absorption spectra. We were pleased to report that we have successfully used the dual-reading platform to accurately detect UA in serum and human urine. It provided a superior quantitative and visual analysis of UA without the involvement of enzymes. We firmly believe that our innovative dual-mode sensor has immense potential in the fields of biosensing and health monitoring.
Collapse
Affiliation(s)
- Xin Li
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China.
| | - Anqi Hu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Yi Xiong
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Taiqun Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Hui Gao
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Chun Zhu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Yamin Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Hui Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Yan Zhou
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Weinan Guan
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| | - Wei Zhang
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, 214122, China
| |
Collapse
|
3
|
Pongprom A, Bunkoed O. A fluorescent nanocomposite probe of quantum dots and zinc oxide embedded in polymer for smartphone-assisted on-site determination of diflunisal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125243. [PMID: 39388941 DOI: 10.1016/j.saa.2024.125243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
A fluorescent sensor based on nitrogen-doped graphene quantum dots (N-GQDs) was developed for the smartphone-assisted colorimetric determination of diflunisal. The fluorescence source was embedded with zinc oxide (ZnO) in a molecularly imprinted polymer (ZnO@N-GQDs@MIP). The quantitative analysis was based on the fluorescence quenching caused by electron transfer from the nanoprobe to diflunisal. The sensor demonstrated linearity in the range of 0.10-50.0 μg L-1 with a limit of detection of 0.03 μg L-1. Smartphone-assisted on-site determination produced linearity in the range of 1.0-50.0 µg/L with a limit of detection of 0.30 μg L-1. The developed sensor was applied to determine diflunisal in milk, egg and yogurt samples. Recoveries ranging from 94.8 to 103.7 % were achieved with a RSD below 2.0 % measured by fluorescence spectroscopy, and from 94.9 to 106.9 % with a RSD of <6 % smatphone-assisted measurement. Comparison of the detection outcomes of both methods with those of high-performance liquid chromatography revealed consistent results, demonstrating the accuracy of the developed method, which was also sensitive, selective, and fast. Notably, the portable and easy-to-read smartphone-assisted method is suitable for on-site application.
Collapse
Affiliation(s)
- Angkana Pongprom
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
4
|
Thakuri A, Banerjee M, Chatterjee A. Polydiacetylene Liposome-Based Dual-Output Optical Sensor for ppb Level Detection of Dopamine in Solution and Solid Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17613-17621. [PMID: 39120008 DOI: 10.1021/acs.langmuir.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Dopamine (DA), a neurotransmitter, plays a crucial role in regulating motor functions and emotions and can serve as a marker for several diseases. In this study, we report a highly sensitive polydiacetylenes (PDA)-based dual-output sensor for dopamine detection in both solution and solid phases that was developed by modifying PDA liposomes with boronic acid groups at the termini. This sensor exploits the high affinity between the catechol residue of dopamine and the -B(OH)2 group of the PDA-based probe (PDA-PhBA) to form boronate ester bonds, causing a stress-induced blue-to-red color change along with a steady increase in fluorescence response at λmax 622 nm. The PDA-PhBA-based sensor displays high sensitivity toward dopamine with low limit of detection of 6.2 ppb in colorimetric analysis and 0.6 ppb in fluorimetric measurements, demonstrating its dual optical output ability. The sensor works well for adrenaline, another catecholamine, with similar efficacy. Its practical applicability was validated by the successful recovery of trace level dopamine in blood serum and real water samples. Additionally, immobilizing PDA-PhBA liposomes in sodium alginate produced PDA beads for the solid-phase detection of dopamine with an limit of detection (LOD) of 59 nM (9.0 ppb) in colorimetric detection using a smartphone for capturing images and ImageJ software for analysis.
