1
|
Granerud IL, Fabritius ML, Jensen HR, Møller K, Sørensen MK. Cerebral microdialysis values in healthy brain tissue - a scoping review. Acta Neurochir (Wien) 2025; 167:62. [PMID: 40055196 PMCID: PMC11889025 DOI: 10.1007/s00701-025-06424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/02/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND Intracerebral microdialysis is an advanced method to guide clinicians during intensive care of patients with severe acute brain injury. Using intracerebral microdialysis, markers of brain metabolism and homeostasis can be analysed. Currently, trends are considered more important in clinical decision-making than absolute values. Establishing absolute reference values in healthy brain tissue may facilitate an earlier detection of abnormal brain tissue metabolism and provide better decision support for clinicians. However, the current evidence on normal values in the uninjured human brain has not previously been summarized. The aim of this study was to summarise the literature regarding microdialysate concentrations of common markers of brain energy metabolism (glucose, lactate, pyruvate, glutamate, and glycerol) in vivo in healthy brain tissue of humans and gyrencephalic animals. METHOD MEDLINE, Embase, CENTRAL, CINAHL, and Web of Science were searched for published studies that report values of microdialysis in healthy brain tissue. In order to identify unpublished studies, we searched ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP), and EU Clinical Trials Register. Study quality was evaluated using a pre-specified protocol. RESULT Out of 3257 studies identified, 39 studies were included. Six of these studies were in humans (total n = 54), 26 in pigs/swine (n = 432), two on monkeys (n = 10), one in sheep (n = 15), and one in dogs (n = 10). We found a high degree of clinical and methodological heterogeneity in both human and gyrencephalic animal studies. CONCLUSION This scoping review identified studies that applied microdialysis to measure common biomarkers in healthy brain tissue. The clinical and methodological heterogeneity between the measured values was substantial, limiting any conclusions. Furthermore, the quality of several human studies was moderate at best. Methodologically comparable studies are warranted to establish reference values for markers of brain energy metabolism using intracerebral microdialysate.
Collapse
Affiliation(s)
- Ingrid Løchen Granerud
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Maria Louise Fabritius
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helene Ravnholt Jensen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Møller
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kryspin Sørensen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Jakobsen RP, Nielsen TH, Mølstrøm S, Nordström CH, Granfeldt A, Toft P. Moderately prolonged permissive hypotension results in reversible metabolic perturbation evaluated by intracerebral microdialysis - an experimental animal study. Intensive Care Med Exp 2019; 7:67. [PMID: 31802303 PMCID: PMC6892994 DOI: 10.1186/s40635-019-0282-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background Damage control resuscitation (DCR) and damage control surgery (DCS) is the main strategy in patients with uncontrollable hemorrhagic shock. One aspect of DCR is permissive hypotension. However, the duration of hypotension that can be tolerated without affecting the brain is unknown. In the present study we investigate the effect of 60 min severe hypotension on the brain’s energy metabolism and seek to verify earlier findings that venous cerebral blood can be used as a marker of global cerebral energy state. Material and methods Ten pigs were anaesthetized, and vital parameters recorded. Microdialysis catheters were placed in the left parietal lobe, femoral artery, and superior sagittal sinus for analysis of lactate, pyruvate, glucose, glycerol, and glutamate. Hemorrhagic shock was induced by bleeding the animal until mean arterial pressure (MAP) of 40 mmHg was achieved. After 60 min the pigs were resuscitated with autologous blood and observed for 3 h. Results At baseline the lactate to pyruvate ratios (LP ratio) in the hemisphere, artery, and sagittal sinus were (median (interquartile range)) 13 (8–16), 21 (18–24), and 9 (6–22), respectively. After induction of hemorrhagic shock, the LP ratio from the left hemisphere in 9 pigs increased to levels indicating a reversible perturbation of cerebral energy metabolism 19 (12–30). The same pattern was seen in LP measurements from the femoral artery 28 (20–35) and sagittal sinus 22 (19–26). At the end of the experiment hemisphere, artery and sinus LP ratios were 16 (10–23), 17 (15–25), and 17 (10–27), respectively. Although hemisphere and sinus LP ratios decreased, they did not reach baseline levels (p < 0.05). In one pig hemisphere LP ratio increased to a level indicating irreversible metabolic perturbation (LP ratio > 200). Conclusion During 60 min of severe hypotension intracerebral microdialysis shows signs of perturbations of cerebral energy metabolism, and these changes trend towards baseline values after resuscitation. Sagittal sinus microdialysis values followed hemisphere values but were not distinguishable from systemic arterial values. Venous (jugular bulb) microdialysis might have a place in monitoring conditions where global cerebral ischemia is a risk.
Collapse
Affiliation(s)
- Rasmus Peter Jakobsen
- Department of Anesthesia and Intensive Care, Odense University Hospital, J.B. Winsløws Vej 4, Indgang 8, 20, 201, 5000, Odense C, Denmark.
