1
|
Tchaikovskaya O, Bocharnikova E, Chaydonova V, Bryantseva N, Avramov P. Spectrophotofluorometric assay of Sulfaguanidine in Milk whey. Food Chem 2025; 481:144051. [PMID: 40186916 DOI: 10.1016/j.foodchem.2025.144051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
The methylene blue fluorescence quenching and bromocresol purple spectrophotometric methods were applied to achieve the detection of sulfaguanidine in whey. The quenching of the fluorescence marker by sulfaguanidine in whey was used to elucidate the effect of the quencher on the Stern-Volmer quenching constant (KSV) values. The interaction of methylene blue with sulfaguanidine increases in whey by 3 times compared to water (KSV = 3 × 103 M-1 and KSV = 1 × 103 M-1, respectively). The value of the Stern-Volmer quenching constant KSV = 4 × 104 M-1 is the highest for quenching of whey fluorescence by bromocresol purple. The obtained results were applied as a spectral method for determining the concentration of sulfaguanidine in whey. Analytic emission (348, 430 and 700 nm) and absorption (259, 435 and 590 nm) wavelengths were used. The concentration for detecting sulfaguanidine in whey was 5 × 10-7 M (0.01 mg/mL) which is an order of magnitude lower the limit of spectrophotometric method.
Collapse
Affiliation(s)
- Olga Tchaikovskaya
- Laboratory of Photophysics and Photochemistry of Molecules, Department of Physics, National Research Tomsk State University, 634050 Tomsk, Russia; Laboratory of Quantum Electronics, Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620116 Yekaterinburg, Russia.
| | - Elena Bocharnikova
- Laboratory of Photophysics and Photochemistry of Molecules, Department of Physics, National Research Tomsk State University, 634050 Tomsk, Russia; Laboratory of Quantum Electronics, Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620116 Yekaterinburg, Russia
| | - Vlada Chaydonova
- Laboratory of Photophysics and Photochemistry of Molecules, Department of Physics, National Research Tomsk State University, 634050 Tomsk, Russia; Radiotherapy Department, Oncology Center of the Kaliningrad Region, 238312 Kaliningrad, Russia
| | - Natalia Bryantseva
- Laboratory of Photophysics and Photochemistry of Molecules, Department of Physics, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Pavel Avramov
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 41566 Daegu, South Korea.
| |
Collapse
|
2
|
Yan RK, Chen XL, Ren J, Cui HL, Yang H, Wang JJ. Synthesis of highly sensitive and multi-response Eu-MOF, fluorescence sensing properties and anti-counterfeiting applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124855. [PMID: 39053119 DOI: 10.1016/j.saa.2024.124855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
A new Europium metal-organic framework (Eu-MOF), namely [Eu(dpa) (H2O)]·0.5(bpy)·4H2O}n (H4dpa = 5-(3,4-dicarboxyphenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine) was synthesized and structurally characterized by elemental analyses, infrared spectroscopy, and X-ray single-crystal diffraction analyses. Eu-MOF shows a three-dimensional network structure based on EuIII ions and (dpa)4- ligands via µ4: η1, η2, η2, η2 coordination mode. Fluorescence analysis shows that Eu-MOF has excellent fluorescence sensing characteristics, which can efficiently and sensitively detect various pollutants in water: the limit of detection (LOD) of ratiometric fluorescence detection of ANI in water was 42.9 nM, which was better than the single-peak detection limit. In addition, the peak detection limits of Eu-MOF for Flu, ORN and NB were 120 nM, 27 nM and 94 nM, respectively. In addition, XPS, LUMO orbital energy level, fluorescence lifetime, ultraviolet absorption and other principles are used to explore the mechanism of fluorescence quenching. Surprisingly, Eu-MOF not only has excellent anti- counterfeiting ability and stability, can be used as anti-counterfeiting material in life, but also has good selectivity to Flu. Eu-MOF has obvious fluorescence quenching effect on Flu on paper under ultraviolet light, which can be used for rapid in situ imaging test paper of pesticide residues.
Collapse
Affiliation(s)
- Rui-Kui Yan
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| | - Xiao-Li Chen
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.
| | - Jing Ren
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| | - Hua-Li Cui
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| | - Ji-Jiang Wang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| |
Collapse
|
3
|
Pu Q, Wang C, Yin X, Ye N, Zhang L, Xiang Y. A ratiometric fluorescent dark box and smartphone integrated portable sensing platform based on hydrogen bonding induction for on-site determination of enrofloxacin. Food Chem 2024; 455:139876. [PMID: 38823143 DOI: 10.1016/j.foodchem.2024.139876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Enrofloxacin (ENR) residues in animal-derived food and water threaten human health. Simple, low-cost and on-site detection methods are urgently needed. Blue emitting carbon quantum dots (CQDs) and orange rhodamine B (RhB) were used as recognition and reference signals, respectively, to construct a ratiometric fluorescence sensor. After the addition of ENR, the color of the sensor changed from orange to blue because hydrogen bonding induced a considerable increase in CQDs fluorescence. Based on this mechanism, a simple and low cost on-site portable sensing platform was constructed, which integrated a stable UV light strip and a smartphone with voice-controlled phototaking function and an RGB app. The t-test results of spiked ENR recoveries for diluted milk, honey and drinking water revealed no significant differences between the ratiometric fluorescent sensor and portable sensing platform. Thus, this portable sensing platform provides a novel strategy for on-site quantification of quinolone antibiotics in foodstuffs and environmental water.
Collapse
Affiliation(s)
- Qi Pu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chumeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xinyue Yin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
4
|
Zhou L, Duan X, Dai J, Ma Y, Yang Q, Hou X. A covalent-organic framework-based platform for simultaneous smartphone detection and degradation of aflatoxin B1. Talanta 2024; 278:126505. [PMID: 38968658 DOI: 10.1016/j.talanta.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
This study developed a smartphone-based biosensor that could simultaneously detect and degrade aflatoxin B1 (AFB1). A donor-acceptor covalent organic framework (COF) was bound onto the surface of stainless-steel mesh (SSM) via the in-situ synthesis, which was used to immobilize the aptamer (Apt) to specifically capture AFB1 and was also as a photocatalyst to degrade AFB1. Au@Ir nanospheres were synthesized, which exhibited better peroxidase catalytic activity (Km=5.36 × 10-6 M, Vmax=3.48 × 10-7 Ms-1, Kcat=1.00 × 107 s-1) than Ir@Au nanospheres, so Au@Ir nanospheres were linked with Apt2 to be utilized as the signal probe. The density functional theory calculation also described that Au@Ir nanospheres possessed the lower energy barriers to decompose H2O2 than Ir@Au nanospheres. Coupled with the "Color Picker" application in the smartphone, the established "sandwich-structure" colorimetric method exhibited a linear range of 0.5-200 μg L-1 and a detection limit of 0.045 μg L-1. The photocatalytic capacity of SSM/COF towards AFB1 was investigated and the degradation rate researched 81.14 % within 120 min under the xenon lamp irradiation, and the degradation products were validated by ESI-MS. It was applied for the detection of AFB1 in peanuts, corn, and wheat samples. Recoveries were ranging from 77.90 % to 112.5 %, and the matrix effect was 75.10-111.6 %. Therefore, the smartphone-based biosensor provided a simple, fast, and sensitive platform for the detection of AFB1, and meanwhile could realize the efficient degradation of AFB1.
