1
|
Prado IC, Carvalho JPRDS, Araujo AS, Napoleão-Pêgo P, De-Simone SG. Ultrasensitive Peptide-Based Electrochemical Biosensor for Universal Diagnostic of Dengue. BIOSENSORS 2025; 15:236. [PMID: 40277549 DOI: 10.3390/bios15040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 04/26/2025]
Abstract
Dengue is a neglected disease mainly affecting tropical and subtropical countries. The diagnosis of dengue fever is still a problem since most of it is made from whole or recombinant DENV proteins, which present cross-reactions with other members of the Flavivirus family. Therefore, there is still a huge demand for new diagnostic methods that provide rapid, low-cost, easy-to-use confirmation. Thus, in this study, we developed an affordable electrochemical biosensor for rapidly detecting immunoglobulin G (IgG) serological antibodies in the sera of DENV-infected patients. An identified linear B-cell epitope (DENV/18) specific for DENV 1-4 serotypes recognized by IgG in patient sera was selected as a target molecule after a microarray of peptides using the SPOT-synthesis methodology. After chemical synthesis, the DENV/18-peptide was immobilized on the surface of the working electrode of a commercially available screen-printed gold electrode (SPGE). The capture of DENV-specific IgG allowed for the formation of an immunocomplex that was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using a potassium ferrocyanide/ferricyanide ([Fe(CN)6]3-/4-) electrochemical probe. An evaluation of the biosensor's performance showed a detection limit of 100 µg mL-1 for the synthetic peptides (DENV/18) and 1.21 ng mL-1 in CV and 0.43 ng mL-1 in DPV for human serum, with a sensitivity of 7.21 µA in CV and 8.79 µA in DPV. The differentiation of infected and uninfected individuals was possible even at a high dilution factor that reduced the required sample volumes to a few microliters. The final device proved suitable for diagnosing DENV by analyzing real serum samples, and the results showed good agreement with molecular biology diagnostics. The flexibility to conjugate other antigenic peptides to SPEs suggests that this technology could be rapidly adapted to diagnose other pathogens.
Collapse
Affiliation(s)
- Isis Campos Prado
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - João Pedro Rangel da Silva Carvalho
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Biology Institute, Federal Fluminense University, Niteroi 24020-141, RJ, Brazil
| | - André Souza Araujo
- Analytical Chemistry Department, Chemistry Institute, Federal Fluminense University, Niteroi 24020-141, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Biology Institute, Federal Fluminense University, Niteroi 24020-141, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
2
|
R B R, Reddy S, Kumari D, K J A, G N, K J G, E N, K N H. Fmoc-Pro-Phe-OMe dipeptide carbon sensor for simultaneous detection of chloramphenicol (CP) and furazolidone (FZ) toxic residues in food samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 60:1-14. [PMID: 39673082 DOI: 10.1080/03601234.2024.2437925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
In this work, we fabricated the Fmoc-Pro-Phe-OMe modified carbon paste electrode (FPPO/MCPE) and used it for electrochemical detection of CP and FZ in a 0.1 M phosphate buffer solution (pH = 7). We characterized the Fmoc-Pro-Phe-OMe and applied it for the electrochemical detection of CP and FZ. The Mass spectroscopy, 1HNMR, and FTIR measurements confirm the Fmoc-Pro-Phe-OMe chemical structure. Studying electrochemical sensor characteristics, variation of scan rate parameters, and electrode surface area is crucial for understanding and optimizing the performance of modified and unmodified carbon paste electrodes. The FPPO/MCPE-modified carbon paste electrode has better sensing capabilities than the unmodified bare carbon paste electrode (BCPE). The FPPO/MCPE sensor has two linear ranges: 50-450 μM (CP) with a detection limit of 0.014 μM and 50-450 μM (FZ) with a detection limit of 0.015 μM. The FPPO/MCPE sensor is highly sensitive, measuring 4.25 µA/µM/cm2 for CP and 4.1 µA/µM/cm2 for FZ. Scan rate and concentration tests demonstrate that the oxidation of CP and FZ is a diffusion-controlled electrode process. The FPPO/MCPE sensor also demonstrates excellent repeatability, reproducibility, stability, and selectivity for detection of CP and FZ. The use of FPPO/MCPE-sensor is demonstrated for the detection of FZ and CP in milk and honey samples.