Collapse
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| | - Amrita Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| |
Collapse
|
5
|
Wang L, Hu Y, Jiang N, Yetisen AK. Biosensors for psychiatric biomarkers in mental health monitoring. Biosens Bioelectron 2024; 256:116242. [PMID: 38631133 DOI: 10.1016/j.bios.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
6
|
Meza López FDL, Hernández CJ, Vega-Chacón J, Tuesta JC, Picasso G, Khan S, Sotomayor MDPT, López R. Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples. Polymers (Basel) 2024; 16:1523. [PMID: 38891469 PMCID: PMC11174601 DOI: 10.3390/polym16111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This paper reports the successful development and application of an efficient method for quantifying Pb2+ in aqueous samples using a smartphone-based colorimetric device with an imprinted polymer (IIP). The IIP was synthesized by modifying the previous study; using rhodizonate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N'-methylenebisacrylamide (MBA), and potassium persulfate (KPS). The polymers were then characterized. An absorption study was performed to determine the optimal conditions for the smartphone-based colorimetric device processing. The device consists of a black box (10 × 10 × 10 cm), which was designed to ensure repeatability of the image acquisition. The methodology involved the use of a smartphone camera to capture images of IIP previously exposed at Pb2+ solutions with various concentrations, and color channel values were calculated (RGB, YMK HSVI). PLS multivariate regression was performed, and the optimum working range (0-10 mg L-1) was determined using seven principal components with a detection limit (LOD) of 0.215 mg L-1 and R2 = 0.998. The applicability of a colorimetric sensor in real samples showed a coefficient of variation (% RSD) of less than 9%, and inductively coupled plasma mass spectrometry (ICP-MS) was applied as the reference method. These results confirmed that the quantitation smartphone-based colorimetric sensor is a suitable analytical tool for reliable on-site Pb2+ monitoring.
Collapse
Affiliation(s)
- Flor de Liss Meza López
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Christian Jacinto Hernández
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 15333, Peru;
| | - Jaime Vega-Chacón
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Juan C. Tuesta
- Laboratorio de Biotecnología, Universidad Nacional Autónoma de Alto Amazonas, Calle Prolongación, Libertad 1220, Yurimaguas 16501, Peru;
| | - Gino Picasso
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Sabir Khan
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil;
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14801-970, SP, Brazil
| | - María D. P. T. Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14801-970, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants Radioactives (INCT-DATREM), Araraquara 14801-970, SP, Brazil
| | - Rosario López
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| |
Collapse
|
7
|
Zhao L, Du X, Xu G, Song P. Nanozyme catalyzed-SERRS sensor for the recognition of dopamine based on AgNPs@PVP with oxidase-like activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123606. [PMID: 37976577 DOI: 10.1016/j.saa.2023.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Dopamine (DA), as one of the most significant neurotransmitters, is closely related to several diseases. Achieving rapid and sensitive detection of DA remains a challenge. Herein, we proposed a simple, fast, and sensitive method for DA recognition based on surface-enhanced resonance Raman scattering (SERRS) technique. The synthesized silver nanoparticles coated with polyvinylpyrrolidone (AgNPs@PVP) with oxidase activity could not only oxidize 3,3',5,5'-tetramethylbenzidine (TMB) directly to produce a blue oxidation state TMB (oxTMB) but also could be used as the SERS substrate to generate a strong SERRS signal. When DA was added to the above system, the blue color faded along with the decrease in the SERRS signal. The change value of SERRS intensity was in proportion to the concentration of DA in the range of 0.1-10 μM with a limit of detection of 40 nM. This method presented great potential for the recognition of DA-related diseases.
Collapse
Affiliation(s)
- Lefa Zhao
- College of Physics, Liaoning University, Shenyang 110036, China; School of General Education, Shenyang Sport University, Shenyang 110115, China
| | - Xiaoyu Du
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Guangda Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
8
|
Xu ZY, He XD, Luo HQ, Xu LQ, Li NB. Tailoring Efficient Fluorogenic Tactic for Ultrasensitive Detection of Dopamine in Urine and Rat Brain through Real-Time and In Situ Formation of High-Performance Fluorophore. Anal Chem 2023; 95:15965-15974. [PMID: 37851944 DOI: 10.1021/acs.analchem.3c03035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Owing to the predominance of dopamine (DA) in controlling mental health, planning an innovative method for DA detection with simplicity and high efficacy is conducive to the assessment of neurological disorders. Herein, an efficient fluorogenic tactic has been elaborated for ultrasensitive detection of DA with remarkably enhanced turn-on response. Utilizing a twisted intramolecular charge-transfer (TICT)-suppressing strategy, a highly emissive azocine derivative 11-hydroxy-2,3,6,7,11,12,13,14-octahydro-1H,5H,10H-11,14a-methanoazocino[5',4':4,5]furo[2,3-f]pyrido[3,2,1-ij]quinolin-10-one (J-Aza) is generated via a one-step reaction between DA and 8-hydroxyjulolidine. It is marvelous that J-Aza not only possesses ideal fluorescence quantum yield (ΦF) as high as 0.956 but also exhibits bathochromic shifted fluorescence (green emissive) and stronger anti-photobleaching capacity superior to traditional azocine-derived 1,2,3,4-tetrahydro-5H-4,11a-methanobenzofuro[2,3-d]azocin-5-one (Aza) with moderate ΦF, blue fluorescence, and poor photostability. By confining the TICT process, the detection limit to DA can be reduced to 80 pM, which is competitive in contrast to previously reported fluorescence methods. Encouraged by the instant response (within 90 s), wide linear range (0.1-500 nM), great selectivity, and excellent sensitivity, this fluorogenic method has been used for the real-time measurement of DA contents in practical urine samples with satisfactory results. Furthermore, the cerebral DA level in the reserpine-induced depression rat model has also been evaluated by our designed method, demonstrating its potent analytical applicability in the biosensing field.