Collapse
Affiliation(s)
- Lingling Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xueting Duan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jiayin Dai
- University College London, Division of Biosciences, London, England, United Kingdom
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
5
|
Qian X, Tan C, Zhang J, Wu K, Deng A, Li J. Antenna effect enhanced ECL immunoassay using microfloral europium porphyrin coordination polymers based on Eu 3+ and TCPP for the detection of chloramphenicol in foods. Analyst 2024; 149:4623-4632. [PMID: 39101528 DOI: 10.1039/d4an00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The "antenna effect" is one of the most important energy transfer modes in lanthanide light-emitting polymers. In this study, novel luminescent nanostructured coordination polymers (Eu-PCP) were synthesized in one step using Eu3+ as the central metal ion and 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the organic ligand. The unique "antenna effect" observed between Eu3+ and TCPP leads to a substantial improvement in the electrochemiluminescence (ECL) emission efficiency. Eu-PCP exhibits good cathodic ECL characteristics. Additionally, Au@SnS2 nanosheets exhibit favorable electrical conductivity, biocompatibility, and a significant specific surface area. This makes them a suitable choice as substrate materials for the modification of electrode surfaces and capturing antigens. Being well known, the development of sensitive and rapid methods to detect chloramphenicol is essential for food safety. Based on this, we report a novel competitive electrochemiluminescence immunoassay to achieve ultra-sensitive and highly specific detection of chloramphenicol. The linear range was 0.0002-500 ng mL-1 and the detection limit was 0.09 pg mL-1. Apart from that, the experimental results proved that it provided a new analytical tool for the detection of antibiotic residues in food safety.
Collapse
Affiliation(s)
- Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Cheng Tan
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jing Zhang
- Shanghai Animal Disease Control Center, Shanghai 201103, P.R. China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, P.R. China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
6
|
Hu J, Chen P, Zhang L, Sun P, Huang Y, Liu X, Fan Q. A universal optical aptasensor for antibiotics determination based on a new high-efficiency Förster resonance energy transfer pair. Mikrochim Acta 2024; 191:561. [PMID: 39180707 DOI: 10.1007/s00604-024-06629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
A novel "turn-on" aptasensor for kanamycin (Kana) detection based on a new Förster resonance energy transfer (FRET) pair is reported. A new organic small molecule was employed as a high-efficiency quencher for fluorophore. Based on specific interactions between ssDNA and the quencher, an ingenious and amplified strategy was designed. In the absence of the target, the fluorescence of the fluorophore labeled at the end of the aptamer was quenched. After the binding of the aptamer to the target, the fluorescence was recovered and amplified. The proposed aptasensor showed high specificity, selectivity, and stability in complicated systems. With the P3-based strategy, the limit of detection for Kana is estimated to be 10 nM, which is much lower than the maximum allowable concentration in milk. The recoveries of spiked Kana in milk were in the range 99.8 ~ 105.3% (n = 3). Fortunately, this novel method can be easily extended to other antibiotics such as tobramycin by simply replacing the aptamer, showing great potential as a universal platform for selective, sensitive, and rapid detection of hazardous analytes in food samples.
Collapse
Affiliation(s)
- Junbo Hu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Chen
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Longsheng Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Yanqin Huang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xingfen Liu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Quli Fan
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
7
|
Kumar R, Bhardwaj VK. Microwave Synthesis of Fluorescent Carbon Quantum dots from Araucaria Heterophylla Gum: Application in Drug Detection. J Fluoresc 2024:10.1007/s10895-024-03874-8. [PMID: 39126608 DOI: 10.1007/s10895-024-03874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
This study employed a green microwave synthesis technique to produce carbon quantum dots (CQDs) from araucaria heterophylla gum extract. The produced CQDs emit a distinct blue fluorescent light, contributing a remarkable quantum yield of 14.69%. Their average particle size measures at 1.62 ± 0.39 nm. Furthermore, these CQDs demonstrate excellent water solubility and maintain high fluorescence stability despite ionic strength, pH and time variations. Moreover, we present here for the first time that the synthesized CQDs demonstrate a rapid, exceptionally sensitive, and discerning fluorescence quenching phenomenon (IFE) concerning Cefprozil (CPR). The fluorescent probe was sensitive and specific with good linear relationships for CPR in the 0-18 µM range. The limit of detection for relationships for CPR was 2.51 µM. This study provides novel opportunities for producing high-quality luminescent CQDs that meet the requirements for various biological and environmental applications.
Collapse
Affiliation(s)
- Rohitash Kumar
- Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Vimal K Bhardwaj
- Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
8
|
Li J, Qin Z, Zhang B, Wu X, Wu J, Peng L, Xiao Y. Development of transcriptional factor-based whole-cell biosensors to monitor and degrade antibiotics using mutant cells obtained via adaptive laboratory evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134536. [PMID: 38759406 DOI: 10.1016/j.jhazmat.2024.134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
With the widespread use of antibiotics and increasing environmental concerns regarding antibiotic abuse, the detection and degradation of antibiotic residues in various samples has become a pressing issue. Transcriptional factor (TF)-based whole-cell biosensors are low-cost, easy-to-use, and flexible tools for detecting chemicals and controlling bioprocesses. However, because of cytotoxicity caused by antibiotics, the application of such biosensors is limited in the presence of antibiotics. In this study, we used antibiotic-tolerant mutants obtained via adaptive laboratory evolution (ALE) to develop TF-based whole-cell biosensors for antibiotic monitoring and degradation. The biosensors had high performance and stability in detecting relatively high concentrations of tetracycline (Tc) and nisin. The ALE mutant-based Tc biosensor exhibited a 10-fold larger linear detection range than the wild-type strain-based biosensor. Then, the Tc biosensor was employed to detect residual amounts of Tc in mouse stool, serum, and urine samples and facilitate Tc biodegradation in mouse stool, demonstrating its high utility. Considering that ALE has been demonstrated to enhance cell tolerance to various toxic chemicals, our strategy might facilitate the development of whole-cell biosensors for most antibiotics and other toxic ligands.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ziqing Qin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Baohui Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaofeng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jing Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
9
|
Song Y, Meng Y, Chen K, Huang G, Li S, Hu L. Novel electrochemical sensing strategy for ultrasensitive detection of tetracycline based on porphyrin/metal phthalocyanine-covalent organic framework. Bioelectrochemistry 2024; 156:108630. [PMID: 38147788 DOI: 10.1016/j.bioelechem.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
In this work, a novel two-dimensional semiconducting metal covalent organic framework (CuTAPc-TFPP-COF) was synthesized and used as biosensing platform to construct aptasensor for trace detection of tetracycline (TC). The CuTAPc-TFPP-COF integrates the highly conjugated structure, large specific surface area, high porosity, abundant nitrogen functional groups, excellent electrochemical activity, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the CuTAPc-TFPP-COF-based aptasensor shows high sensitivity for detecting TC via specific recognition between aptamer and TC to form Apt-TC complex. An ultralow detection limit of 59.6 fM is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.1-100000 pM for TC. The CuTAPc-TFPP-COF-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and excellent applicability for real river water, milk, and pork samples. Therefore, the CuTAPc-TFPP-COF-based aptasensor will be promising for detecting trace harmful antibiotics residues in environmental water and food samples.