Collapse
Affiliation(s)
- Raghavendra R B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Dalli Kumari
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Nagendra G
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Gururaj K J
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India
| | - Nirajan E
- Department of Chemistry, S.J.M. Institute of Technology (SJMIT), Chitradurga, Karnataka, India
| | - Harish K N
- Department of Chemistry, B.M.S. College of Engineering, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Quezada D, Herrera B, Santibáñez R, Palma JL, Landaeta E, Álvarez CA, Valenzuela S, Cobos-Montes K, Ramírez D, Santana PA, Ahumada M. Impedimetric Sensor for SARS-CoV-2 Spike Protein Detection: Performance Assessment with an ACE2 Peptide-Mimic/Graphite Interface. BIOSENSORS 2024; 14:592. [PMID: 39727857 DOI: 10.3390/bios14120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer. To this end, an impedimetric detector was developed based on a graphite electrode surface modified with an ACE2 peptide-mimic. This sensor enables accurate quantification of recombinant 2019-nCoV spike RBD protein (used as a model analyte) within a linear detection range of 0.167-0.994 ng mL-1, providing a reliable method for detecting SARS-CoV-2. The observed sensitivity was further demonstrated by molecular dynamics that established the high affinity and specificity of the peptide to the protein. Unlike other impedimetric sensors, the herein presented system can detect impedance in a single frequency, allowing a measure as fast as 3 min to complete the analysis and achieving a detection limit of 45.08 pg mL-1. Thus, the proposed peptide-based electrochemical biosensor offers fast results with adequate sensitivity, opening a path to new developments concerning other viruses of interest.
Collapse
Affiliation(s)
- Diego Quezada
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Beatriz Herrera
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Rodrigo Santibáñez
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Juan Luis Palma
- School of Engineering, Universidad Central de Chile, Santiago 8330601, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - Esteban Landaeta
- School of Engineering, Universidad Central de Chile, Santiago 8330601, Chile
| | - Claudio A Álvarez
- Laboratorio de Cultivo de Peces, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo 1781421, Chile
| | - Santiago Valenzuela
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Kevin Cobos-Montes
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Talcahuano 4260000, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Paula A Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| |
Collapse
|
4
|
Baruah A, Newar R, Das S, Kalita N, Nath M, Ghosh P, Chinnam S, Sarma H, Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. DISCOVER NANO 2024; 19:103. [PMID: 38884869 PMCID: PMC11183028 DOI: 10.1186/s11671-024-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
Collapse
Affiliation(s)
- Arabinda Baruah
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Rachita Newar
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Saikat Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Nitul Kalita
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Masood Nath
- University of Technology and Applied Sciences, Muscat, Oman
| | - Priya Ghosh
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonomous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, UTEP, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
5
|
Pan M, Zhao Y, Qiao J, Meng X. Electrochemical biosensors for pathogenic microorganisms detection based on recognition elements. Folia Microbiol (Praha) 2024; 69:283-304. [PMID: 38367165 DOI: 10.1007/s12223-024-01144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
Collapse
Affiliation(s)
- Mengting Pan
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yurui Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jinjuan Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
6
|
Nazari-Vanani R, Negahdary M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. ENVIRONMENTAL RESEARCH 2024; 243:117850. [PMID: 38081349 DOI: 10.1016/j.envres.2023.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In recent years, pathogenic microorganisms have caused significant mortality rates and antibiotic resistance and triggered exorbitant healthcare costs. These pathogens often have high transmission rates within human populations. Rapid diagnosis is crucial in controlling and reducing the spread of pathogenic infections. The diagnostic methods currently used against individuals infected with these pathogens include relying on outward symptoms, immunological-based and, some biomolecular ones, which mainly have limitations such as diagnostic errors, time-consuming processes, and high-cost platforms. Electrochemical aptasensors and genosensors have emerged as promising diagnostic tools for rapid, accurate, and cost-effective pathogen detection. These bio-electrochemical platforms have been optimized for diagnostic purposes by incorporating advanced materials (mainly nanomaterials), biomolecular technologies, and innovative designs. This review classifies electrochemical aptasensors and genosensors developed between 2021 and 2023 based on their use of different nanomaterials, such as gold-based, carbon-based, and others that employed other innovative assemblies without the use of nanomaterials. Inspecting the diagnostic features of various sensing platforms against pathogenic analytes can identify research gaps and open new avenues for exploration.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