| | - Troels Halfeld Nielsen
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, Indgang 44, 1. etage, 5000, Odense C, Denmark
| | - Simon Mølstrøm
- Department of Anesthesia and Intensive Care, Odense University Hospital, J.B. Winsløws Vej 4, Indgang 8, 20, 201, 5000, Odense C, Denmark
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, Indgang 44, 1. etage, 5000, Odense C, Denmark
| | - Asger Granfeldt
- Department of Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99 G304, 8200, Aarhus, Denmark
| | - Palle Toft
- Department of Anesthesia and Intensive Care, Odense University Hospital, J.B. Winsløws Vej 4, Indgang 8, 20, 201, 5000, Odense C, Denmark
| |
Collapse
|
3
|
Munk M, Poulsen FR, Larsen L, Nordström CH, Nielsen TH. Cerebral Metabolic Changes Related to Oxidative Metabolism in a Model of Bacterial Meningitis Induced by Lipopolysaccharide. Neurocrit Care 2019; 29:496-503. [PMID: 29508265 DOI: 10.1007/s12028-018-0509-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cerebral mitochondrial dysfunction is prominent in the pathophysiology of severe bacterial meningitis. In the present study, we hypothesize that the metabolic changes seen after intracisternal lipopolysaccharide (LPS) injection in a piglet model of meningitis is compatible with mitochondrial dysfunction and resembles the metabolic patterns seen in patients with bacterial meningitis. METHODS Eight pigs received LPS injection in cisterna magna, and four pigs received NaCl in cisterna magna as a control. Biochemical variables related to energy metabolism were monitored by intracerebral microdialysis technique and included interstitial glucose, lactate, pyruvate, glutamate, and glycerol. The intracranial pressure (ICP) and brain tissue oxygen tension (PbtO2) were also monitored along with physiological variables including mean arterial pressure, blood glucose, lactate, and partial pressure of O2 and CO2. Pigs were monitored for 60 min at baseline and 240 min after LPS/NaCl injection. RESULTS After LPS injection, a significant increase in cerebral lactate/pyruvate ratio (LPR) compared to control group was registered (p = 0.01). This increase was due to a significant increased lactate with stable and normal values of pyruvate. No significant change in PbtO2 or ICP was registered. No changes in physiological variables were observed. CONCLUSIONS The metabolic changes after intracisternal LPS injection is compatible with disturbance in the oxidative metabolism and partly due to mitochondrial dysfunction with increasing cerebral LPR due to increased lactate and normal pyruvate, PbtO2, and ICP. The metabolic pattern resembles the one observed in patients with bacterial meningitis. Metabolic monitoring in these patients is feasible to monitor for cerebral metabolic derangements otherwise missed by conventional intensive care monitoring.
Collapse
Affiliation(s)
- M Munk
- University of Southern Denmark School of Medicine, Odense, Denmark
| | - F R Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - L Larsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - C H Nordström
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - T H Nielsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark. .,Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R209, Stanford, CA, 94305-5327, USA.
| |
Collapse
|
4
|
Imakita N, Kitabatake M, Ouji-Sageshima N, Hara A, Morita-Takemura S, Kasahara K, Matsukawa A, Wanaka A, Mikasa K, Ito T. Abrogated Caveolin-1 expression via histone modification enzyme Setdb2 regulates brain edema in a mouse model of influenza-associated encephalopathy. Sci Rep 2019; 9:284. [PMID: 30670717 PMCID: PMC6342998 DOI: 10.1038/s41598-018-36489-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza-associated encephalopathy (IAE) is a serious complication that can follow influenza virus infection. Once a cytokine storm is induced during influenza virus infection, tight junction protein disruption occurs, which consequently leads to blood-brain barrier (BBB) breakdown. However, the details of IAE pathogenesis are not well understood. Here, we established a murine IAE model by administration of lipopolysaccharide following influenza virus infection. Brains from IAE model mice had significantly higher expression of type I interferons and inflammatory cytokines. In addition, the expression of Caveolin-1, one of the key proteins that correlate with protection of the BBB, was significantly lower in brains from the IAE group compared with the control group. We also found that, among 84 different histone modification enzymes, only SET domain bifurcated 2 (Setdb2), one of the histone methyltransferases that methylates the lysine 9 of histone H3, showed significantly higher expression in the IAE group compared with the control group. Furthermore, chromatin immunoprecipitation revealed that methylation of histone H3 lysine 9 was correlated with repression of the Caveolin-1 promoter region. These studies identify Caveolin-1 as a key regulator of BBB permeability in IAE and reveal that it acts through histone modification induced by Setdb2.
Collapse
Affiliation(s)
- Natsuko Imakita
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan.,Center for Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | | | | | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
| | - Shoko Morita-Takemura
- Department of Anatomy & Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akio Wanaka
- Department of Anatomy & Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Keiichi Mikasa
- Center for Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
5
|
Microdialysis as a Part of Invasive Cerebral Monitoring During Porcine Septic Shock. J Neurosurg Anesthesiol 2016; 28:323-30. [DOI: 10.1097/ana.0000000000000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Bedside diagnosis of mitochondrial dysfunction after malignant middle cerebral artery infarction. Neurocrit Care 2015; 21:35-42. [PMID: 23860668 DOI: 10.1007/s12028-013-9875-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The study explores whether the cerebral biochemical pattern in patients treated with hemicraniectomy after large middle cerebral artery infarcts reflects ongoing ischemia or non-ischemic mitochondrial dysfunction. METHODS The study includes 44 patients treated with decompressive hemicraniectomy (DCH) due to malignant middle cerebral artery infarctions. Chemical variables related to energy metabolism obtained by microdialysis were analyzed in the infarcted tissue and in the contralateral hemisphere from the time of DCH until 96 h after DCH. RESULTS Reperfusion of the infarcted tissue was documented in a previous report. Cerebral lactate/pyruvate ratio (L/P) and lactate were significantly elevated in the infarcted tissue compared to the non-infarcted hemisphere (p < 0.05). From 12 to 96 h after DCH the pyruvate level was significantly higher in the infarcted tissue than in the non-infarcted hemisphere (p < 0.05). CONCLUSION After a prolonged period of ischemia and subsequent reperfusion, cerebral tissue shows signs of protracted mitochondrial dysfunction, characterized by a marked increase in cerebral lactate level with a normal or increased cerebral pyruvate level resulting in an increased LP-ratio. This biochemical pattern contrasts to cerebral ischemia, which is characterized by a marked decrease in cerebral pyruvate. The study supports the hypothesis that it is possible to diagnose cerebral mitochondrial dysfunction and to separate it from cerebral ischemia by microdialysis and bed-side biochemical analysis.
