1
|
Witkowska AB, Stolarczyk K, Fusaro M, Leś A, Giebułtowicz J, Stolarczyk EU. Oxidation and Reduction of Hydrazones-Risk Factors Related to the Manufacture and Stability of the Drugs. Int J Mol Sci 2025; 26:4295. [PMID: 40362531 PMCID: PMC12072505 DOI: 10.3390/ijms26094295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
This study aimed to evaluate the use of electrochemistry to generate the oxidation and reduction products of active pharmaceutical ingredients (APIs) with a hydrazone group, including dantrolene, nitrofurantoin, furazidine, and nitrofural. In the first step, cyclic voltammetry was employed to assess the electroactivity of these compounds. In the second step, the transformation products of selected APIs following electrochemical oxidation and reduction were analyzed using the ROXY EC System equipped with a µ-PrepCell™ 2.0, coupled with a high-resolution Q-TOF mass spectrometer. The identification of transformation products was based on accurate mass, isotopic distribution, and fragmentation pattern. Seventeen API impurities were identified in this study, contributing to insights into drug stability and potential risks associated with their manufacture. Experimental findings were supported by the quantum mechanical DFT calculations of the molecular energies. In addition, using commercially available in silico software, the predicted metabolic products were compared with those obtained by experimental methods. The electrochemical approach proved useful as a test for determining the stability of compounds, the detection of new impurities and structure determination using high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Anna B. Witkowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland;
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, 61 Żwirki i Wigury, 02-091 Warsaw, Poland;
| | - Krzysztof Stolarczyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland; (K.S.); (M.F.); (A.L.)
| | - Massimo Fusaro
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland; (K.S.); (M.F.); (A.L.)
| | - Andrzej Leś
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland; (K.S.); (M.F.); (A.L.)
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, 61 Żwirki i Wigury, 02-091 Warsaw, Poland;
| | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland;
| |
Collapse
|
2
|
Ouyang R, Feng M, Zhao Y, Liu J, Ma Y, Liu X, Liu B, Miao Y. Cubic Na 0.5Bi 0.5TiO 3 nanoperovskite significantly expands the application of sensitive immunosensor for the detection of carcinoembryonic antigen. Mikrochim Acta 2024; 191:381. [PMID: 38858277 DOI: 10.1007/s00604-024-06451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024]
Abstract
Nanosized sodium bismuth perovskite titanate (NBT) was synthesized and first used as the electrochemical immune sensing platform for the sensitive detection of carcinoembryonic antigen (CEA). Gold nanoparticles (Au NPs) grew on the surface of NBT through forming Au-N bond to obtain Au@NBT, and a label-free electrochemical immunosensor was proposed using Au@NBT as an immunosensing recognizer towards CEA. The well-ordered crystal structure of NBT was not changed at all after the modification of Au NPs outside, but significantly improved the conductivity, catalytic activity, and biocompatibility of the Au@NBT-modified electrode. The unique cubic crystal nanostructure of NBT offered a large active area for both Au NP modification and the subsequent immobilization of biomolecules over the electrode surface, triggering the effective generation of promising properties of the proposed Au@NBT-based electrochemical immunosensor. As expected, favorable detection performances were achieved using this immunosensor towards CEA detection, where a good linear relationship between the current response and CEA concentration was obtained in the concentration range 10 fg mL-1 to 100 ng mL-1 with a low detection limit (LOD) of 13.17 fg mL-1. Also, the significantly enhanced selectivity, and stability guaranteed the promising electrochemical properties of this immunosensor. Furthermore, the analysis of real serum samples verified the high feasibility of this new method in clinical CEA detection. This work opens a new window for the application of nanoperovskite in the early detection of CEA.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Meina Feng