Collapse
Affiliation(s)
- Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiao Dong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
John VL, Nayana AR, Keerthi TR, K A AK, Sasidharan BCP, T P V. Mulberry Leaves (Morus Rubra)-Derived Blue-Emissive Carbon Dots Fed to Silkworms to Produce Augmented Silk Applicable for the Ratiometric Detection of Dopamine. Macromol Biosci 2023; 23:e2300081. [PMID: 37097218 DOI: 10.1002/mabi.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Silk fibers (SF) reeled from silkworms are constituted by natural proteins, and their characteristic structural features render them applicable as materials for textiles and packaging. Modification of SF with functional materials can facilitate their applications in additional areas. In this work, the preparation of functional SF embedded with carbon dots (CD) is reported through the direct feeding of a CD-modified diet to silkworms. Fluorescent and mechanically robust SF are obtained from silkworms (Bombyx mori) that are fed on CDs synthesized from the Morus rubra variant of mulberry leaves (MB-CDs). MB-CDs are introduced to silkworms from the third instar by spraying them on the silkworm feed, the mulberry leaves. MB-CDs are synthesized hydrothermally without adding surface passivating agents and are observed to have a quantum yield of 22%. With sizes of ≈4 nm, MB-CDs exhibited blue fluorescence, and they can be used as efficient fluorophores to detect Dopamine (DA) up to the limit of 4.39 nM. The nanostructures and physical characteristics of SF weren't altered when the SF are infused with MB-CDs. Also, a novel DA sensing application based on fluorescence with the MB-CD incorporated SF is demonstrated.
Collapse
Affiliation(s)
- Varsha Lisa John
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| | - A R Nayana
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - T R Keerthi
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - Athira Krishnan K A
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - B C P Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Vinod T P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| |
Collapse
|
10
|
Wang L, Weng S, Su S, Wang W. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Adv 2023; 13:19173-19194. [PMID: 37362342 PMCID: PMC10288538 DOI: 10.1039/d3ra02519e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
With the continuous development of carbon-based materials, a variety of new materials have emerged one after another. Carbon Quantum Dots (CQDs) have succeeded in standing out from the crowd of new materials due to their better optical properties in biomedicine, ion detection, anti-counterfeiting materials and photocatalysis. In recent years, through the continuous exploration of CQDs, research scholars have found that the organic substances or heavy metals contained in traditional ones can cause irreversible harm to people and the environment. Therefore, the application of traditional CQDs in future studies will be gradually limited. Among various new materials, biomass raw materials have the merits of good biocompatibility, lower toxicity and green and environmental protection, which largely overcome the defects of traditional materials and have attracted many scholars to focus on the research and development of various biomass CQDs. This paper summarises the optical properties, fluorescence mechanisms, synthetic methods, functionalisation modulation of biomass CQDs and their relevant research progress in the fields of ion detection, bioimaging, biomedicine, biosensing, solar cells, anti-counterfeit materials, photocatalysis and capacitors. Finally, the paper concludes with some discussion of the challenges and prospects of this exciting and promising field of application.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Shujia Weng
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Shuai Su
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Weiwei Wang
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| |
Collapse
|
11
|
Wang G, Zhang S, Cui J, Gao W, Rong X, Lu Y, Gao C. Novel highly selective fluorescence sensing strategy for Mercury(Ⅱ) in water based on nitrogen-doped carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122010. [PMID: 36308826 DOI: 10.1016/j.saa.2022.122010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
In this work, a fluorescent signal-closing probe of nitrogen-doped carbon quantum dots (NCQDs) was developed for quantitative detection of mercury ions (Hg2+). In this detection system, the NCQDs with high quantum yield (QY, 63.80 %) were synthesized via simple hydrothermal method with Methyl Glycine Diacetic acid Trisodium Salt (MGDA) and m-phenylenediamine (MPD) as carbon and nitrogen sources. The NCQDs have a typical surface structure and exceptional fluorescence stability, and their fluorescence zones are centered on excitation wavelengths of 440 nm and emission wavelengths of 510 nm. Under optimal conditions, the NCQDs have outstanding anti-interference ability to various ions and high selectivity to mercury ions. The fluorescence intensity of the detection system is weakened due to the generation of non-fluorescent groups caused by the static quenching effect. The fluorescence quenching efficiency shows a fascinating linear relationship with Hg2+ ions at 0-100 μM (y = 0.0051x-0.015, R2 = 0.9943), and the detection limit is 0.9 μM. Acute toxicity test shows that NCQDs have low toxicity and little harm to environment. The detection system can be used for the quantification of mercury ions in environmental water samples, and the recovery rate is between 99.64 % and 103.43 %, indicating that it is a simple and economical fluorescence detection method.