Collapse
Affiliation(s)
- Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| | - Yubo Meng
- School of Mechanical Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Gailing Huang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Sizhuan Li
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Lijun Hu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| |
Collapse
|
10
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y. In-situ SERS detection of quinolone antibiotic residues in aquaculture water by multifunctional Fe 3O 4@mTiO 2@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123056. [PMID: 37385202 DOI: 10.1016/j.saa.2023.123056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Antibiotic residues in aquaculture environments disrupt the ecosystem balance and pose a potential hazard to human health when entering the food chain. Therefore, ultra-sensitive detection of antibiotics is necessary. In this study, a multifunctional Fe3O4@mTiO2@Ag core-shell nanoparticle (NP), synthesized using a layer-by-layer method, was demonstrated to be useful as an enhanced substrate for in-situ surface-enhanced Raman spectroscopy (SERS) detection of various quinolone antibiotics in aqueous environments. The results showed that the minimum detectable concentrations of the six investigated antibiotics were 1 × 10-9 mol/L (ciprofloxacin, danofloxacin, enoxacin, enrofloxacin, and norfloxacin) and 1 × 10-8 mol/L (difloxacin hydrochloride) under the enrichment and enhancement of Fe3O4@mTiO2@Ag NPs. Additionally, there was a good quantitative relationship between the antibiotics concentrations and SERS peak intensities within a certain detection range. The results of the spiked assay of actual aquaculture water samples showed that the recoveries of the six antibiotics ranged from 82.9% to 113.5%, with relative standard deviations ranging from 1.71% to 7.24%. In addition, Fe3O4@mTiO2@Ag NPs achieved satisfactory results in assisting the photocatalytic degradation of antibiotics in aqueous environments. This provides a multifunctional solution for low concentration detection and efficient degradation of antibiotics in aquaculture water.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
11
|
Zhang J, Wang J, Ouyang F, Zheng Z, Huang X, Zhang H, He D, He S, Wei H, Yu CY. A smartphone-integrated portable platform based on polychromatic ratiometric fluorescent paper sensors for visual quantitative determination of norfloxacin. Anal Chim Acta 2023; 1279:341837. [PMID: 37827652 DOI: 10.1016/j.aca.2023.341837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
The emergence of "superbugs" due to antibiotics overuse poses a significant threat to human health and security. The development of sensitive and effective antibiotics detection is undoubtedly a prerequisite for addressing antibiotics overuse-associated issues. However, current techniques for monitoring antibiotics typically require costly equipment and well-trained professionals. Hence, we developed herein a rapid, instrument-free, and on-site detection method for antibiotic residues such as norfloxacin (NOR) based on a ratiometric sensing platform utilizing "on-off-on" response properties of polychromatic fluorescence for direct visual quantitative NOR analysis. Specifically, this platform integrated iron ions (Fe3+)-chelated blue carbon dots (BCDs) for signal sensing and red carbon dots (RCDs) as an internal reference. The sensor mechanism is selective quenching of BCDs' blue fluorescence by Fe3+ via an inner filter effect with unaffected RCDs' red fluorescence. Further NOR addition led to competitive binding with BCDs due to Fe3+ shedding from the BCDs' surface for a recovered blue fluorescence signal. Notably, the ratiometric fluorescence sensor demonstrated rapid and highly sensitive NOR detection in a concentration range of 1-70 μM with an impressive detection limit of 6.84 nM. The ratiometric fluorescence sensing platform was constructed by integrating smartphone and paper-based strategies, which exhibited exceptional sensitivity, selectivity, and rapid response for portable, instrument-free, visual quantification of NOR in real samples.
Collapse
Affiliation(s)
- Jiaheng Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaowan Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dongxiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
12
|
Yan C, Mu Z, Wu Y, Liao X, Zhou J, Bai L. New two-dimensional nanocomposites combined with target-induced strategy in an electrochemical aptasensor for sensitive determination of sulfadimethoxine. Mikrochim Acta 2023; 190:445. [PMID: 37851156 DOI: 10.1007/s00604-023-06024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Ni-Zn bimetallic organic framework nanosheets (NiZn-MOF NSs) were modified onto PEI-functionalized MXene for the first time. The combination of the two kinds of nanosheets forms a sensing platform with superior conductivity and biocompatibility. On this basis, a highly sensitive biosensor was developed for the determination of sulfadimethoxine (SDM). Furthermore, Au and Mn nanoparticles decorated reduced graphene oxide (Au-Mn/rGO) was introduced as a signal hindering molecule under the target-induced amplification strategy. When the Au-Mn/rGO-labelled SDM-binding aptamer (Au-Mn/rGO-SBA) specifically bound to target SDM, it detached from the electrode, thereby further amplifying the electrochemical signal of [Fe(CN)6]3-/4-. The developed aptasensor for SDM showed excellent response signals in the range 1 pg mL-1 to 100 ng mL-1, with a limit of detection (LOD) as low as 0.22 pg mL-1. Significantly, the proposed sensor also showed satisfactory results in milk samples with recoveries ranging from 87.0 to 96.4% and RSD from 1.5 to 5.1%, which is believed to be useful in food safety assays.
Collapse
Affiliation(s)
- Chuanyong Yan
- Xuzhou College of Industry Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Zhaode Mu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yijie Wu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xingxing Liao
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jiaxu Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
13
|
Dong X, Qi S, Qin M, Ding N, Zhang Y, Wang Z. A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO 2@Fe 3O 4 nanomaterials for ochratoxin A detection. Mikrochim Acta 2023; 190:443. [PMID: 37848735 DOI: 10.1007/s00604-023-06018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO2@Fe3O4 nanomaterials for ultrasensitive and specific ochratoxin A detection in food samples is presented. Au@SiO2@Fe3O4 nanomaterials provide the loading platform as well as separation and recovery properties for the ternary Y-DNA walker. The ternary Y-DNA walker is designed to be driven by Nb.BbvCI cleaving a large number of FAM probes to achieve signal amplification. Since Ochratoxin A (OTA) can bind to the constituent aptamer in the ternary Y-DNA walker, adding OTA will destroy the structure of the ternary Y-DNA walker, thereby inhibiting the driving process of the walker. After optimization of various parameters, a standard curve was obtained from 100 to 0.05 ng·mL-1 of OTA with the limit of determination of 0.027 ng·mL-1. The spiked recovery of peanut samples by this method was 82.00-93.30%, and the aptasensor showed excellent specificity and long-term stability. This simple, robust, and scalable oligonucleotide chain-based ternary Y-DNA walker can provide a general signal amplification strategy for trace analysis.