Collapse
|
7
|
Cerebral metabolism during experimental endotoxin shock and after preconditioning with monophosphoryl lipid A. Clin Neurol Neurosurg 2014; 126:115-22. [DOI: 10.1016/j.clineuro.2014.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022]
|
8
|
Jacobsen A, Nielsen TH, Nilsson O, Schalén W, Nordström CH. Bedside diagnosis of mitochondrial dysfunction in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand 2014; 130:156-63. [PMID: 24796605 DOI: 10.1111/ane.12258] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Aneurysmal subarachnoid hemorrhage (SAH) is frequently associated with delayed neurological deterioration (DND). Several studies have shown that DND is not always related to vasospasm and ischemia. Experimental and clinical studies have recently documented that it is possible to diagnose and separate cerebral ischemia and mitochondrial dysfunction bedside. The study explores whether cerebral biochemical variables in SAH patients most frequently exhibit a pattern indicating ischemia or mitochondrial dysfunction. METHODS In 55 patients with severe SAH, intracerebral microdialysis was performed during neurocritical care with bedside analysis and display of glucose, pyruvate, lactate, glutamate, and glycerol. The biochemical patterns observed were compared to those previously described in animal studies of induced mitochondrial dysfunction as well as the pattern obtained in patients with recirculated cerebral infarcts. RESULTS In 29 patients, the biochemical pattern indicated mitochondrial dysfunction while 10 patients showed a pattern of cerebral ischemia, six of which also exhibited periods of mitochondrial dysfunction. Mitochondrial dysfunction was observed during 5162 h. An ischemic pattern was obtained during 688 h. Four of the patients (40%) with biochemical signs of ischemia died at the neurosurgical department as compared with three patients (10%) in the group of mitochondrial dysfunction. CONCLUSIONS The study documents that mitochondrial dysfunction is a common cause of disturbed cerebral energy metabolism in patients with SAH. Mitochondrial dysfunction may increase tissue sensitivity to secondary adverse events such as vasospasm and decreased cerebral blood flow. The separation of ischemia and mitochondrial dysfunction bedside by utilizing microdialysis offers a possibility to evaluate new therapies.
Collapse
Affiliation(s)
- A. Jacobsen
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - T. H. Nielsen
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - O. Nilsson
- Department of Neurosurgery; Lund University Hospital; Lund Sweden
| | - W. Schalén
- Department of Neurosurgery; Lund University Hospital; Lund Sweden
| | - C. H. Nordström
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| |
Collapse
|
9
|
NIELSEN TH, OLSEN NV, TOFT P, NORDSTRÖM CH. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets. Acta Anaesthesiol Scand 2013; 57:793-801. [PMID: 23495747 DOI: 10.1111/aas.12092] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is an important factor contributing to tissue damage in both severe traumatic brain injury and ischemic stroke. This experimental study explores the possibility to diagnose the condition bedside by utilising intracerebral microdialysis and analysis of chemical variables related to energy metabolism. METHODS Mitochondrial dysfunction was induced in piglets and evaluated by monitoring brain tissue oxygen tension (PbtO2 ) and cerebral levels of glucose, lactate, pyruvate, glutamate, and glycerol bilaterally. The biochemical variables were obtained by microdialysis and immediate enzymatic analysis. Mitochondrial function was blocked by unilateral infusion of NaCN/KCN (0.5 mol/L) through the microdialysis catheter (N = 5). As a reference, NaCl (0.5 mol/L) was infused by intracerebral microdialysis in one group of animals (N = 3). RESULTS PbtO2 increased during cyanide infusion and returned to baseline afterwards. The lactate/pyruvate (LP) ratio increased significantly following cyanide infusion because of a marked increase in lactate level while pyruvate remained within normal limits. Glutamate and glycerol increased after cyanide infusion indicating insufficient energy metabolism and degradation of cellular membranes, respectively. CONCLUSION Mitochondrial dysfunction is characterised by an increased LP ratio signifying a shift in cytoplasmatic redox state at normal or elevated PbtO2 . The condition is biochemically characterised by a marked increase in cerebral lactate with a normal or elevated pyruvate level. The metabolic pattern is different from cerebral ischemia, which is characterised by simultaneous decreases in intracerebral pyruvate and PbtO2 . The study supports the hypothesis that cerebral ischemia and mitochondrial dysfunction may be identified and separated at the bedside by utilising intracerebral microdialysis.
Collapse
Affiliation(s)
- T. H. NIELSEN
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - N. V. OLSEN
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - P. TOFT
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - C. H. NORDSTRÖM
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| |
Collapse
|
10
|
NIELSEN TH, BINDSLEV TT, PEDERSEN SM, TOFT P, OLSEN NV, NORDSTRÖM CH. Cerebral energy metabolism during induced mitochondrial dysfunction. Acta Anaesthesiol Scand 2013; 57:229-35. [PMID: 23017022 DOI: 10.1111/j.1399-6576.2012.02783.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets. METHODS Ten piglets were included, seven in the experimental group (anesthetized with sevoflurane) and three in the control group (anesthetized with midazolam). PbtO(2) and cerebral levels of glucose, lactate, and pyruvate were monitored bilaterally. The biochemical variables were obtained by intracerebral microdialysis. RESULTS All global variables were within normal range and did not differ significantly between the groups except for blood lactate that was slightly higher in the experimental group. Mitochondrial dysfunction was observed in the group of animals initially anesthetized with sevoflurane. Cerebral glucose was significantly lower in the experimental group than in the control group whereas lactate and lactate/pyruvate ratio were significantly higher. Pyruvate and tissue oxygen tension remained within normal range in both groups. Changes of intracerebral variables indicating mitochondrial dysfunction were present already from the very start of the monitoring period. CONCLUSION Intracerebral microdialysis revealed mitochondrial dysfunction by marked increases in cerebral lactate and lactate/pyruvate ratio simultaneously with normal levels of pyruvate and a normal PbtO(2). This metabolic pattern is distinctively different from cerebral ischemia, which is characterized by simultaneous decreases in PbtO(2) and intracerebral pyruvate.
