1
|
Ma J, Li K, Duan Z, Yang X, Zhou G, Ye S. On-Chip Isolation and Reciprocal Signal Amplification Detection of Tumor-Derived Exosomes in Dual-Control Microfluidic Device. Anal Chem 2025; 97:7483-7489. [PMID: 40152743 DOI: 10.1021/acs.analchem.5c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The detection of exosomes is critical for health monitoring and disease diagnosis. However, their small size and low concentration present significant challenges. In this study, we designed a dual-control microchip integrated with a surface-enhanced Raman scattering (SERS) signal amplification detection method. By employing separate chambers for isolation and detection, this method achieves magnetic separation control and DNA cascade signal amplification with electrokinetic enrichment detection. The magnetic separation step captures and isolates exosomes in a magnetic-controlled reaction chamber, releasing a signal-switching strand that translates exosome recognition into a DNA signal amplification process. The DNA cascade reciprocal signal amplification reaction is performed in an electrokinetic enrichment reaction chamber, significantly improving detection efficiency and signal intensity. In addition, absolute-value coupled data processing reduces background interference. These unique merits enable precise and highly efficient assay of exosomes. This dual-control microchip signal amplification sensor exhibits remarkable sensitivity, rapid detection times, with a detection limit of 10.9 particles/μL and a reaction time of 35 min, and successful application to real sample analysis. The platform offers a viable, accurate, and portable solution for medical point-of-care testing.
Collapse
Affiliation(s)
- Junhe Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kexin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhaofan Duan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xuexin Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guodong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
2
|
Lee SY, Kim SJ, Ha JH. Quantification of Pectobacterium carotovorum subsp. carotovorum in kimchi cabbage using a surface-enhanced Raman scattering platform with silver nanostructures. Biosens Bioelectron 2025; 267:116766. [PMID: 39265428 DOI: 10.1016/j.bios.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Pectobacterium carotovorum subsp. carotovorum (PCC) is a notorious plant pathogen responsible for severe soft rot in kimchi cabbage, which results in significant economic losses. To detect PCC rapidly and accurately in kimchi cabbage, we developed a surface-enhanced Raman scattering (SERS) substrate on which silver nanospheres (AgNSs), nanowires (AgNWs), and nanoseeds are combined on a polydimethylsiloxane (PDMS) platform. The incorporation of Ag nanoseeds creates a higher density of hotspots, which ensures a low detection limit of 1.001 CFU/mL. Electron microscopy and spectroscopic analyses confirmed the successful fabrication of the substrate and its enhanced sensitivity. The SERS substrate exhibits excellent selectivity by effectively distinguishing PCC from other bacteria commonly found in kimchi cabbage. The substrate gives rise to strong Raman signals across PCC concentrations ranging from 101 to 106 CFU/mL. Additionally, a predictive model was developed for accurately detecting PCC in real kimchi cabbage samples, and the results were validated by polymerase chain reaction measurements. A sensitive, selective, and rapid approach for PCC detection in kimchi cabbage that offers a promising improvement over existing methodologies is presented.
Collapse
Affiliation(s)
- Seong Youl Lee
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea
| | - Su-Ji Kim
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea.
| |
Collapse
|
3
|
Xie Y, Xu J, Shao D, Liu Y, Qu X, Hu S, Dong B. SERS-Based Local Field Enhancement in Biosensing Applications. Molecules 2024; 30:105. [PMID: 39795162 PMCID: PMC11722145 DOI: 10.3390/molecules30010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures. This report delves into the advancements of the three latest types of SERS substrates: colloidal, chip-based, and tip-enhanced Raman spectroscopy. It explores the design principles, distinctive functionalities, and factors that influence SERS signal enhancement within various SERS-active nanomaterials. Furthermore, it provides an outlook on the future challenges and trends in the field. The insights presented are expected to aid researchers in the development and fabrication of SERS substrates that are not only more efficient but also more cost-effective. This progress is crucial for the multifunctionalization of SERS substrates and for their successful implementation in real-world applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.X.); (J.X.); (D.S.); (Y.L.); (X.Q.); (S.H.)