Collapse
Affiliation(s)
- Guiqiao Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China.
| | - Shurong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Jinzhi Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Wensu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Xing Rong
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Yaxin Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Pourmadadi M, Nouralishahi A, Shalbaf M, Shabani Shayeh J, Nouralishahi A. An electrochemical aptasensor for detection of prostate-specific antigen-based on carbon quantum dots-gold nanoparticles. Biotechnol Appl Biochem 2023; 70:175-183. [PMID: 35307872 DOI: 10.1002/bab.2340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/28/2022] [Indexed: 11/11/2022]
Abstract
In this work, an electrochemical aptasensor was described for the determination of prostate-specific antigen (PSA). Aptamer chains were decorated on the surface of a glassy carbon electrode (GCE) via carbon quantum dots/Au nanoparticles (Au/CQD). Structural analysis that was used to characterize the prepared materials shows that Au/CQD nanoparticles synthesized in a spherical shape with an average size of 70 nm. Furthermore, the combination of Au nanoparticles with CQD resulted in formation of crystalline the structure of the Au/CQD composite. To study the electrochemical performance of the prepared aptasensor, cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy were used. The results show that the aptasensor has a good selectivity to PSA over other biomaterials with the time optimized about 30 min. K4 [Fe(CN)6 ] was used as an electrochemical probe with the limit of detection about 2 fg⋅mL-1 . To avoid the hazardous nature of K4 [Fe(CN)6 ], a label-based aptasensor was prepared using methylene blue as an electrochemical signal producer. They provide the capability of electrochemical detection in buffer phosphate solution with high sensitivity.
Collapse
Affiliation(s)
| | | | - Mohammad Shalbaf
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Amideddin Nouralishahi
- Energy, Environment, and Nanostructure Material Laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran
| |
Collapse
|
13
|
Green Synthesis of Highly Fluorescent Carbon Dots from Bovine Serum Albumin for Linezolid Drug Delivery as Potential Wound Healing Biomaterial: Bio-Synergistic Approach, Antibacterial Activity, and In Vitro and Ex Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010234. [PMID: 36678866 PMCID: PMC9862409 DOI: 10.3390/pharmaceutics15010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
A simple and green approach was developed to produce novel highly fluorescent bovine serum albumin carbon dots (BCDs) via facile one-step hydrothermal treatment, using bovine serum albumin as a precursor carbon source. Inherent blue photoluminescence of the synthesized BCDs provided a maximum photostability of 90.5 ± 1.2% and was characterized via TEM, FT-IR, XPS, XRD, UV-visible, and zeta potential analyses. By virtue of their extremely small size, intrinsic optical and photoluminescence properties, superior photostability, and useful non-covalent interactions with the synthetic oxazolidinone antibiotic linezolid (LNZ), BCDs were investigated as fluorescent nano-biocarriers for LNZ drug delivery. The release profile of LNZ from the drug delivery system (LNZ-BCDs) revealed a distinct biphasic release, which is beneficial for mollifying the lethal incidents associated with wound infection. The effective wound healing performance of the developed LNZ-BCDs were evaluated through various in vitro and ex vivo assays such as MTT, ex vivo hemolysis, in vitro antibacterial activity, in vitro skin-related enzyme inhibition, and scratch wound healing assays. The examination of LNZ-BCDs as an efficient wound healing biomaterial illustrated excellent biocompatibility and low cytotoxicity against normal human skin fibroblast (HSF) cell line, indicating distinct antibacterial activity against the most common wound infectious pathogens including Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus, robust anti-elastase, anti-collagenase, and anti-tyrosinase activities, and enhanced cell proliferation and migration effect. The obtained results confirmed the feasibility of using the newly designed fluorescent LNZ-BCDs nano-bioconjugate as a unique antibacterial biomaterial for effective wound healing and tissue regeneration. Besides, the greenly synthesized BCDs could be considered as a great potential substitute for toxic nanoparticles in biomedical applications due to their biocompatibility and intense fluorescence characteristics and in pharmaceutical industries as promising drug delivery nano-biocarriers for effective wound healing applications.