Collapse
Affiliation(s)
- T. H. NIELSEN
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - T. T. BINDSLEV
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - S. M. PEDERSEN
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - P. TOFT
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - N. V. OLSEN
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - C. H. NORDSTRÖM
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| |
Collapse
|
11
|
Cao C, Yu X, Liao Z, Zhu N, Huo H, Wang M, Ji G, She H, Luo Z, Yue S. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R186. [PMID: 23036239 PMCID: PMC3682288 DOI: 10.1186/cc11670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 10/04/2012] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. METHODS Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. RESULTS Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. CONCLUSIONS Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes.
Collapse
|
12
|
Larach DB, Kofke WA, Le Roux P. Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature. Neurocrit Care 2012; 15:609-22. [PMID: 21336786 DOI: 10.1007/s12028-011-9517-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microdialysis, an in vivo technique that permits collection and analysis of small molecular weight substances from the interstitial space, was developed more than 30 years ago and introduced into the clinical neurosciences in the 1990s. Today cerebral microdialysis is an established, commercially available clinical tool that is focused primarily on markers of cerebral energy metabolism (glucose, lactate, and pyruvate) and cell damage (glycerol), and neurotransmitters (glutamate). Although the brain comprises only 2% of body weight, it consumes 20% of total body energy. Consequently, the ability to monitor cerebral metabolism can provide significant insights during clinical care. Measurements of lactate, pyruvate, and glucose give information about the comparative contributions of aerobic and anaerobic metabolisms to brain energy. The lactate/pyruvate ratio reflects cytoplasmic redox state and thus provides information about tissue oxygenation. An elevated lactate pyruvate ratio (>40) frequently is interpreted as a sign of cerebral hypoxia or ischemia. However, several other factors may contribute to an elevated LPR. This article reviews potential non-hypoxic/ischemic causes of an increased LPR.
Collapse
Affiliation(s)
- Daniel B Larach
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
13
|
Hupp S, Heimeroth V, Wippel C, Förtsch C, Ma J, Mitchell TJ, Iliev AI. Astrocytic tissue remodeling by the meningitis neurotoxin pneumolysin facilitates pathogen tissue penetration and produces interstitial brain edema. Glia 2011; 60:137-46. [PMID: 21989652 DOI: 10.1002/glia.21256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/21/2011] [Indexed: 11/06/2022]
Abstract
Astrocytes represent a major component of brain tissue and play a critical role in the proper functioning and protection of the brain. Streptococcus pneumoniae, the most common cause of bacterial meningitis, has a high lethality and causes serious disabilities in survivors. Pneumolysin (PLY), a member of the cholesterol-dependent cytolysin group and a major S. pneumoniae neurotoxin, causes deterioration over the course of experimental S. pneumoniae meningitis. At disease-relevant sub-lytic concentrations, PLY produces actin and tubulin reorganization and astrocyte cell shape changes in vitro. In this article, we show that sub-lytic amounts of PLY remodel brain tissue and produce astrocytic process retraction, cortical astroglial reorganization and increased interstitial fluid retention, which is manifested as tissue edema. These changes caused increased tissue permeability to macromolecules and bacteria. The pore-forming capacity of PLY remained necessary for these changes because none of the nonpore-forming mutants were capable of producing similar effects. We suggest that PLY can increase the permeability of brain tissue toward pathogenic factors and bacteria in the course of meningitis, thus contributing to the deterioration caused by the disease.
Collapse
Affiliation(s)
- Sabrina Hupp
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Gabrielian L, Willshire LW, Helps SC, van den Heuvel C, Mathias J, Vink R. Intracranial Pressure Changes following Traumatic Brain Injury in Rats: Lack of Significant Change in the Absence of Mass Lesions or Hypoxia. J Neurotrauma 2011; 28:2103-11. [DOI: 10.1089/neu.2011.1785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Levon Gabrielian
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | - Luke W. Willshire
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | - Stephen C. Helps
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | | | - Jane Mathias
- School of Psychology, Adelaide Centre for Neurological Diseases, University of Adelaide, Adelaide SA, Australia
| | - Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| |
Collapse
|
15
|
Amer-Wåhlin I, Nord A, Bottalico B, Hansson SR, Ley D, Marsál K, Ungerstedt U, Nordström CH. Fetal cerebral energy metabolism and electrocardiogram during experimental umbilical cord occlusion and resuscitation. J Matern Fetal Neonatal Med 2010; 23:158-66. [PMID: 20074023 DOI: 10.3109/14767050903067360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The purpose of this experimental study was to elucidate alterations in fetal energy metabolism in relation to ECG changes during extreme fetal asphyxia, postnatal resuscitation and the immediate post-resuscitatory phase. STUDY DESIGN Five near-term fetal sheep were subjected to umbilical cord occlusion until cardiac arrest followed by delivery, resuscitation and postnatal pressure-controlled ventilation. Four sheep served as sham controls and were delivered immediately after ligation of the umbilical cord. Fetal ECG was analysed online for changes of the ST segment. Fetal metabolism was monitored by intracerebral and subcutaneous microdialysis catheters. RESULTS Fetal ECG reacted on cord occlusion with an increase in the T-wave height followed by changes in intracerebral levels of oxidative parameters. Cerebral lactate/pyruvate ratio and glutamate increased to median (range) of 240 (200-744) and 34.0 (22.6-60.5) mmol/l, respectively; both parameters returned to baseline after resuscitation. Cerebral glucose decreased to 0.1 (0.08-0.12) mmol/l after occlusion and increased above baseline upon resuscitation. In subcutaneous tissue as well as blood the increase in lactate occurred with a delay compared to cerebral levels. CONCLUSION The fetal ECG changes related to asphyxia preceded the increase in excitotoxicity as determined by increase in cerebral glutamate during asphyxia. Cerebral lactate increase was superior to subcutaneous lactate increase.