| |
Collapse
|
4
|
Salbreiter M, Frempong SB, Even S, Wagenhaus A, Girnus S, Rösch P, Popp J. Lighting the Path: Raman Spectroscopy's Journey Through the Microbial Maze. Molecules 2024; 29:5956. [PMID: 39770046 PMCID: PMC11870064 DOI: 10.3390/molecules29245956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 03/03/2025] Open
Abstract
The rapid and precise identification of microorganisms is essential in environmental science, pharmaceuticals, food safety, and medical diagnostics. Raman spectroscopy, valued for its ability to provide detailed chemical and structural information, has gained significant traction in these fields, especially with the adoption of various excitation wavelengths and tailored optical setups. The choice of wavelength and setup in Raman spectroscopy is influenced by factors such as applicability, cost, and whether bulk or single-cell analysis is performed, each impacting sensitivity and specificity in bacterial detection. In this study, we investigate the potential of different excitation wavelengths for bacterial identification, utilizing a mock culture composed of six bacterial species: three Gram-positive (S. warneri, S. cohnii, and E. malodoratus) and three Gram-negative (P. stutzeri, K. terrigena, and E. coli). To improve bacterial classification, we applied machine learning models to analyze and extract unique spectral features from Raman data. The results indicate that the choice of excitation wavelength significantly influences the bacterial spectra obtained, thereby impacting the accuracy and effectiveness of the subsequent classification results.
Collapse
Affiliation(s)
- Markus Salbreiter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sandra Baaba Frempong
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sabrina Even
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
| | - Annette Wagenhaus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sophie Girnus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
5
|
Zhang W, Liu S, Jiang S, Zhang J, Ma H, Xu L, Yang M, Ma D, Jiao Q, Tan X. Three-dimensional composite substrate based on pyramidal pitted silicon array adhered Au@Ag nanospheres for high-performance surface-enhanced Raman scattering. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4303-4316. [PMID: 39678116 PMCID: PMC11636458 DOI: 10.1515/nanoph-2024-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 12/17/2024]
Abstract
As a noninvasive and label-free optical technique, Raman spectroscopy offers significant advantages in studying the structure and properties of biomacromolecules, as well as real-time changes in cellular molecular structure. However, its practical applications are hindered by weak scattering responses, low signal intensity, and poor spectral uniformity, which affect the subsequent accuracy of spectral analysis. To address these issues, we report a novel surface-enhanced Raman scattering (SERS) substrate based on a pyramidal pitted silicon (PPSi) array structure adhered with Au-shell Ag-core nanospheres (Au@Ag NSs). By preparing a highly uniform PPSi array substrate with controllable size and arrangement, and constructing SERS-active Au@Ag NSs on this substrate, a three-dimensional (3D) composite SERS substrate is realized. The enhancement performance and spectral uniformity of 3D composite SERS substrate were examined using crystal violet (CV) and Rhodamine 6G (R6G) molecules, achieving a minimum detectable concentration of R6G at 10-9 M and the analytical enhancement factor (AEF) of 4.2 × 108. Moreover, SERS detection of biological samples with varying concentrations of Staphylococcus aureus demonstrated excellent biocompatibility of the SERS substrate and enabled quantitative analysis of bacterial concentration (R 2 = 99.7 %). Theoretical simulations using finite-difference time-domain (FDTD) analysis were conducted to examine the electromagnetic field distribution of the three-dimensional SERS composite substrate, confirming its local electric field enhancement effect. These experimental and theoretical results indicate that the Au@Ag NSs/PPSi substrate with a regulable pyramidal pitted array is a promising candidate for sensitive, label-free SERS detection in medical and biotechnological applications.