Collapse
|
14
|
Carbon quantum dots with pH-responsive orange-/red-light emission for fluorescence imaging of intracellular pH. Mikrochim Acta 2022; 190:21. [PMID: 36512123 DOI: 10.1007/s00604-022-05605-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
N-doped carbon quantum dots (N-CDs) with polyaminobenzene hydrazine as precursor were prepared by solvothermal method for the monitoring of pH fluctuation in HeLa cells via fluorescence imaging. The N-CDs show two emission wavelengths at 582 and 640 nm under different pH with two excitation wavelengths. The fluorescence intensity at 640 nm (λex = 520 nm) and the ratio of F582/F640 (λex = 470 nm) linearly increase with pH in the range of 2.4 ~ 3.6 (R2 = 992) and 5.6 ~ 7.6 (R2 = 0.987), respectively. The sensor exhibits high sensitivity and reversibility and anti-interference capability, thus enabling sensing pH change in intracellular environment in real time, as demonstrated by successful monitoring of intracellular pH fluctuation during H2O2 stimulation in HeLa cells.
Collapse
|
15
|
Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, khalilian P, Yahiazadeh S, Eskandari N, Rahdar A, Kumar PS, Pandey S. Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Santonocito R, Tuccitto N, Pappalardo A, Trusso Sfrazzetto G. Smartphone-Based Dopamine Detection by Fluorescent Supramolecular Sensor. Molecules 2022; 27:7503. [PMID: 36364331 PMCID: PMC9654496 DOI: 10.3390/molecules27217503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Supramolecular recognition of dopamine by two quinoxaline cavitands was studied in solution by fluorescence titrations, ESI-MS and ROESY measurements. In addition, the tetraquinoxaline cavitand was dropped onto a siloxane-based polymeric solid support, obtaining a sensor able to detect dopamine in a linear range of concentrations 10 Mm-100 pM, with a detection limit of 1 pM, much lower than the normal concentration values in the common human fluids (plasma, urine and saliva), by using a simple smartphone as detector. This sensor shows also good selectivity for dopamine respect to the other common analytes contained in a saliva sample and can be reused after acid-base cycles, paving the way for the realization of real practical sensor for human dopamine detection.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology—CSGI, 95125 Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| |
Collapse
|
17
|
Catalytic nanozyme Zn/Cl-doped carbon quantum dots as ratiometric fluorescent probe for sequential on-off-on detection of riboflavin, Cu 2+ and thiamine. Sci Rep 2022; 12:18276. [PMID: 36316402 PMCID: PMC9622855 DOI: 10.1038/s41598-022-23055-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
A novel metal-doped Zn/Cl carbon quantum dots (Zn/Cl-CQDs) was developed successfully as ratiometric fluorescent probes for the sequential on-off-on detection of riboflavin, Cu2+ ion and thiamine. The excellent catalytic performance of the Zn/Cl-CQDs nanozyme serves as an ideal platform for sensitive detection of thiamine. Due to the addition of riboflavin to the Zn/Cl-CQDs, the blue emission peak of Zn/Cl-CQDs at 440 nm remains unaffected and used as an internal reference approach, while the green emission peak of riboflavin at 520 nm appeared and increased remarkably. Following the presence of Cu2+, a quenching blue fluorescence signal of Zn/Cl-CQDs was observed which resulted in consequent fluorescent 'turn-off' response toward Cu2+ ion. Finally, upon the addition of thiamine to the above solution under alkaline condition, the blue emission of Zn/Cl-CQDs was gradually recovered. The prepared Zn/Cl-CQDs could act as a nanozyme catalyst for directly catalyzing the oxidation of non-fluorescent substrate of thiamine to produce highly fluorescent substrate of thiochrome. As a result, the blue fluorescence emission peak at 440 nm was recovered. Eventually, the sequential detection properties of ratiometric probes for riboflavin, Cu2+ ion and thiamine were successfully applied in VB2 tablets, drinking water and VB1 tablet with good recoveries of 96.21%, 98.25% and 98.44%, respectively.