Collapse
Affiliation(s)
- Isis Amer-Wåhlin
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
It is of obvious clinical importance to monitor cerebral metabolism--in particular, cerebral energy metabolism and indicators of cellular damage-online at the bedside. The technique of cerebral microdialysis provides the opportunity for continuous monitoring of metabolic changes in the tissue before they are reflected in peripheral blood chemistry or in systemic physiological parameters. The basic idea of microdialysis is to mimic the function of a blood capillary by positioning a thin dialysis tube in the tissue and to be used to analyze the chemical composition of the interstitial fluid. The biochemical variables used during routine monitoring were chosen to cover important aspects of cerebral energy metabolism (glucose, pyruvate and lactate), to indicate excessive interstitial levels of excitatory transmitter substance (glutamate) and to give indications of degradation of cellular membranes (glycerol). Furthermore, pharmokinetic studies can be conducted using microdialysis. This article discusses technical and physiological aspects of microdialysis, and its clinical applications in brain injury.
Collapse
|
17
|
Degos V, Lescot T, Puybasset L. Quantitative CT Scan and CT-Estimated Brain Specific Gravity in TBI. Intensive Care Med 2010. [DOI: 10.1007/978-1-4419-5562-3_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Prostacyclin reduces elevation of intracranial pressure and plasma volume loss in lipopolysaccharide-induced meningitis in the cat. ACTA ACUST UNITED AC 2009; 67:1345-51. [PMID: 20009688 DOI: 10.1097/ta.0b013e3181a5f211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Severe meningitis may compromise cerebral perfusion through increases in intracranial pressure (ICP) and through hypovolemia caused by a general inflammation with systemic plasma leakage. From its antiaggregative/antiadhesive and permeability-reducing properties, prostacyclin (PGI2) is a potential adjuvant treatment in meningitis, but previously published data have been ambiguous. The objective of this study was to evaluate the effects of PGI2 on meningitis on ICP, plasma volume, blood pressure, and cerebral oxidative metabolism. METHODS Meningitis was induced by intrathecal injection of lipopolysaccharide (LPS, 0.8 x 10 units/kg) in cats. Four hours after the injection, the animals were randomized to intravenous treatment with either low-dose PGI2 (1 ng/kg/min) or the vehicle for 6 hours (n = 7 in each group). No LPS and no PGI2 or vehicle was given to three cats (sham group). Effects of treatment on ICP, mean arterial pressure, plasma volume (I-albumin technique), and brain tissue lactate/pyruvate ratio (microdialysis technique) were evaluated. RESULTS ICP increased from 10.0 mm Hg +/- 1.3 mm Hg and 10.8 mm Hg +/- 1.7 mm Hg to 19.9 mm Hg +/- 1.7 mm Hg and 19.6 mm Hg +/- 3.3 mm Hg in the PGI2 and the vehicle group, respectively, 4 hours after the LPS injection (not significant). ICP increased further to 21.8 mm Hg +/- 4.5 mm Hg and to 25.8 mm Hg +/- 6.0 mm Hg after treatment for 6 hours with PGI2 or vehicle, respectively (p < 0.05). There was no significant difference in arterial pressure between groups. Plasma volume loss was less in the PGI2 group than in the vehicle group at the end of the experiment and urine production and arterial oxygenation was higher in the PGI2 group. Lactate/pyruvate ratio was within the normal range in all groups. CONCLUSION Low-dose PGI2 may be a beneficial adjuvant therapy for meningitis by reducing elevation of ICP and plasma volume loss.
Collapse
|
19
|
Dozier KC, Cureton EL, Kwan RO, Curran B, Sadjadi J, Victorino GP. Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation. Peptides 2009; 30:1735-41. [PMID: 19560500 PMCID: PMC2954434 DOI: 10.1016/j.peptides.2009.06.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/29/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a proglucagon-derived hormone with cellular protective actions. We hypothesized that GLP-1 would protect the endothelium from injury during inflammation. Our aims were to determine the: (1) effect of GLP-1 on basal microvascular permeability, (2) effect of GLP-1 on increased microvascular permeability induced by lipopolysaccaride (LPS), (3) involvement of the GLP-1 receptor in GLP-1 activity, and (4) involvement of the cAMP/PKA pathway in GLP-1 activity. Microvascular permeability (L(p)) of rat mesenteric post-capillary venules was measured in vivo. First, the effect of GLP-1 on basal L(p) was measured. Second, after systemic LPS injection, L(p) was measured after subsequent perfusion with GLP-1. Thirdly, L(p) was measured after LPS injection and perfusion with GLP-1+GLP-1 receptor antagonist. Lastly, L(p) was measured after LPS injection and perfusion with GLP-1+inhibitors of the cAMP/PKA pathway. Results are presented as mean area under the curve (AUC)+/-SEM. GLP-1 had no effect on L(p) (AUC: baseline=27+/-1.4, GLP-1=1+/-0.4, p=0.08). LPS increased L(p) two-fold (AUC: LPS=54+/-1.7, p<0.0001). GLP-1 reduced the LPS increase in L(p) by 75% (AUC: LPS+GLP-1=34+/-1.5, p<0.0001). GLP-1 antagonism reduced the effects of GLP-1 by 60% (AUC: LPS+GLP-1+antagonist=46+/-2.0, p<0.001). The cAMP synthesis inhibitor reduced the effects of GLP-1 by 60% (AUC: LPS+GLP-1+cAMP inhibitor=46+/-1.5, p<0.0001). The PKA inhibitor reduced the effects of GLP-1 by 100% (AUC: LPS+GLP-1+PKA inhibitor=56+/-1.5, p<0.0001). GLP-1 attenuates the increase in microvascular permeability induced by LPS. GLP-1 may protect the endothelium during inflammation, thus decreasing third-space fluid loss.