Collapse
Affiliation(s)
- Xiaoze Dong
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ning Ding
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China.
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Food, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Meng Y, Huang Y, Huang G, Song Y. TPN-COF@Fe-MIL-100 composite used as an electrochemical aptasensor for detection of trace tetracycline residues. RSC Adv 2023; 13:28148-28157. [PMID: 37753396 PMCID: PMC10518659 DOI: 10.1039/d3ra05452g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this work, a metal-organic framework@covalent organic framework composite (TPN-COF@Fe-MIL-100) was prepared and used as a sensing material to construct an aptasensor for trace detection of tetracycline (TET). The TPN-COF@Fe-MIL-100 integrates a large surface area, porous structure, excellent electrochemical activity, rich chemical functionality, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the TPN-COF@Fe-MIL-100-based aptasensor shows high sensitivity for detecting TET via specific recognition between aptamer and TET to form G-quadruplex. An ultralow detection limit of 1.227 fg mL-1 is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.01-10000 pg mL-1 for TET. The TPN-COF@Fe-MIL-100-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and applicability for a real milk sample. Therefore, the TPN-COF@Fe-MIL-100-based aptasensor will be promising for detecting trace harmful antibiotics residues for food safety.
Collapse
Affiliation(s)
- Yubo Meng
- School of Mechanical Engineering, Henan University of Engineering Zhengzhou 451191 PR China
| | - Yuchun Huang
- School of Mechanical Engineering, Henan University of Engineering Zhengzhou 451191 PR China
| | - Gailing Huang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| |
Collapse
|
15
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
16
|
Althomali RH, Hamoud Alshahrani S, Qasim Almajidi Y, Kamal Hasan W, Gulnoza D, Romero-Parra RM, Abid MK, Radie Alawadi AH, Alsalamyh A, Juyal A. Current Trends in Nanomaterials-Based Electrochemiluminescence Aptasensors for the Determination of Antibiotic Residues in Foodstuffs: A Comprehensive Review. Crit Rev Anal Chem 2023; 54:3252-3268. [PMID: 37480552 DOI: 10.1080/10408347.2023.2238059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Veterinary pharmaceuticals have been recently recognized as newly emerging environmental contaminants. Indeed, because of their uncontrolled or overused disposal, we are now facing undesirable amounts of these constituents in foodstuff and its related human health concerns. In this context, developing a well-organized environmental and foodstuff screening toward antibiotic levels is of paramount importance to ensure the safety of food products as well as human health. In this case, with the development and progress of electric/photo detecting, nanomaterials, and nucleic acid aptamer technology, their incorporation-driven evolving electrochemiluminescence aptasensing strategy has presented the hopeful potentials in identifying the residual amounts of different antibiotics toward sensitivity, economy, and practicality. In this context, we reviewed the up-to-date development of ECL aptasensors with aptamers as recognition elements and nanomaterials as the active elements for quantitative sensing the residual antibiotics in foodstuff and agriculture-related matrices, dissected the unavoidable challenges, and debated the upcoming prospects.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Wajeeh Kamal Hasan
- Department of Radiology and Sonar Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
| | | | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Ali Alsalamyh
- College of Technical Engineering, Imam Jafar Al-Sadiq University, Al-Muthanna, Iraq
| | - Ashima Juyal
- Division of Research & Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
17
|
Liang G, Song L, Gao Y, Wu K, Guo R, Chen R, Zhen J, Pan L. Aptamer Sensors for the Detection of Antibiotic Residues- A Mini-Review. TOXICS 2023; 11:513. [PMID: 37368613 DOI: 10.3390/toxics11060513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Food security is a global issue, since it is closely related to human health. Antibiotics play a significant role in animal husbandry owing to their desirable broad-spectrum antibacterial activity. However, irrational use of antibiotics has caused serious environmental pollution and food safety problems; thus, the on-site detection of antibiotics is in high demand in environmental analysis and food safety assessment. Aptamer-based sensors are simple to use, accurate, inexpensive, selective, and are suitable for detecting antibiotics for environmental and food safety analysis. This review summarizes the recent advances in aptamer-based electrochemical, fluorescent, and colorimetric sensors for antibiotics detection. The review focuses on the detection principles of different aptamer sensors and recent achievements in developing electrochemical, fluorescent, and colorimetric aptamer sensors. The advantages and disadvantages of different sensors, current challenges, and future trends of aptamer-based sensors are also discussed.
Collapse
Affiliation(s)
- Gang Liang
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Le Song
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Yufei Gao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050024, China
| | - Kailong Wu
- Ulanqab Agricultural and Livestock Product Quality Safety Center, Ulanqab 012406, China
| | - Rui Guo
- Datong Comprehensive Inspection and Testing Center, Datong 037000, China
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Jianhui Zhen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
18
|
Zhou X, Li J, Hu Y, Wu Y, Wang Y, Ning G. A novel colorimetric assay for sensitive detection of kanamycin based on the aptamer-regulated peroxidase-mimicking activity of Co 3O 4 nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2441-2447. [PMID: 37157837 DOI: 10.1039/d3ay00304c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Kanamycin is used widely in livestock farming due to its antimicrobial properties and low cost, but has led to antibiotic residues in food, which can damage human health. Therefore, there is an urgent need for convenient technology that can be used to detect kanamycin rapidly. We found that Co3O4 nanoparticles (NPs) possessed peroxidase-like activity that catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine to change color. Interestingly, a target-specific aptamer could regulate the catalytic activity of Co3O4 NPs and inhibit this effect through aptamer-target binding. On the basis of a colorimetric assay combined with an aptamer-regulatory mechanism, the linear range for quantitative detection of kanamycin was 0.1-30 μM, the minimum limit of detection was 44.2 nM, and the total time needed for detection was 55 min. Moreover, this "aptasensor" displayed excellent selectivity and could be applied to detect KAN in milk samples. Our sensor might have promising applications for kanamycin detection in animal husbandry and agricultural products.