Collapse
|
18
|
Shokri R, Amjadi M. Boron and nitrogen co-doped carbon dots as a chemiluminescence probe for sensitive assay of rifampicin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Yang Y, Wang H, Wu Y, Yu X. Dual recognition strategy for selective fluorescent detection of dopamine and antioxidants based on graphite carbon nitride in human blood serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120385. [PMID: 34536885 DOI: 10.1016/j.saa.2021.120385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
In this work, a strong blue-emitting fluorescent biosensor based on graphite carbon nitride nanoparticles (GCNNs) (Ex = 340 nm and Em = 435 nm) was synthesized by a facile one-step hydrothermal method. With the aid of hydrogen peroxide and horseradish peroxidase, pyrocatechol structure of dopamine (DA) was oxidized to o-quinone structure of polydopamine (PDA) by hydroxyl radical. PDA was able to rapidly and significantly quench fluorescence of GCNNs. In the meanwhile, oxidative self-polymerization from DA to PDA would be blocked by antioxidants, such as glutathione (GSH) and ascorbic acid (AA). Thus, the fluorescence of GCNNs@DA sensor would be recovered owing to the decrease of o-quinone. Based on above-mentioned dual recognition strategy of "turn-off" and "turn off-on", a fast, simple and ultrasensitive method was developed to measure DA and antioxidants. Under the optimal experimental conditions, the detection limits of DA, GSH and AA were 0.064 μmol L-1, 0.11 μmol L-1 and 0.16 μmol L-1 with relative standard deviations of 1.7%, 9.3% and 8.0%, respectively. As one of metal-free quantum dots, our GCNNs-based sensors were also successfully applied to the determination of DA as well as GSH and AA in human serum. The recoveries for the spiked samples were in the range of 93.8%-109% and 95.0%-110% of DA and antioxidants, which shows great promise to clinicalapplication.
Collapse
Affiliation(s)
- Yuning Yang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Han Wang
- Wuhan Customs District of China, Wuhan 430020, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
20
|
Liu J, Fu T, Wu F, Wang H. Ratiometric fluorescence and smartphone dual-mode detection of glutathione using carbon dots coupled with Ag +-triggered oxidation of o-phenylenediamine. NANOTECHNOLOGY 2021; 32:445501. [PMID: 34330104 DOI: 10.1088/1361-6528/ac1978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Developing ratiometric fluorescence and smartphone dual-mode bioanalysis methods is important but challenging. A ratiometric fluorescence method for determining glutathione (GSH) using carbon dots (CDs) and Ag+-triggered o-phenylenediamine (OPD) oxidation is described here. Ag+oxidizes OPD to give 2,3-diaminophenazine (oxOPD), which effectively quenches CD fluorescence at 436 nm through the inner filter effect and causes a new emission peak at 561 nm. GSH chelates with Ag+and prevents the Ag+oxidizing OPD and therefore effectively preserves CD emission at 436 nm (blue) and allows only weak oxOPD fluorescence at 561 nm (orange) to occur. The oxOPD to CD fluorescence intensity ratio decreased linearly as the GSH concentration increased in the range 0-150 nM, and the detection limit was 15 nM. The ratiometric fluorescence probe lit with an ultraviolet lamp clearly changed color from orange to blue as the GSH concentration increased. An image was acquired using a smartphone camera and converted into digital values. The blue and red channel ratio was calculated and used to quantify GSH. The method therefore allows dual-mode detection of GSH.