Collapse
Affiliation(s)
- Kristopher C Dozier
- Department of Surgery, University of California, San Francisco-East Bay, Alameda County Medical Center, Oakland, CA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rip J, Schenk GJ, de Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv 2009; 6:227-37. [PMID: 19327042 DOI: 10.1517/17425240902806383] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is not directly accessible for intravenously administered macro- and most small molecular drugs because of the presence of the blood-brain barrier (BBB). In this respect the BBB functions as a physical and metabolic barrier which is presented by the endothelial cells in brain capillaries. In order to overcome the BBB, therapeutic compounds have been targeted to internalizing receptors at the BBB. In this review we summarize the different approaches that have been described in current literature, including the possible difficulties for clinical application. Particularly, we focus on the possible impact of brain diseases on receptor-mediated transport to the BBB/brain and how this may affect various targeting strategies. Moreover, it is our opinion that a differential drug targeting/delivery approach should be applied to treat central nervous system (CNS) diseases that are related to the BBB alone, and for CNS diseases that are related to both the brain and the BBB.
Collapse
Affiliation(s)
- J Rip
- University of Leiden, Leiden-Amsterdam Center for Drug Research, Blood-Brain Barrier Research Group, Division of Pharmacology, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
Wang H, Jin R, Tian P, Zhuo Z. Enhanced expression of aquaporin-9 in rat brain edema induced by bacterial lipopolysaccharides. ACTA ACUST UNITED AC 2009; 29:150-5. [PMID: 19399395 DOI: 10.1007/s11596-009-0203-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Indexed: 01/16/2023]
Abstract
To investigate the role of AQP9 in brain edema, the expression of AQP9 in an infectious rat brain edema model induced by the injection of lipopolysaccharide (LPS) was examined. Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the expressions of AQP9 mRNA and protein at all observed intervals were significantly increased in LPS-treated animals in comparison with the control animals. Time-course analysis showed that the first signs of blood-brain barrier disruption and the increase of brain water content in LPS-treated animals were evident 6 h after LPS injection, with maximum value appearing at 12 h, which coincided with the expression profiles of AQP9 mRNA and protein in LPS-treated animals. The further correlation analysis revealed strong positive correlations among the brain water content, the disruption of the blood-brain barrier and the enhanced expressions of AQP9 mRNA and protein in LPS-treated animals. These results suggested that the regulation of AQP9 expression may play important roles in water movement and in brain metabolic homeostasis associated with the pathophysiology of brain edema induced by LPS injection.
Collapse
Affiliation(s)
- Huaili Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | |
Collapse
|
22
|
Abstract
The complement system normally eliminates bacteria and has a protective effect. However, in an inflammatory setting such as sepsis, an exaggerated or insufficient activation of this cascade can have deleterious effect through the activation of glial cells, secretion of proinflammatory cytokines and generation of other toxic products. The aim of the present study was to investigate the role of the complement cascade in septic encephalopathy, through the passive injection of endotoxin/lipopolysaccharide (LPS) into mice overexpressing the potent complement inhibitor, CR1-related y (Crry-tg). Increased gliosis occurred in brains of endotoxemic mice. Concomitant with this, there was a significant rise in mRNA expression of GFAP, CD45 and proinflammatory molecules, TLR4, TNF-alpha and NO, in these brains. Consistent with the capacity of these inflammatory mediators, there was increased apoptosis as determined by DNA fragmentation and TUNEL staining on LPS treatment, which occurred through the Akt pathway. In addition, there was increased water content in brain, similar to cerebral edema observed in sepsis. Relative to wild-type mice, complement-inhibited mice had an attenuated inflammatory response, decreased edema and reduced apoptosis. Therefore, we demonstrate for the first time that the complement cascade appears to be one of the key players that cause brain pathology in an endotoxemic setting and therefore is a viable therapeutic target.