Collapse
Affiliation(s)
- Xuan Zhou
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Jiaxin Li
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Yuda Hu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, 410208, Changsha, China.
| |
Collapse
|
19
|
Huang YH, Wei H, Santiago PJ, Thrift WJ, Ragan R, Jiang S. Sensing Antibiotics in Wastewater Using Surface-Enhanced Raman Scattering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4880-4891. [PMID: 36934344 PMCID: PMC10061928 DOI: 10.1021/acs.est.3c00027] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Rapid and cost-effective detection of antibiotics in wastewater and through wastewater treatment processes is an important first step in developing effective strategies for their removal. Surface-enhanced Raman scattering (SERS) has the potential for label-free, real-time sensing of antibiotic contamination in the environment. This study reports the testing of two gold nanostructures as SERS substrates for the label-free detection of quinoline, a small-molecular-weight antibiotic that is commonly found in wastewater. The results showed that the self-assembled SERS substrate was able to quantify quinoline spiked in wastewater with a lower limit of detection (LoD) of 5.01 ppb. The SERStrate (commercially available SERS substrate with gold nanopillars) had a similar sensitivity for quinoline quantification in pure water (LoD of 1.15 ppb) but did not perform well for quinoline quantification in wastewater (LoD of 97.5 ppm) due to interferences from non-target molecules in the wastewater. Models constructed based on machine learning algorithms could improve the separation and identification of quinoline Raman spectra from those of interference molecules to some degree, but the selectivity of SERS intensification was more critical to achieve the identification and quantification of the target analyte. The results of this study are a proof-of-concept for SERS applications in label-free sensing of environmental contaminants. Further research is warranted to transform the concept into a practical technology for environmental monitoring.
Collapse
Affiliation(s)
- Yen-Hsiang Huang
- Department
of Civil and Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Hong Wei
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Peter J. Santiago
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - William John Thrift
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Regina Ragan
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Sunny Jiang
- Department
of Civil and Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
20
|
Li Y, Wang M, Yang G, Wang YY. Fabrication of the Antibiotic Sensor by the Multifunctional Stable Adjustable Luminescent Lanthanide Metal-Organic Frameworks. Inorg Chem 2023; 62:4735-4744. [PMID: 36869870 DOI: 10.1021/acs.inorgchem.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
In recent years, the irrational use of antibiotics has become very widespread. It is necessary to regulate this phenomenon through antibiotic detection. In this work, a series of isomorphic Ln-MOFs (Ln = Tb3+ and Eu3+) were synthesized from 1,3,5-tri(4-carboxyphenyl)benzene (H3L) and Ln3+ by the solvothermal method for the first time. A series of 1-EuxTb1-x with different luminescence were doped by changing the molar ratio of Tb3+ and Eu3+. Ln3+ forms a 4-connected 2D network structure through self-assembly with fully deprotonated L3-. It shows good chemical stability in water, and its luminescence is not affected by aqueous solutions with different pH values. 1-Eu demonstrates rapid and sensitive detection capabilities for MDZ and TET with good recyclability and low detection limits (10-5). In order to increase the practicability of 1-Eu, two portable sensors have been prepared, in which the fluorescent film (Film@1-Eu) has a detection limit of 10-4, and the sensitivity is only less than 10% of the titration results. A portable fluorescent test paper can reach the detection limit of 14.7 ppm. This study provides a new idea for the application of stable multifunctional materials in the field of fluorescence sensing.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Meng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
21
|
Han B, Li W, Shen Y, Li R, Wang M, Zhuang Z, Zhou Y, Jing T. Improving the sensitivity and selectivity of sulfonamides electrochemical detection with double-system imprinted polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161173. [PMID: 36572315 DOI: 10.1016/j.scitotenv.2022.161173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The extensive use of antibiotics leading to the rapid spread of antibiotic resistance poses high health risks to humans, but to date there is still lack of an on-site detection method of SA residues. In this study, we integrated radical polymerization using sodium p-styrenesulfonate as a functional monomer and the self-polymerization of dopamine to prepare double-system imprinted polymers (DIPs) using sulfonamide antibiotics as templates. We found that the DIPs were semi-interpenetrating polymer networks and introduction of poly(dopamine) improved the selectivity of the imprinted cavities as well as the conductivity. The selectivity and sensitivity of the sensor using DIPs were much higher than those using single-system MIPs. This sensor could determine sulfonamides in complex samples in the presence of structural analogues. The linear range was from 0.01 to 10.00 μmol L-1 with a detection limit of 4.00 nmol L-1. Furthermore, based on the highly selective DIPs and statistics analysis, this method could be used for simultaneous analysis of 4 sulfonamide types in real samples with an accuracy of 94.87 %. This work provides a strategy to improve the selectivity and sensitivity of MIPs based-sensor that can serve as tool for the simultaneous analysis of antibiotic residues in environment samples.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Wenbin Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
22
|
Toyos-Rodríguez C, Valero-Calvo D, de la Escosura-Muñiz A. Advances in the screening of antimicrobial compounds using electrochemical biosensors: is there room for nanomaterials? Anal Bioanal Chem 2023; 415:1107-1121. [PMID: 36445455 PMCID: PMC9707421 DOI: 10.1007/s00216-022-04449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The abusive use of antimicrobial compounds and the associated appearance of antimicrobial resistant strains are a major threat to human health. An improved antimicrobial administration involves a faster diagnosis and detection of resistances. Antimicrobial susceptibility testing (AST) are the reference techniques for this purpose, relying mainly in the use of culture techniques. The long time required for analysis and the lack of reproducibility of these techniques have fostered the development of high-throughput AST methods, including electrochemical biosensors. In this review, recent electrochemical methods used in AST have been revised, with particular attention on those used for the evaluation of new drug candidates. The role of nanomaterials in these biosensing platforms has also been questioned, inferring that it is of minor importance compared to other applications.
Collapse
Affiliation(s)
- Celia Toyos-Rodríguez
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain
| | - David Valero-Calvo
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain.
| |
Collapse
|
23
|
Hong J, Su M, Zhao K, Zhou Y, Wang J, Zhou SF, Lin X. A Minireview for Recent Development of Nanomaterial-Based Detection of Antibiotics. BIOSENSORS 2023; 13:327. [PMID: 36979539 PMCID: PMC10046170 DOI: 10.3390/bios13030327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics are considered a new type of organic pollutant. Antibiotic residues have become a global issue due to their harm to human health. As the use of antibiotics is increasing in human life, such as in medicine, crops, livestock, and even drinking water, the accurate analysis of antibiotics is very vital. In order to develop rapid and on-site approaches for the detection of antibiotics and the analysis of trace-level residual antibiotics, a high-sensitivity, simple, and portable solution is required. Meanwhile, the rapid nanotechnology development of a variety of nanomaterials has been achieved. In this review, nanomaterial-based techniques for antibiotic detection are discussed, and some reports that have employed combined nanomaterials with optical techniques or electrochemical techniques are highlighted.
Collapse
Affiliation(s)
- Jiafu Hong
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Mengxing Su
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Kunmeng Zhao
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yihui Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingjing Wang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Shu-Feng Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xuexia Lin
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
24
|
Mao C, Mao Y, Zhu X, Chen G, Feng C. Synthetic biology-based bioreactor and its application in biochemical analysis. Crit Rev Anal Chem 2023; 54:2467-2484. [PMID: 36803337 DOI: 10.1080/10408347.2023.2180319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In the past few years, synthetic biologists have established some biological elements and bioreactors composed of nucleotides under the guidance of engineering methods. Following the concept of engineering, the common bioreactor components in recent years are introduced and compared. At present, biosensors based on synthetic biology have been applied to water pollution monitoring, disease diagnosis, epidemiological monitoring, biochemical analysis and other detection fields. In this paper, the biosensor components based on synthetic bioreactors and reporters are reviewed. In addition, the applications of biosensors based on cell system and cell-free system in the detection of heavy metal ions, nucleic acid, antibiotics and other substances are presented. Finally, the bottlenecks faced by biosensors and the direction of optimization are also discussed.