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuanhui Ma
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xi Liu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
3
|
Mukundan G, Badhulika S. Composite of a Stabilizer-Free Trimetallic Prussian Blue Analogue (PBA) and Polyaniline (PANI) on 3D Porous Nickel Foam for the Detection of Nitrofurantoin in Biological Fluids. ACS APPLIED BIO MATERIALS 2024; 7:2924-2935. [PMID: 38637912 DOI: 10.1021/acsabm.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, a facile and highly effective nonenzymatic electrochemical sensing system is designed for the detection of the antibacterial drug nitrofurantoin (NFT). This electrocatalyst is a combination of a trimetallic Prussian blue analogue and conductive polyaniline coated onto a three-dimensional porous nickel foam substrate. A comprehensive set of physicochemical analyses have verified the successful synthesis. The fabricated electrochemical sensor exhibits an impressively low limit of detection (0.096 nM) and quantification (0.338 nM, S/N = 3.3), coupled with a wide linear range spanning from 0.1 nM to 5 mM and a sensitivity of 13.9 μA nM-1 cm-2. This excellent performance is attributed to the collaborative effects of conducting properties of polyaniline (PANI) and the remarkable redox behavior of the Prussian blue analogue (PBA). When both are integrated into the nickel foam, they create a significantly enlarged surface area with numerous catalytic active sites, enhancing the sensor's efficiency. The sensor demonstrates a high degree of specificity for NFT, while effectively minimizing responses to potential interferences such as flutamide, ascorbic acid, glucose, dopamine, uric acid, and nitrophenol, even when present in 2-3-fold higher concentrations. Moreover, to validate its practical utility, the sensor underwent real sample analysis using synthetic urine, achieving outstanding recovery rates of 118 and 101%.
Collapse
Affiliation(s)
- Gopika Mukundan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| |
Collapse
|
4
|
Bhuvaneswari C, Shanmugam R, Elangovan A, Sathish Kumar P, Sharmila C, Sudha K, Arivazhagan G, Subramanian P. Voltammetric nano-molar range quantification of agrochemical pesticide using needle-like strontium pyrophosphate embedded on sulfur doped graphitic carbon nitride electrocatalyst. Food Chem 2024; 437:137874. [PMID: 37926033 DOI: 10.1016/j.foodchem.2023.137874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
The development of a viable sensor for agrochemical pesticides requires the assessment of trace levels. To achieve this, we developed a diphenylamine (DPA) sensor using needle-like strontium pyrophosphate embedded in sulfur-doped graphitic carbon nitride (SrPO/SCN). We obtained needle-like SrPO/SCN nanocomposite through co-precipitation followed by ultrasonication. The formation of the SrPO/SCN nanocomposite was verified through FT-IR, XRD, XPS, SEM-EDX, and HR-TEM analyses. Additionally, we explored their electrochemical behavior towards DPA using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The SrPO/SCN nanocomposite-modified electrode exhibited a higher anodic peak current (15.47 µA) than those of the other modified and unmodified electrodes. Under optimal experimental conditions, SrPO/SCN/GCE demonstrated a good limit of detection (0.009 µmol/L), dynamic linear range (0.05-98 µmol/L), and sensitivity (0.36 µAµM-1cm-2). Furthermore, the developed sensor exhibited excellent reproducibility, selectivity, and stability, and successfully detected DPA in real samples, including pear and apple samples, with good recoveries.
Collapse
Affiliation(s)
- Chandran Bhuvaneswari
- PG & Research Department of Chemistry, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Ramasamy Shanmugam
- Computational Insights and Sustainable Research Laboratory (CISRL), CO2 Research and Green Technologies Centre, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Arumugam Elangovan
- PG & Research Department of Chemistry, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai 21, Tamil Nadu, India.