Collapse
|
23
|
Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int 2007; 52:447-56. [PMID: 17884256 PMCID: PMC3191465 DOI: 10.1016/j.neuint.2007.08.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 07/17/2007] [Accepted: 08/09/2007] [Indexed: 12/21/2022]
Abstract
In this study, we demonstrate that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced encephalopathy. Systemic administration of lipopolysaccharide (LPS) induces a widespread inflammatory response similar to that observed in sepsis. Following LPS administration TNFR1(-/-) mice had less caspase-dependent apoptosis in brain cells and fewer neutrophils infiltrating the brain (p<0.039), compared to control C57Bl6 (TNFR1(+/+)) mice. TNFR1-dependent increase in aquaporin (AQP)-4 mRNA and protein expression was observed with a concomitant increase in water content, in brain (18% increase in C57Bl6 mice treated with LPS versus those treated with saline), similar to cerebral edema observed in sepsis. Furthermore, absence of TNFR1 partially but significantly reduced the activation of astrocytes, as shown by immunofluorescence and markedly inhibited iNOS mRNA expression (p<0.01). Septic encephalopathy is a devastating complication of sepsis. Although, considerable work has been done to identify the mechanism causing the pathological alterations in this setting, the culprit still remains an enigma. Our results demonstrate for the first time that endotoxemia leads to inflammation in brain, with alteration in blood-brain barrier, up-regulation of AQP4 and associated edema, neutrophil infiltration, astrocytosis, as well as apoptotic cellular death, all of which appear to be mediated by TNF-alpha signaling through TNFR1.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Aquaporin 4/genetics
- Aquaporin 4/metabolism
- Astrocytes/metabolism
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/physiopathology
- Brain/metabolism
- Brain/physiopathology
- Brain Diseases, Metabolic/metabolism
- Brain Diseases, Metabolic/pathology
- Brain Diseases, Metabolic/physiopathology
- Brain Edema/genetics
- Brain Edema/metabolism
- Brain Edema/physiopathology
- Chemotaxis, Leukocyte/genetics
- Encephalitis/metabolism
- Encephalitis/microbiology
- Encephalitis/physiopathology
- Gliosis/genetics
- Gliosis/metabolism
- Gliosis/physiopathology
- Inflammation Mediators/metabolism
- Lipopolysaccharides
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type II/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sepsis/complications
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Jessy J Alexander
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC5100, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
24
|
Lescot T, Bonnet MP, Zouaoui A, Muller JC, Fetita C, Coriat P, Puybasset L. A quantitative computed tomography assessment of brain weight, volume, and specific gravity in severe head trauma. Intensive Care Med 2005; 31:1042-50. [PMID: 15991008 DOI: 10.1007/s00134-005-2709-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Computed tomography DICOM images analysis allows a quantitative measurement of organ weight, volume and specific gravity in humans. METHODS The brain weight, volume and specific gravity of 15 traumatic brain-injury patients (3+/-2 days after trauma) were computed using a specially designed software (BrainView). Data were compared with those obtained from 15 healthy subjects paired for age and overall intracranial volume. RESULTS Hemisphere weight were 91 g higher in patients than in controls (1167+/-101 vs 1076+/-112 g; p<0.05). Specific gravity of hemispheres (1.0367+/-0.0017 vs 1.0335+/-0.0012 g/ml; p<0.001), brainstem (1.0302+/-0.0016 vs 1.0277+/-0.0015 g/ml; p<0.001) and cerebellum (1.0396+/-0.0020 vs 1.0375+/-0.0015 g/ml; p<0.05) was significantly higher in traumatic brain injury (TBI) patients than in controls (all p<0.0001 without interaction). This increase in specific gravity was evenly distributed between the hemispheres, the brainstem and the cerebellum, and the grey and white matter. It was more pronounced in the rostral than in the caudal areas of the hemispheres. It was independent of the volume of brain contusion, of the mechanism of head injury, of natremia and of initial Glasgow coma score. CONCLUSION Human TBI patients present a diffuse increase in specific gravity. This observation is in sharp opposition with the data derived from the experimental literature.
Collapse
Affiliation(s)
- Thomas Lescot
- Department of Anesthesiology, La Pitié-Salpêtrière Hospital and University Paris VI, 47-83 Bd de l'hôpital, 75013, Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Gärdenfors F, Nilsson A, Ungerstedt U, Nordström CH. Adverse biochemical and physiological effects of prostacyclin in experimental brain oedema. Acta Anaesthesiol Scand 2004; 48:1316-21. [PMID: 15504195 DOI: 10.1111/j.1399-6576.2004.00522.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prostacyclin (PGI2) and its stable analogues are known to reduce capillary hydraulic permeability. This study explores the biochemical and physiological effects of i.v. infusion of low-dose PGI2 in an experimental model of vasogenic brain oedema. METHODS Twenty-seven anaesthetized and mechanically ventilated piglets with brain oedema induced by intrathecal injection of lipopolysaccharide (LPS) were used. Five of the animals received a continuous infusion of PGI2 (1 ng kg(-1) min(-1)) i.v. Four microdialysis catheters were placed in the brain to measure interstitial concentrations of glucose, lactate, and glycerol. Mean arterial pressure (MAP), intracranial pressure (ICP) and temperature were monitored continuously. Low-dose infusion of PGI2 started 1 h before the LPS injection and was constant during the study period. RESULTS Intracranial pressure increased significantly in animals treated with PGI2. The increase in ICP was associated with significant cerebral biochemical changes: decrease in glucose, increase in lactate, increase in lactate/glucose ratio and increase in glycerol. CONCLUSION In LPS-induced brain oedema i.v. infusion of low-dose PGI2 caused a further increase in ICP and a perturbation of energy metabolism, indicating cerebral ischemia and degradation of cellular membranes.
Collapse
Affiliation(s)
- F Gärdenfors
- Department of Anaesthesiology, Malmö University Hospital, Malmö, Sweden
| | | | | | | |
Collapse
|
26
|
Rajendra A, Spinella PC, Drott HR, Dominguez TE, Sutton L, Helfaer M. S-100beta protein--serum levels in children with brain neoplasms and its potential as a tumor marker. J Neurooncol 2004; 67:345-9. [PMID: 15164991 DOI: 10.1023/b:neon.0000024216.15923.77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To determine if serum S-100beta levels are elevated in children with brain neoplasms and if it can be used as a tumor marker for children with brain neoplasms. DESIGN Prospective cohort study. SETTING Urban, tertiary care, children's teaching hospital. PATIENTS 136 healthy children and 27 children with brain neoplasms. METHODS Serum levels of S-100beta were measured in 136 healthy children to serve as controls and 27 children with brain neoplasms, who underwent biopsy or resection of the mass. Patients were then classified into astrocytoma or non-astrocytoma groups. MEASUREMENTS AND MAIN RESULTS The median serum S-100beta level for the control group was 0.27 mcg/l (range, 0.06-2.6 mcg/l), and for the brain neoplasm group was 0.2 mcg/l (range, 0.01-2.1 mcg/l), (p = 0.09). There were 13 children with astrocytomas and 14 with non-astrocytomas. The S-100beta levels for the astrocytoma group was 0.25 mcg/l (range, 0.05-1.1 mcg/l) and for the non-astrocytoma group 0.17 mcg/l (range, 0.01-2.1 mcg/l), (p = 0.47). CONCLUSIONS Serum S-100beta levels are not elevated in children with brain neoplasms compared to healthy children, nor are they elevated in children with astrocytomas compared to non-astrocytomas. The S-100beta protein does not appear to be useful as a serum tumor marker in children with brain neoplasms.