Collapse
Affiliation(s)
- Changqing Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
25
|
Emerging Trends of Electrochemical Sensors in Food Analysis. ELECTROCHEM 2023. [DOI: 10.3390/electrochem4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Food quality and safety pose an increasing threat to human health worldwide [...]
Collapse
|
26
|
A label-free impedance-based electrochemical sensor based on self-assembled dendritic DNA nanostructures for Pb2+ detection. Bioelectrochemistry 2023; 149:108312. [DOI: 10.1016/j.bioelechem.2022.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
27
|
Qiao M, Liu Y, Wei M. Dual-signal output fluorescent aptasensor based on DNA programmability and gold nanoflowers for multiple mycotoxins detection. Anal Bioanal Chem 2023; 415:277-288. [PMID: 36376716 DOI: 10.1007/s00216-022-04403-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Herein, a dual-signal output fluorescent aptamer sensor was constructed for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) using the specific recognition ability of aptamers and the programmability of DNA. A functional capture probe (cDNA) was designed with the black hole quenching motif BHQ1 labeled at the 5' end and biotin (bio) labeled at the 3' end. The fluorescent dye Cy3-labeled aflatoxin B1 aptamer (AFB1-Apt) and the carboxyfluorescein FAM-labeled ochratoxin A aptamer (OTA-Apt) were used as two fluorescent probes. The cDNA is anchored to the quenching material gold nanoflowers (AuNFs) by the action of streptavidin (SA) and biotin. Its ends can be complementarily paired with two fluorescent probe bases to form a double-stranded structure. The fluorescence of Cy3 was quenched by AuNFs, and the fluorescence of FAM was quenched by BHQ1 through the fluorescence energy resonance transfer (FRET) effect, forming a fluorescence quenching system. Due to the high affinity of the target and the aptamer, the structure of the aptamer probe changes and detaches from the sensor when AFB1 and OTA are present, resulting in enhanced fluorescence. Under optimal conditions, the linear range of AFB1 was 0.1-100 ng/mL (R2 = 0.996), the limit of detection (LOD) was as low as 0.014 ng/mL, and the limit of quantification (LOQ) was 0.046 ng/mL. The linear range of OTA was 0.1-100 ng/mL (R2 = 0.995), the limit of detection (LOD) was as low as 0.027 ng/mL, and the limit of quantification (LOQ) was 0.089 ng/mL. The sensor had high accuracy in detecting both AFB1 and OTA in real sample analysis. The results of the t test show that there is no significant difference between the results of this study and the high-performance liquid phase (HPLC) method, indicating that the prepared sensor can be used as a potential platform for multiple mycotoxins detection.
Collapse
Affiliation(s)
- Mengxiang Qiao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
28
|
Recent Advances in Nanomaterial-Based Sensing for Food Safety Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The increasing public attention on unceasing food safety incidents prompts the requirements of analytical techniques with high sensitivity, reliability, and reproducibility to timely prevent food safety incidents occurring. Food analysis is critically important for the health of both animals and human beings. Due to their unique physical and chemical properties, nanomaterials provide more opportunities for food quality and safety control. To date, nanomaterials have been widely used in the construction of sensors and biosensors to achieve more accurate, fast, and selective food safety detection. Here, various nanomaterial-based sensors for food analysis are outlined, including optical and electrochemical sensors. The discussion mainly involves the basic sensing principles, current strategies, and novel designs. Additionally, given the trend towards portable devices, various smartphone sensor-based point-of-care (POC) devices for home care testing are discussed.
Collapse
|
29
|
Chemo/biosensors towards effect-directed analysis: An overview of current status and future development. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Photoactivities regulating of inorganic semiconductors and their applications in photoelectrochemical sensors for antibiotics analysis: A systematic review. Biosens Bioelectron 2022; 216:114634. [DOI: 10.1016/j.bios.2022.114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
|
31
|
Wang S, Sun M, Zhang Y, Ji H, Gao J, Song S, Sun J, Liu H, Zhang Y, Han L. Ultrasensitive Antibiotic Perceiving Based on Aptamer-Functionalized Ultraclean Graphene Field-Effect Transistor Biosensor. Anal Chem 2022; 94:14785-14793. [PMID: 36223308 DOI: 10.1021/acs.analchem.2c03732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotics are powerful tools to treat bacterial infections, but antibiotic pollution is becoming a severe threat to the effective treatment of human bacterial infections. The detection of antibiotics in water has been a crucial research area for bioassays in recent years. There is still an urgent need for a simple ultrasensitive detection approach to achieve accurate antibiotic detection at low concentrations. Herein, a field-effect transistor (FET)-based biosensor was developed using ultraclean graphene and an aptamer for ultrasensitive tetracycline detection. Using a newly designed camphor-rosin clean transfer (CRCT) scheme to prepare ultraclean graphene, the carrier mobility of the FET is found to be improved by more than 10 times compared with the FET prepared by the conventional PMMA transfer (CPT) method. Based on the FET, aptamer-functionalized transistor antibiotic biosensors were constructed and characterized. A dynamic detection range of 5 orders of magnitude, a sensitivity of 21.7 mV/decade, and a low detection limit of 100 fM are achieved for the CRCT-FET biosensors with good stability, which are much improved compared with the biosensor prepared by the CPT method. The antibiotic sensing and sensing performance enhancement mechanisms for the CRCT-FET biosensor were studied and analyzed based on experimental results and a biosensing model. Finally, the CRCT-FET biosensor was verified by detecting antibiotics in actual samples obtained from the entrances of Bohai Bay.
Collapse
Affiliation(s)
- Shun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, Shandong, China
| | - Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, Shandong, China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, Shandong, China
| | - Hao Ji
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, Shandong, China
| | - Jianwei Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, Shandong, China
| | - Shuai Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan430074, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, Shandong, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, Shandong, China.,Shenzhen Research Institute of Shandong University, Shenzhen518057, China.,State Key Laboratory of Microbial Technolgoy, Shandong University, Qingdao266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, Shandong, China.,Shenzhen Research Institute of Shandong University, Shenzhen518057, China.,State Key Laboratory of Microbial Technolgoy, Shandong University, Qingdao266237, China
| |
Collapse
|
32
|
Zeng JY, Liang YQ, Wu YN, Wu XY, Lai JP, Sun H. Synthesis and application of novel N, Si-carbon dots for the ratiometric fluorescent monitoring of the antibiotic balofloxacin in tablets and serum. RSC Adv 2022; 12:29585-29594. [PMID: 36320748 PMCID: PMC9574644 DOI: 10.1039/d2ra02932d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022] Open
Abstract
A ratiometric fluorescent probe with blue-emission fluorescence based on N, Si-doped carbon dots (N, Si-CDs) for the detection of balofloxacin (BLFX) was synthesized by simple one-pot hydrothermal carbonization using methotrexate and 3-aminopropyltriethoxysilane (APTES) as carbon materials. The obtained N, Si-CDs showed dual-emission band fluorescence characterization at 374 nm and 466 nm. Furthermore, the synthesized N, Si-CD probe exhibited evidence of ratiometric fluorescence emission characteristics (F 466/F 374) toward BLFX along with a decrease in fluorescence intensity at 374 nm and an increase in fluorescence intensity at 466 nm. Based on this probe, a highly sensitive and fast detection method for the analysis of BLFX has been established with a linear range of 1-60 μM and a low detection limit of 0.1874 μM, as well as a rapid response time of 5.0 s. The developed assay has also been successfully applied for the detection of BLFX in tablets and rat serum.