7
|
Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. MICROMACHINES 2024; 15:181. [PMID: 38398911 PMCID: PMC10890403 DOI: 10.3390/mi15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Collapse
Affiliation(s)
- Nikita Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Andrey Ryabko
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Vyacheslav Moshnikov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
| | - Andrey Aleshin
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Dmitry Kaplun
- Artificial Intelligence Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China;
- Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Tatiana Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| |
Collapse
|
8
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Wang F, Gong Y, Xu Y, Ma Z, Han H. Electrochemical sensing interface based on the oriented self-assembly of histidine labeled peptides induced by Ni2+ for protease detection. Biosens Bioelectron 2023; 230:115259. [PMID: 37001291 DOI: 10.1016/j.bios.2023.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
To construct an electrochemical sensing interface which was convenient for protease recognition and cleavage, we designed a strategy for directed self-assembly of histidine-tagged peptides on the electrode led by Ni2+ ions for electrochemical detection of prostate specific antigen (PSA). The electrode surface was first functionalized using carboxylated multiwalled carbon nanotubes and then modified with the metal ion chelating agent (5 S)-N-(5-Amino-1-carboxypentyl) iminodiacetic acid (NIA). After the Ni2+ was captured by NIA, the designed immune-functional peptide could be oriented assembly to the electrode interface through the imidazole ring of histidine at the tail, completing the construction of the recognition layer. Therefore, by adding the analyte PSA to identify and shear the immune-functional peptide, the ferrocene in its head was released, resulting in a reduction in the electrical signal, enabling sensitive detection. In addition, the self-assembly layer could be removed by pickling to realize the reconstruction of the recognition layer. Under optimal conditions, the electrochemical sensor had an ultralow detection limit of 11.8 fg mL-1 for PSA, with a wide detection range from 1 pg mL-1 to 100 ng mL-1. In this work, an electrochemical sensing interface based on the histidine-tagged peptide induced by Ni2+ was formed to enable controllable oriented assembly on the electrode surface, and the recognition layer could be reconstructed via pickling, providing a potential approach for the design of repeatable interfaces.
Collapse
|
11
|
Negahdary M, Akira Ameku W, Gomes Santos B, dos Santos Lima I, Gomes de Oliveira T, Carvalho França M, Angnes L. Recent electrochemical sensors and biosensors for toxic agents based on screen-printed electrodes equipped with nanomaterials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Vieira D, Barralet J, Harvey EJ, Merle G. Detecting the PEX Like Domain of Matrix Metalloproteinase-14 (MMP-14) with Therapeutic Conjugated CNTs. BIOSENSORS 2022; 12:884. [PMID: 36291022 PMCID: PMC9599479 DOI: 10.3390/bios12100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Matrix metalloproteinases (MMPs) are essential proteins acting directly in the breakdown of the extra cellular matrix and so in cancer invasion and metastasis. Given its impact on tumor angiogenesis, monitoring MMP-14 provides strategic insights on cancer severity and treatment. In this work, we report a new approach to improve the electrochemical interaction of the MMP-14 with the electrode surface while preserving high specificity. This is based on the detection of the hemopexin (PEX) domain of MMP-14, which has a greater availability with a stable and low-cost commercial molecule, as a recognition element. This molecule, called NSC-405020, is specific of the PEX domain of MMP-14 within the binding pocket. Through the covalent grafting of the NSC-405020 molecule on carbon nanotubes (CNTs), we were able to detect and quantify MMP-14 using electrochemical impedance spectroscopy with a linear range of detection of 10 ng⋅mL-1 to 100 ng⋅mL-1, and LOD of 7.5 ng⋅mL-1. The specificity of the inhibitory small molecule was validated against the PEX domain of MMP-1. The inhibitor loaded CNTs system showed as a desirable candidate to become an alternative to the conventional recognition bioelements for the detection of MMP-14.
Collapse
Affiliation(s)
- D. Vieira
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (D.V.); (J.B.); (E.J.H.)
| | - J. Barralet
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (D.V.); (J.B.); (E.J.H.)
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - E. J. Harvey
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (D.V.); (J.B.); (E.J.H.)
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - G. Merle
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (D.V.); (J.B.); (E.J.H.)
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
13
|
Negahdary M, Angnes L. Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Negahdary M, Angnes L. An aptasensing platform for detection of heat shock protein 70 kDa (HSP70) using a modified gold electrode with lady fern-like gold (LFG) nanostructure. Talanta 2022; 246:123511. [DOI: 10.1016/j.talanta.2022.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|