Collapse
Affiliation(s)
- Anil Rajendra
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
27
|
Holmström A, Rosén I, Akeson J. Desflurane results in higher cerebral blood flow than sevoflurane or isoflurane at hypocapnia in pigs. Acta Anaesthesiol Scand 2004; 48:400-4. [PMID: 15025598 DOI: 10.1111/j.0001-5172.2004.00361.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In clinical neuroanaesthesia, the increase in cerebral blood flow (CBF) and intracranial pressure caused by the cerebral vasodilative effects of an inhalational anaesthetic agent is counteracted by the cerebral vasoconstriction induced by hypocapnia. Desflurane and sevoflurane may have advantages over the more traditionally used isoflurane in neuroanaesthesia but their dose-dependent vasodilative effects at hypocapnia have not been compared in the same model using truly equipotent minimal alveolar concentrations (MACs). METHOD Desflurane, sevoflurane and isoflurane were administered in a randomized order to six pigs at 0.5 and 1.0 MAC. The intra-arterial xenon clearance technique was used to calculate CBF. Blood pressure was invasively monitored. Cerebral and systemic physiological variables were recorded first at normocapnia (PaCO2 5.6 kPa) and then at hypocapnia (PaCO2 3.5 kPa). Electroencephalographic (EEG) activity was continuously recorded. RESULTS None of the three agents abolished cerebrovascular reactivity to hyperventilation, and at 0.5 MAC all had similar effects on CBF at hypocapnia. Desflurane at 1.0 MAC was associated with 16% higher CBF (P = 0.027) at hypocapnia than isoflurane, and with 24% higher CBF (P = 0.020) than sevoflurane. There was no seizure activity in the EEG. CONCLUSION More cerebral vasodilation at hypocapnia with high doses of desflurane than with sevoflurane or isoflurane indicates that desflurane might be less suitable for neuroanaesthesia than sevoflurane and isoflurane.
Collapse
Affiliation(s)
- A Holmström
- Department ofAnaesthesia and Intensive Care, Malmö University Hospital, Lund University, Malmö, Sweden.
| | | | | |
Collapse
|
28
|
Tunblad K, Ederoth P, Gärdenfors A, Hammarlund-Udenaes M, Nordström CH. Altered brain exposure of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand 2004; 48:294-301. [PMID: 14982561 DOI: 10.1111/j.0001-5172.2003.0311.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND During pathologic conditions such as meningitis and traumatic brain injury the function of the blood-brain barrier (BBB) is disturbed. In the present study we examined the cerebral pharmacokinetic pattern of morphine in the intact brain and during experimentally induced meningitis using a pig model. Secondly, the use of intracerebral microdialysis as a potential tool for monitoring damage in the BBB by studying the pharmacokinetics of morphine is addressed. METHODS Six pigs were studied under general anaesthesia. One occipital and two frontal microdialysis probes and one pressure transducer were inserted into the brain tissue. Another probe was placed into the jugularis interna. Morphine 1 mg kg(-1) was administered as a 10-min infusion, and morphine concentrations were then measured for 3 h. Meningitis was subsequently induced by injecting lipopoly-saccharide into the cisterna magna. When meningitis was established, the morphine experiment was repeated. RESULTS The unbound area under the concentration-time curve (AUCu) ratio of morphine in brain to blood was 0.47 (0.19) during the control period, and 0.95 (0.20) (P < 0.001) during meningitis. The increase in the brain/blood AUCu ratio during meningitis implies decreased active efflux and increased passive diffusion of morphine over the BBB. The half-life of morphine in brain was longer than in blood during both periods, and was unaffected by meningitis. CONCLUSION This study demonstrates that the morphine exposure to the brain is significantly increased during meningitis as compared with the control situation.
Collapse
Affiliation(s)
- K Tunblad
- Department of Pharmaceutical Biosciences, Division of Pharmacokinetics and Drug Therapy, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Abstract
OBJECTIVE To understand the mechanism of pathologic capillary leak in the critically ill patient. DESIGN Review of normal and altered physiology of the microvasculature. Review of recent literature describing pathogenesis, mediators, and interventions influencing capillary leak and microvascular repair. SETTING In vitro and in vivo studies, the latter including animal and human subjects. MEASUREMENTS AND MAIN RESULTS Capillary leak with resultant edema develops in the critical care setting on the basis of perturbations in Starling's equation, primarily as a result of increased capillary permeability to larger molecules. This process is most likely fueled by inflammatory mediators or mechanical stress. Attempts to prevent or treat this process remain largely unsuccessful; resuscitation is more often symptomatic than therapeutic. Models of microvascular repair focus on discrete injury and may not be applicable to the recovery of capillary damage secondary to a systemic leak CONCLUSIONS Our understanding of capillary leak syndrome remains fragmented and weighted toward specific mediators contributing to the leak. The implications of extensive edema and the mechanism by which it resolves continue to be the subject of speculation rather than study.
Collapse
Affiliation(s)
- Rhonda S Fishel
- Department of Surgery, Sinai Hospital of Baltimore, MD 21215, USA
| | | | | |
Collapse
|