Collapse
Affiliation(s)
- Jia-Yu Zeng
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Yu-Qi Liang
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Yan-Ni Wu
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Xiao-Yi Wu
- School of Chemistry, South China Normal University Guangzhou 510006 China
- College of Environmental Science & Engineering, Guangzhou University Guangzhou 510006 China
| | - Jia-Ping Lai
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Hui Sun
- College of Environmental Science & Engineering, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
33
|
Aihaiti A, Li Z, Qin Y, Meng F, Li X, Huangfu Z, Chen K, Zhang M. Construction of Electrochemical Sensors for Antibiotic Detection Based on Carbon Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2789. [PMID: 36014654 PMCID: PMC9414981 DOI: 10.3390/nano12162789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Excessive antibiotic residues in food can cause detrimental effects on human health. The establishment of rapid, sensitive, selective, and reliable methods for the detection of antibiotics is highly in demand. With the inherent advantages of high sensitivity, rapid analysis time, and facile miniaturization, the electrochemical sensors have great potential in the detection of antibiotics. The electrochemical platforms comprising carbon nanomaterials (CNMs) have been proposed to detect antibiotic residues. Notably, with the introduction of functional CNMs, the performance of electrochemical sensors can be bolstered. This review first presents the significance of functional CNMs in the detection of antibiotics. Subsequently, we provide an overview of the applications for detection by enhancing the electrochemical behaviour of the antibiotic, as well as a brief overview of the application of recognition elements to detect antibiotics. Finally, the trend and the current challenges of electrochemical sensors based on CNMs in the detection of antibiotics is outlined.
Collapse
Affiliation(s)
- Aihemaitijiang Aihaiti
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Zongda Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Xinbo Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Zekun Huangfu
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Keping Chen
- Xinjiang Huize Foodstuff Co., Ltd., Wujiaqu City 830073, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| |
Collapse
|
34
|
Wang X, Yang J, Xie Y, Lai G. Dual DNAzyme-catalytic assembly of G-quadruplexes for inducing the aggregation of gold nanoparticles and developing a novel antibiotic assay method. Mikrochim Acta 2022; 189:262. [PMID: 35727378 DOI: 10.1007/s00604-022-05362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
By utilizing a target biorecognition reaction to induce the self-assembly of G-quadruplexes and the aggregation of gold nanoparticles (Au NPs), this work develops a novel colorimetric biosensing method for kanamycin (Kana) antibiotic detection. The compact G-quadruplex structure was assembled from its two half-split sequences which were designed in two hairpin substrates of the Mg2+-dependent DNAzyme (MNAzyme). Besides hybridizing with the aptamer strand, the MNAzyme sequence was also split into two half fragments to be designed in the two substrates. Upon the aptamer-recognition reaction toward Kana, the MNAzyme strand could be quantitatively released to cause the exposure of the split G-quadruplex-sequences on two hairpin substrate-modified Au NPs and simultaneous release of two half fragments of the MNAzyme-sequence. Thus, the K+-assisted self-folding of G-quadruplexes causes the cross-linking of the two Au NPs to realize the Au NP aggregation-based colorimetric signal output (measured at the largest absorption peak near 520 nm). Meanwhile, the self-assembled formation of the second MNAzyme drastically amplified the signal response. Under the optimal conditions, a wide linear range from 0.1 pg mL-1 to 10 ng mL-1 and an ultrahigh sensitivity with the detection limit of 76 fg mL-1 were obtained. The dose-recovery experiments in real samples showed satisfactory results with recoveries from 98.4 to 105.4% and relative errors compared with the ELISA method less than 4.1%. Due to the high selectivity, excellent repeatability and stability, and simple manipulation, this method indicates a promising potential for practical applications. A novel homogeneous biosensing method was developed for the convenient detection of the kanamycin antibiotic. The target biorecognition-induced and dual DNAzyme-catalytic assembly of G-quadruplexes enabled the amplified aggregation of gold nanoparticles for the simple, cheap, stable, and ultrasensitive colorimetric signal transduction of the method.
Collapse
Affiliation(s)
- Xiaojun Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Jingru Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
35
|
Low SC, Shaimi R. Amperometric sensor using nylon-6-film-modified carbon electrode for low-cost detection of ascorbic acid. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02933-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Fu L, Mao S, Chen F, Zhao S, Su W, Lai G, Yu A, Lin CT. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). CHEMOSPHERE 2022; 297:134127. [PMID: 35240147 DOI: 10.1016/j.chemosphere.2022.134127] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
The residues of antibiotics in the environment pose a potential health hazard, so highly sensitive detection of antibiotics has always appealed to analytical chemists. With the widespread use of new low-dimensional materials, graphene-modified electrochemical sensors have emerged as an excellent candidate for highly sensitive detection of antibiotics. Graphene, its derivatives and its composites have been used in this field of exploration in the last decade. In this review, we have not only described the field using traditional summaries, but also used bibliometrics to quantify the development of the field. The literature between 2011 and 2021 was included in the analysis. Also, the sensing performance and detection targets of different sensors were compared. We were able to trace not only the flow of research themes, but also the future areas of development. Graphene is a material that has a high potential to be used on a large scale in the preparation of electrochemical sensors. How to design a sensor with selectivity and low cost is the key to bring this material from the laboratory to practical applications.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
37
|
Tran TTT, Do MN, Dang TNH, Tran QH, Le VT, Dao AQ, Vasseghian Y. A state-of-the-art review on graphene-based nanomaterials to determine antibiotics by electrochemical techniques. ENVIRONMENTAL RESEARCH 2022; 208:112744. [PMID: 35065928 DOI: 10.1016/j.envres.2022.112744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics might build up into the human body by foodstuff metabolism, posing a serious threat to human health and safety. Establishing simple and sensitive technology for quick antibiotic evaluation is thus extremely important. Nanomaterials (or NMTs) with the advantage of possessing merits such as remarkable optical, thermal, mechanical, and electrical capabilities have been highlighted as a piece of the best promising materials for rising new paths in the creation of the future generation biosensors. This paper presents the most recent advances in the use of graphene NMTs-based biosensors to determine antibiotics. Gr-NMTs (or graphene nanomaterials) have been used in the development of a biosensor for the electrochemical signal-transducing process. The rising issues and potential chances of this field are contained to give a plan for forthcoming research orientations. As a result, this review provides a comprehensive evaluation of the nanostructured electrochemical sensing approach for antibiotic residues in various systems. In this review, various electrochemical techniques such as CV, DPV, Stripping, EIS, LSV, chronoamperometry, SWV were employed to determine antibiotics. Additionally, this also demonstrates how graphene nanomaterials are employed to detect antibiotics.