Collapse
Affiliation(s)
- Jinshui Liu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Ting Fu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Fangfei Wu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Huaxin Wang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| |
Collapse
|
21
|
Fan X, Qiu J, Peng C, Ren J, Xing H, Bi C, Yin J, Li J. Catalytical feature of optical nanoprobes of boron nitride quantum dots in the presence of Cu 2+ for the determination of dopamine. Analyst 2021; 146:5668-5674. [PMID: 34382632 DOI: 10.1039/d1an00768h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monitoring the concentration of dopamine (DA) is vital for preventing and diagnosing DA related diseases. In contrast to the traditional sensing methods for DA, in which direct or indirect effects on the optical probes are often recorded, a novel sensing concept is disclosed based on as a result of the in situ formation of polydopamine (PDA) originating from the synergetic effect between boron nitride quantum dots (BNQDs) and Cu2+. In the co-presence of BNQDs and Cu2+, DA was catalytically oxidized to PDA, accompanied by an obvious color change from colorless to brown. In contrast to previous reports, in which BNQDs have been employed as an optical probe, herein, the BNQDs not only acted as the optical energy donor, but also as the catalysts for the formation of PDA. The quenching efficiency resulting from the inner filter effect and the electron transfer between the BNQDs and PDA was directly proportional to the concentration of DA, ranging linearly from 2 to 80 μM with a limit of detection of 0.49 μM. The present system exhibited an outstanding selectivity for DA among other interfering coexisting biomolecules. Furthermore, the practical application of the proposed platform was verified by assaying DA in human plasma samples, and satisfactory recoveries ranging from 101.24% to 111.98% were obtained. With the satisfactory reliability, repeatability and stability, the proposed simple sensor showed significant potential for use in DA detection in other biomedical applications.
Collapse
Affiliation(s)
- Xiushuang Fan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China. and Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China and State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jinpeng Qiu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Huanhuan Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Chuyao Bi
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Jianyuan Yin
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
22
|
Yin C, Chen L, Niu N. Nitrogen-doped carbon quantum dots fabricated from cellulolytic enzyme lignin and its application to the determination of cytochrome c and trypsin. Anal Bioanal Chem 2021; 413:5239-5249. [PMID: 34212211 DOI: 10.1007/s00216-021-03496-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
A sensitive and effective strategy for the detection of cytochrome c (Cyt c) and trypsin was developed using biomass nitrogen-doped carbon quantum dots (N-CQDs) as the fluorescence probe. N-CQDs were synthesized through a one-pot hydrothermal method by utilizing cellulolytic enzyme lignin as the carbon source and ammonia as the solvent and nitrogen source. The obtained N-CQDs had good water solubility and stable optical properties. The introduction of nitrogen increased fluorescence quantum yield (QY) to 8.23%, which was almost four times as high as that before nitrogen doping. The N-CQDs were fabricated as a label-free biosensor to detect Cyt c and trypsin. The fluorescence of N-CQDs was quenched with positively charged Cyt c due to electrostatic induction aggregation and static quenching. However, Cyt c tended to be hydrolyzed into small peptides in the presence of trypsin, which caused fluorescence recovery of the N-CQDs/Cyt c complex. A wide linear response range was achieved for Cyt c within 1-50 μM and the developed N-CQDs/Cyt c complex displayed a linear response for trypsin within 0.09-5.4 U/mL. The detection limits were 0.29 μM for Cyt c and 0.013 U/mL for trypsin, respectively. Furthermore, this assay had been applied to Cyt c and trypsin detection in serum samples with the recoveries in the range of 94.6-98.5% and 95.5-102.0%, respectively. The established method was sensitive, selective, easy to operate, and low cost, which proved its potential application in clinical diagnosis. The synthesis and fluorescence mechanism of N-CQDs and the strategy for Cyt c and trypsin detection.
Collapse
Affiliation(s)
- Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China. .,Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
23
|
Zhou T, Su Z, Tu Y, Yan J. Determination of dopamine based on its enhancement of gold-silver nanocluster fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119519. [PMID: 33578121 DOI: 10.1016/j.saa.2021.119519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Dopamine (DA) is one of the most important neurotransmitters in human bodies and its sensitive detection remains a challenge. Herein, protein stabilized gold-silver nanoclusters (Au-AgNCs) were synthesized at first. It was found that the introduction of dopamine lead to a significant enhancement of the fluorescence from the nanoclusters, together with a red-shift of the peak. Through related spectroscopic and electrochemical studies, the fluorescence enhancement was attributed to the reduction of the nanoclusters by dopamine. This enhancement was then adopted for quantitative measurements, and linear responses toward dopamine in the ranges 0.01-1.7 μM and 1.7-10 μM were constructed. A limit of detection was obtained at 6.9 nM. The present study provided a facile and efficient method for the determination of dopamine, and the method was successfully applied for related measurements in serum samples.
Collapse
Affiliation(s)
- Ting Zhou
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Zhu Su
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|