Collapse
Affiliation(s)
- Wei Zhang
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Siqi Liu
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Sijia Jiang
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Jiahang Zhang
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Hongtao Ma
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Liang Xu
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Mingyu Yang
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Ding Ma
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Qingbin Jiao
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Xin Tan
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| |
Collapse
|
6
|
Mollarasouli F, Bahrani S, Amrollahimiyandeh Y, Paimard G. Nanomaterials-based immunosensors for avian influenza virus detection. Talanta 2024; 279:126591. [PMID: 39059066 DOI: 10.1016/j.talanta.2024.126591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza viruses (AIV) are capable of infecting a considerable proportion of the world's population each year, leading to severe epidemics with high rates of morbidity and mortality. The methods now used to diagnose influenza virus A include the Western blot test (WB), hemagglutination inhibition (HI), and enzyme-linked immunosorbent assays (ELISAs). But because of their labor-intensiveness, lengthy procedures, need for costly equipment, and inexperienced staff, these approaches are considered inappropriate. The present review elucidates the recent advancements in the field of avian influenza detection through the utilization of nanomaterials-based immunosensors between 2014 and 2024. The classification of detection techniques has been taken into account to provide a comprehensive overview of the literature. The review encompasses a detailed illustration of the commonly employed detection mechanisms in immunosensors, namely, colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical detection, quartz crystal microbalance (QCM) piezoelectric, and field-effect transistor (FET). Furthermore, the challenges and future prospects for the immunosensors have been deliberated upon. The present review aims to enhance the understanding of immunosensors-based sensing platforms for virus detection and to stimulate the development of novel immunosensors by providing novel ideas and inspirations. Therefore, the aim of this paper is to provide an updated information about biosensors, as a recent detection technique of influenza with its details regarding the various types of biosensors, which can be used for this review.
Collapse
Affiliation(s)
| | - Sonia Bahrani
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Amrollahimiyandeh
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran
| | - Giti Paimard
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
7
|
Dai J, Li J, Jiao Y, Yang X, Yang D, Zhong Z, Li H, Yang Y. Colorimetric-SERS dual-mode aptasensor for Staphylococcus aureus based on MnO 2@AuNPs oxidase-like activity. Food Chem 2024; 456:139955. [PMID: 38852453 DOI: 10.1016/j.foodchem.2024.139955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The nanozyme-linked aptamer-sorbent assay (NLASA) is a rapid way to screen and characterize aptamer binding to targets. In this paper, a MnO2@AuNPs@aptamer (Apt) based NLASA coupled with colorimetric-SERS dual-mode for Staphylococcus aureus (S. aureus) detection is presented. Cu,Fe-CDs were used as the reducing agent to synthesize MnO2 and gold nanoparticles (AuNPs). Then, they were fabricated to obtain MnO2@AuNPs with oxidase (OXD)-like and SERS activities. The S. aureus aptamer was conjugated to MnO2@AuNPs and enhanced the OXD-like activity, which realized the specific capture of S. aureus in food matrices. In addition, S. aureus improves the oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS) but inhibits 3,3',5,5'-tetramethylbenzidine (TMB) to generate Raman-active oxTMB with MnO2@AuNPs@Apt. This sensor was used for detections of S. aureus in a concentration ranged from 101 to 107 CFU/mL with a detection limit of 0.926 CFU/mL (colorimetric) and 1.561 CFU/mL (SERS), and the recovery is 85%-105% in real samples.
Collapse
Affiliation(s)
- Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, Yunnan, PR China
| | - Jitao Li
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, Yunnan Minzu University, Kunming 650500, Yunnan, PR China
| | - Yang Jiao
- Yunnan Lunyang Technology Co., Ltd., Kunming 650000, China
| | - Xiaolan Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, Yunnan Minzu University, Kunming 650500, Yunnan, PR China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Zitao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, Yunnan, PR China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| |
Collapse
|
8
|
Yang CH, Cho HS, Kim YH, Yoo K, Lim J, Hahm E, Rho WY, Kim YJ, Jun BH. Effects of Raman Labeling Compounds on the Stability and Surface-Enhanced Raman Spectroscopy Performance of Ag Nanoparticle-Embedded Silica Nanoparticles as Tagging Materials. BIOSENSORS 2024; 14:272. [PMID: 38920576 PMCID: PMC11201858 DOI: 10.3390/bios14060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) tagging using silica(SiO2)@Ag nanoparticles (NPs) is easy to handle and is being studied in various fields, including SERS imaging and immunoassays. This is primarily due to its structural advantages, characterized by high SERS activity. However, the Ag NPs introduced onto the SiO2 surface may undergo structural transformation owing to the Ostwald ripening phenomenon under various conditions. As a result, the consistency of the SERS signal decreases, reducing their usability as SERS substrates. Until recently, research has been actively conducted to improve the stability of single Ag NPs. However, research on SiO2@Ag NPs used as a SERS-tagging material is still lacking. In this study, we utilized a Raman labeling compound (RLC) to prevent the structural deformation of SiO2@Ag NPs under various conditions and proposed excellent SiO2@Ag@RLC-Pre NPs as a SERS-tagging material. Using various RLCs, we confirmed that 4-mercaptobenzoic acid (4-MBA) is the RLC that maintains the highest stability for 2 months. These results were also observed for the SiO2@Ag NPs, which were unstable under various pH and temperature conditions. We believe that SERS tags using SiO2@Ag NPs and 4-MBA can be utilized in various applications on based SERS because of the high stability and consistency of the resulting SERS signal.