Collapse
Affiliation(s)
- Thanh Tam Toan Tran
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Mai Nguyen Do
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Thi Ngoc Hoa Dang
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Quang Huy Tran
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam
| | - Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
38
|
Ye H, Yang Z, Khan IM, Niazi S, Guo Y, Wang Z, Yang H. Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Crit Rev Food Sci Nutr 2022; 63:9098-9110. [PMID: 35507474 DOI: 10.1080/10408398.2022.2064810] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Antibiotic contamination is becoming a prominent global issue. Therefore, sensitive, specific and simple technology is desirable the demand for antibiotics detection. Biosensors based on split aptamer has gradually attracted extensive attention for antibiotic detection due to its higher sensitivity, lower cost, false positive/negative avoidance and flexibility in sensor design. Although many of the reported split aptamers are antibiotics aptamers, the acquisition and mechanism of splitting is still unknow. In this review, six reported split aptamers in antibiotics are outlined, including Enrofloxacin, Kanamycin, Tetracycline, Tobramycin, Neomycin, Streptomycin, which have contributed to promote interest, awareness and thoughts into this emerging research field. The study introduced the pros and cons of split aptamers, summarized the assembly principle of split aptamer and discussed the intermolecular binding of antibiotic-aptamer complexes. In addition, the recent application of split aptamers in antibiotic detection are introduced. Split aptamers have a promising future in the design and development of biosensors for antibiotic detection in food and other field. The development of the antibiotic split aptamer meets many challenges including mechanism discovery, stability improvement and new biosensor development. It is believed that split aptamer could be a powerful molecular probe and plays an important role in aptamer biosensor.
Collapse
Affiliation(s)
- Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhixin Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | | | - Sobia Niazi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
A fluorescent aptasensor for Pb2+ detection based on gold nanoflowers and RecJf exonuclease-induced signal amplification. Anal Chim Acta 2022; 1192:339329. [DOI: 10.1016/j.aca.2021.339329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
|
40
|
Abstract
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Collapse
|
41
|
KAKIMOVA Z, ZHARYKBASOVA K, KAKIMOV A, MIRASHEVA G, TOLEUBEKOVA S, ZHARYKBASOV Y, TULKEBAYEVA G, MURATBAYEV A, UTEGENOVA A. Study on the detection of antibiotics in food based on enzyme - free labelless aptamer sensor. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Abstract
Antibiotics, nowadays, are not only used for the treatment of human diseases but also used in animal and poultry farming to increase production. Overuse of antibiotics leads to their circulation in the food chain due to unmanaged discharge. These circulating antibiotics and their residues are a major cause of antimicrobial resistance (AMR), so comprehensive and multifaceted measures aligning with the One Health approach are crucial to curb the emergence and dissemination of antibiotic resistance through the food chain. Different chromatographic techniques and capillary electrophoresis (CE) are being widely used for the separation and detection of antibiotics and their residues from food samples. However, the matrix present in food samples interferes with the proper detection of the antibiotics, which are present in trace concentrations. This review is focused on the scientific literature published in the last decade devoted to the detection of antibiotics in food products. Various extraction methods are employed for the enrichment of antibiotics from a wide variety of food samples; however, solid-phase extraction (SPE) techniques are often used for the extraction of antibiotics from food products and biological samples. In addition, this review has scrutinized how changing instrumental composition, organization, and working parameters in the chromatography and CE can greatly impact the identification and quantification of antibiotic residues. This review also summarized recent advancements in other detection methods such as immunological assays, surface-enhanced Raman spectroscopy (SERS)-based assays, and biosensors which have emerged as rapid, sensitive, and selective tools for accurate detection and quantification of traces of antibiotics.
Collapse
|
43
|
Suni II. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. BIOSENSORS 2021; 11:239. [PMID: 34356710 PMCID: PMC8301891 DOI: 10.3390/bios11070239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Electrochemical biosensors have potential applications for agriculture, food safety, environmental monitoring, sports medicine, biomedicine, and other fields. One of the primary challenges in this field is the immobilization of biomolecular probes atop a solid substrate material with adequate stability, storage lifetime, and reproducibility. This review summarizes the current state of the art for covalent bonding of biomolecules onto solid substrate materials. Early research focused on the use of Au electrodes, with immobilization of biomolecules through ω-functionalized Au-thiol self-assembled monolayers (SAMs), but stability is usually inadequate due to the weak Au-S bond strength. Other noble substrates such as C, Pt, and Si have also been studied. While their nobility has the advantage of ensuring biocompatibility, it also has the disadvantage of making them relatively unreactive towards covalent bond formation. With the exception of Sn-doped In2O3 (indium tin oxide, ITO), most metal oxides are not electrically conductive enough for use within electrochemical biosensors. Recent research has focused on transition metal dichalcogenides (TMDs) such as MoS2 and on electrically conductive polymers such as polyaniline, polypyrrole, and polythiophene. In addition, the deposition of functionalized thin films from aryldiazonium cations has attracted significant attention as a substrate-independent method for biofunctionalization.
Collapse
Affiliation(s)
- Ian Ivar Suni
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA; ; Tel.: +1-618-453-7822
- School of Chemistry and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- School of Mechanical, Aerospace and Materials Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
44
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
45
|
The Application of Nanomaterials for the Electrochemical Detection of Antibiotics: A Review. MICROMACHINES 2021; 12:mi12030308. [PMID: 33804280 PMCID: PMC8000799 DOI: 10.3390/mi12030308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Antibiotics can accumulate through food metabolism in the human body which may have a significant effect on human safety and health. It is therefore highly beneficial to establish easy and sensitive approaches for rapid assessment of antibiotic amounts. In the development of next-generation biosensors, nanomaterials (NMs) with outstanding thermal, mechanical, optical, and electrical properties have been identified as one of the most hopeful materials for opening new gates. This study discusses the latest developments in the identification of antibiotics by nanomaterial-constructed biosensors. The construction of biosensors for electrochemical signal-transducing mechanisms has been utilized in various types of nanomaterials, including quantum dots (QDs), metal-organic frameworks (MOFs), magnetic nanoparticles (NPs), metal nanomaterials, and carbon nanomaterials. To provide an outline for future study directions, the existing problems and future opportunities in this area are also included. The current review, therefore, summarizes an in-depth assessment of the nanostructured electrochemical sensing method for residues of antibiotics in different systems.
Collapse
|