| | - Ponnaiah Sathish Kumar
- PG & Research Department of Chemistry, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai 21, Tamil Nadu, India; Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea
| | - Chandrasekaran Sharmila
- PG & Research Department of Chemistry, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Karuppaiah Sudha
- PG & Research Department of Chemistry, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Ganesan Arivazhagan
- PG & Research Department of Physics, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Palaniappan Subramanian
- New Technologies Research Centre (NTC), University of West Bohemia, Univerzitni, 8/2732 301 00, Pilsen, Czech Republic
| |
Collapse
|
5
|
Ma L, Pei WY, Xu HL, Yang J, Ma JF. Composite of a thiacalix[4]arene-copper(I) metal-organic framework and mesoporous carbon for efficient electrochemical detection of antibiotics. Talanta 2024; 269:125490. [PMID: 38048681 DOI: 10.1016/j.talanta.2023.125490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023]
Abstract
Abundant use of nitrofurantoin (NFT) and metronidazole (MTZ) antibiotics has led to excessive residues in the environments and humans, resulting in serious damage to the human body and ecosystem. Therefore, effective detection of NFT and MTZ is exceedingly necessary. In this regard, metal-organic frameworks (MOFs) are promising materials as electrochemical sensors. Herein, we synthesized a new two-dimensional thiacalix [4]arene-copper (I) MOF (Cu-TC4A-M). This MOF was mixed with mesoporous carbon (MC) to a give Cu-TC4A-M@MC composite. In addition, the sensors of Cu-TC4A-M@MC(2:1)/GCE and Cu-TC4A-M@MC(1:2)/GCE were achieved (GCE = glassy carbon electrode), and then were applied for effectively detecting NFT and MTZ, respectively. Markedly, the two sensors exhibited satisfactory linear detection range, anti-interference, reproducibility and stability. When they were utilized in the real samples, such as human serum, urine, tap water and lake water, satisfactory recoveries were attained. The relative standard deviations (RSDs) were in the range of 1.16 % ∼ 1.92 % for NFT and 0.95 % ∼ 2.33 % for MTZ. This work provided a new application prospect for the thiacalix [4]arene-based MOFs as promising candidate materials for NFT and MTZ detection.
Collapse
Affiliation(s)
- Le Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jin Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China.
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China.
| |
Collapse
|
6
|
Three-Dimensional Hierarchical Co3O4/Carbon Composite: Hydrothermal Synthesis and Morphine Electrochemical Sensing Application. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Graphite sheets modified with poly(methylene blue) films: A cost-effective approach for the electrochemical sensing of the antibiotic nitrofurantoin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
9
|
Muthukutty B, Ganesamurthi J, Chen TW, Chen SM, Yu J, Liu X. A novel high-performance electrocatalytic determination platform for voltammetric sensing of eugenol in acidic media using pyrochlore structured lanthanum stannate nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Haidyrah AS, Sundaresan P, Venkatesh K, Ramaraj SK, Thirumalraj B. Fabrication of functionalized carbon nanofibers/carbon black composite for electrochemical investigation of antibacterial drug nitrofurantoin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Balamurugan M, Shanmugam R, Chen TW, Chen SM, Lou BS, Liu X, Hong CY. Temperature abetted synthesis of novel magnesium stannate nanoparticles assisted for nanomolar level detection of hazardous flavonoid in biological samples. Food Chem 2021; 361:130162. [PMID: 34051600 DOI: 10.1016/j.foodchem.2021.130162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022]
Abstract
Fabrication of temperature-influenced nanoparticles over the superficial region of glassy carbon electrode (GCE) stimulates the electrocatalytic activity owing to their morphology, defective sites, and higher active surface area, etc. In this regard, we have fabricated annealed magnesium stannate nanoparticles (Mg2SnO4 NPs) on GCE for nanomolar level detection of hazardous flavoring and pharmaceutical compound Rutin (RT). To analyze the impact of temperature, we have compared annealed Mg2SnO4 NPs with unannealed magnesium stannate hydrate (MgSnO3·3H2O) particles. The physicochemical properties of synthesized materials were characterized with different microscopic and spectroscopic techniques. From these studies, annealed Mg2SnO4 NPs formed purely without any flith and existence of water molecules as compared to unannealed MgSnO3·3H2O. Moreover as fabricated, Mg2SnO4 NPs/GCE outcomes with higher redox behavior compared to other electrodes in presence of RT at optimized working buffer (pH = 7.0). Interestingly, the electrode successfully established a dual wider linear response (0.062-34.8 & 34.8-346.8 µM) with a nanomolar detection limit (1 nM) and higher sensitivity. The practicability analysis of the proposed sensor also affords excellent selectivity, reproducibility, repeatability, reversibility, and storage stability. Furthermore, the real sample analysis was carried out in blood and orange samples fallout with better recovery results.
Collapse
Affiliation(s)
- Muthukutty Balamurugan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Ragurethinam Shanmugam
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan, ROC; Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC.
| | - Xiaoheng Liu
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Cheng-Yu Hong
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| |
Collapse
|