Collapse
Affiliation(s)
- Cho-Hee Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Jaehong Lim
- Nanophilia Inc., Gwacheon 13840, Republic of Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Won Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| |
Collapse
|
9
|
Dey P, Raza MJ, Khera A, Sharma A, Khajuria A, Pandey A, Pandey CM, Sharma RK, Singh G, Barnwal RP. Recent progress of functionalized nanomaterials-based biosensing for monitoring of food- and water-borne pathogens. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 21:100914. [DOI: 10.1016/j.enmm.2024.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Zhu X, Kim TY, Kim SM, Luo K, Lim MC. Recent Advances in Biosensor Development for the Detection of Viral Particles in Foods: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15942-15953. [PMID: 37862248 DOI: 10.1021/acs.jafc.3c05166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Viral foodborne diseases cause serious harm to human health and the economy. Rapid, accurate, and convenient approaches for detecting foodborne viruses are crucial for preventing diseases. Biosensors integrating electrochemical and optical properties of nanomaterials have emerged as effective tools for the detection of viruses in foods. However, they still face several challenges, including substantial sample preparation and relatively poor sensitivity due to complex food matrices, which limit their field applications. Hence, the purpose of this review is to provide an overview of recent advances in biosensing techniques, including electrochemical, SERS-based, and colorimetric biosensors, for detecting viral particles in food samples, with emerging techniques for extraction/concentration of virus particles from food samples. Moreover, the principle, design, and advantages/disadvantages of each biosensing method are comprehensively described. This review covers the recent development of rapid and sensitive biosensors that can be used as new standards for monitoring food safety and food quality in the food industry.
Collapse
Affiliation(s)
- Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Se-Min Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si 34113, Republic of Korea
| |
Collapse
|
11
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Zhao H, Zheng D, Wang H, Lin T, Liu W, Wang X, Lu W, Liu M, Liu W, Zhang Y, Liu M, Zhang P. In Situ Collection and Rapid Detection of Pathogenic Bacteria Using a Flexible SERS Platform Combined with a Portable Raman Spectrometer. Int J Mol Sci 2022; 23:7340. [PMID: 35806345 PMCID: PMC9267095 DOI: 10.3390/ijms23137340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to develop a simple, sensitive, low-cost, environmentally friendly and flexible surface-enhanced Raman scattering (SERS) platform, combined with a portable Raman spectrometer, for the rapid and on-site SERS detection of bacteria. Commercial tobacco packaging paper (TPP) with little background interference was used as a loading medium that effectively adsorbed Au nanoparticles and provided sufficient "hot spots". This Au-tobacco packaging paper (Au-TPP) substrate used as a flexible SERS platform can maximize sample collection by wiping irregular surfaces, and was successfully applied to the on-site and rapid detection of pathogenic bacteria. Raman fingerprints of pathogenic bacteria can be obtained by SERS detection of spiked pork using wipeable Au-TPP, which verifies its value in practical applications. The results collected by SERS were further verified by polymerase chain reaction (PCR) results. It showed several advantages in on-site SERS detection, including accurate discrimination, simple preparation, easy operation, good sensitivity, accuracy and reproducibility. This study indicates that the established flexible SERS platform has good practical applications in pathogenic bacterial identification and other rapid detections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ping Zhang
- Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China; (H.Z.); (D.Z.); (H.W.); (T.L.); (W.L.); (X.W.); (W.L.); (M.L.); (W.L.); (Y.Z.); (M.L.)
| |
Collapse
|
13
|
Ceballos M, López I, Arizmendi-Morquecho A, Sánchez-Domínguez M. Attomolar detection of 4-aminothiophenol by SERS using silver nanodendrites decorated with gold nanoparticles. NANOTECHNOLOGY 2022; 33:385602. [PMID: 35700703 DOI: 10.1088/1361-6528/ac7882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In the present work we report a simple, fast, reproducible and cheap methodology for surface enhanced Raman spectroscopy (SERS) substrate fabrication of silver dendritic nanostructures (prepared by electrodeposition) decorated with gold nanospheres by electrophoretic deposition. This is the first report where a metal dendritic nanostructure has been decorated with another type of metal nanoparticles by this technique. The decorated nanostructures were used directly as SERS substrate using 4-aminothiophenol (4-ATP) as analyte. The objective of the decoration is to create more hot-spots in order to detect the analyte in a lower concentration. Decorated nanodendrites had a detection limit one million times lower than bare silver nanodendrites and all the substrates showed an increase in the Raman intensity at concentrations below 1 nM; because this concentration corresponds to the threshold for the formation of a monolayer resulting in a triple mechanism of intensity increase, namely electric field, chemical factor and hot-spots. 4-ATP was detected in attomolar concentration, which is below 1 ppq, corresponding to an analytical enhancement factor in the order of 1015.
Collapse
Affiliation(s)
- Manuel Ceballos
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, 66628, Apodaca, Nuevo León, Mexico
| | - Israel López
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
- Universidad Autónoma de Nuevo León, UANL, Centro de Investigación en Biotecnología y Nanotecnología (CIBYN), Laboratorio de Nanociencias y Nanotecnología, Parque de Investigación e Innovación Tecnológica (PIIT), 66629, Apodaca, Nuevo León, Mexico
| | - Ana Arizmendi-Morquecho
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, 66628, Apodaca, Nuevo León, Mexico
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, 66628, Apodaca, Nuevo León, Mexico
| |
Collapse
|
14
|
Ceballos M, López I, Arizmendi-Morquecho A, Sánchez-Domínguez M. Zeptomolar detection of 4-aminothiophenol by SERS using silver nanodendrites decorated with gold nanoparticles. NANOTECHNOLOGY 2021; 33:125601. [PMID: 34875636 DOI: 10.1088/1361-6528/ac40be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/07/2021] [Indexed: 06/13/2023]
Abstract
In the present work, we report a simple, fast, reproducible and cheap methodology for SERS substrate fabrication of silver dendritic nanostructures (prepared by electrodeposition) decorated with gold nanospheres by electrophoretic deposition. This is the first report where a metal dendritic nanostructure has been decorated with another type of metal nanoparticles by this technique. The decorated nanostructures were used directly as SERS substrate using 4-aminothiophenol (4-ATP) as analyte. The objective of the decoration is to create more hot-spots in order to detect the analyte in a lower concentration. Decorated nanodendrites had a detection limit one million times lower than bare silver nanodendrites and all the substrates showed an increase in the Raman intensity at concentrations below 1 nM; because this concentration corresponds to the threshold for the formation of a monolayer resulting in a triple mechanism of intensity increase, namely electric field, chemical factor and hot-spots. 4-ATP was detected in zeptomolar concentration, which is below 1 ppq, corresponding to an analytical enhancement factor in the order of 1015.
Collapse
Affiliation(s)
- Manuel Ceballos
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, 66628, Apodaca, Nuevo León, Mexico
| | - Israel López
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
- Universidad Autónoma de Nuevo León, UANL, Centro de Investigación en Biotecnología y Nanotecnología (CIBYN), Laboratorio de Nanociencias y Nanotecnología, Parque de Investigación e Innovación Tecnológica (PIIT), 66629, Apodaca, Nuevo León, Mexico
| | - Ana Arizmendi-Morquecho
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, 66628, Apodaca, Nuevo León, Mexico
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, 66628, Apodaca, Nuevo León, Mexico
| |
Collapse
|