1
|
Lv C, Guan B, Pang J, Kong W, Wang R, Wang L, Zhao M, Zhang H. Recombination and Genetic Diversity Analysis of Porcine Reproductive and Respiratory Syndrome 1 Nonstructural Protein 2 Genes in China. Genes (Basel) 2025; 16:507. [PMID: 40428330 PMCID: PMC12111547 DOI: 10.3390/genes16050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) has been present in China for about 30 years, and because of the high mutability of PRRSV, it causes huge economic losses to pig enterprises every year. PRRSV-2 is widely prevalent in China, and the detection rate of PRRSV-1 is also on the rise. Nonstructural protein 2 (NSP2) is a highly variable protein with multiple biological functions, such as PRRSV replication, which plays an important role in understanding PRRSV variation and epidemic alerts. OBJECTIVES The epidemic characteristics and recombination of PRRSV-1 NSP2 are still unknown. The purpose of this study is to study the epidemic characteristics of PRRSV-1 NSP2 and lay a foundation for the prevention and control of PRRSV-1. METHODS In this study, we collected several PRRSV-1 and PRRSV-2 NSP2 gene sequences for gene sequence and recombination analyses, aiming to analyze the recombination pattern and genetic variation in the PRRSV-1 NSP2 genes in China. RESULTS The genetic similarity results showed that the 69 PRRSV-1 NSP2 gene sequences collected in this study showed nucleotide similarity ranging from 67.3% to 100.0% and amino acid similarity ranging from 64.3% to 100.0%. Amino acid sequence comparison showed that PRRSV-1 had more amino acid deletion or substitution sites than PRRSV-2. NSP2 also contains special amino acid regions such as the highly immunogenic region. PRRSV-1 can be categorized into four strains, NMEU09-1-like, BJEU06-1-like, HKEU-16-like and Amervac-like isolates, and are at different positions in the ML and NJ phylogenetic trees. In the ninety selected PRRSVs, six recombination events were detected using recombination analysis, two of which occurred in Chinese PRRSV-1 strains. Therefore, sequence analysis of NSP2 helps us to understand the prevalence and variation in PRRSV-1 in China over the past two decades and provides a theoretical basis for studying the epidemiology and evolution of NSP2.
Collapse
Affiliation(s)
- Chen Lv
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| | - Baoyi Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| | - Jiankun Pang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Lin Wang
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| | - Hang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| |
Collapse
|
2
|
Lakshmanappa YS, Shang P, Renu S, Dhakal S, Hogshead B, Xiao Y, Wang T, Fang Y, Renukaradhya GJ. Concurrent but consecutive vaccination of modified live PRRSV-1 and PRRSV-2 provides better protection in nursery pigs. Vet Microbiol 2025; 302:110391. [PMID: 39854919 DOI: 10.1016/j.vetmic.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus is a severe threat to the global swine industry. Modified live virus vaccines (MLVs) for two PRRSV species (PRRSV-1 and PRRSV-2) are the most widely used approach to control PRRSV-caused diseases. For swine herds influenced by PRRSV-1 and PRRSV-2, how to rationalize MLV immunization strategies for robust and cross-protective immune responses has been a long-lasting need. In this study, we found that the replication of PRRSV-1 is strongly suppressed by co-infection with PRRSV-2 in vitro, especially under concurrent co-infection conditions. We compared the adaptive immune responses between consecutive and concurrent vaccination methods in nursery pigs, vaccinated either 3 days apart (PRRSV-1 MLV followed by PRRSV-2 MLV, consecutive) or together on the same day (concurrent). PRRSV-1 RNAs were mainly detectable in the sera of consecutively vaccinated pigs. In contrast, PRRSV-2 RNAs in sera were not changed in both vaccination strategies. After the homologous PRRSV-1 or PRRSV-2 challenge, we found that consecutive vaccination slightly improved PRRSV-1 viremia clearance and did not attenuate the PRRSV-2 viremia clearance. Both vaccination strategies induced comparable T-helper cell responses against PRRSV-1 and PRRSV-2 in peripheral blood before and after the challenge. Interestingly, consecutive vaccination induced significantly higher PRRSV-1-specific post-challenge T-helper and cytotoxic T cells responses in the tracheobronchial lymph nodes than concurrent vaccination. Furthermore, consecutive vaccination significantly improved neutralizing antibody responses against PRRSV-1 and PRRSV-2 in comparison with concurrent vaccination. In conclusion, consecutive vaccination appears to be better for viral clearance and induction of adaptive immune response, and our study provides a preliminary rationale to optimize PRRS MLV immunization strategy for better dual protection.
Collapse
Affiliation(s)
- Yashavanth Shaan Lakshmanappa
- Center for Food Animal Health (CFAH), Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, United States
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Sankar Renu
- Center for Food Animal Health (CFAH), Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, United States
| | - Santosh Dhakal
- Center for Food Animal Health (CFAH), Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, United States
| | - Bradley Hogshead
- Center for Food Animal Health (CFAH), Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, United States
| | - Yihong Xiao
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Tao Wang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States; Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States.
| | - Gourapura J Renukaradhya
- Center for Food Animal Health (CFAH), Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, United States.
| |
Collapse
|
3
|
Jeong H, Eo Y, Lee D, Jang G, Min KC, Choi AK, Won H, Cho J, Kang SC, Lee C. Comparative Genomic and Biological Investigation of NADC30- and NADC34-Like PRRSV Strains Isolated in South Korea. Transbound Emerg Dis 2025; 2025:9015349. [PMID: 40302751 PMCID: PMC12016814 DOI: 10.1155/tbed/9015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally endemic, costly swine arterivirus with wide genetic and antigenic variations, leading to the frequent appearance of novel virulent strains that hampers PRRSV control. Recently, NADC30-like (lineage 1C, L1C) and NADC34-like (lineage 1A, L1A) PRRSV strains were reported to be prevalent in mainland South Korea and became the main epidemic strains persistently attributed to PRRSV outbreaks nationwide, raising great concern in the domestic pork industry. Although the genotypic and pathotypic variability of NADC30- and NADC34-like viruses has been explored in the United States and China, their genomic and biological characteristics have been scarcely studied in South Korea. Here, NADC34-like GNU-2353 and NADC30-like GNU-2377 strains were independently identified from vaccinated swine herds experiencing high piglet mortality. Whole-genome sequencing and phylogenetic analysis revealed that GNU-2353 and GNU-2377 clustered into sublineages L1A (NADC34-like) and L1C (NADC30-like), respectively, sharing high genomic homology with their corresponding lineage-representative strains and harboring the same molecular signatures of continuous 100 and discontinuous 131 amino acid deletions in the nsp2-coding region, respectively. Recombination detection indicated that GNU-2353 and GNU-2377 were recombinants and evolved through natural interlineage recombination between NADC34-like (L1A, major parent) or NADC30-like (L1C, major parent) and RespPRRS modified live virus (MLV)-like (lineage 5, minor parent) strains, respectively. Both viruses displayed homogenous growth kinetics but replicated faster than the prototype VR-2332 in a porcine alveolar macrophage cell line (PAM-KNU). The transcriptional profiles of immune response genes in infected PAM-KNU cells varied between the isolates and VR-2332; particularly, interleukin-10 expression was dramatically upregulated in cells infected with GNU-2353 and GNU-2377. Piglets with GNU-2353 and GNU-2377 infection had high fever; weight loss; increased viremia and nasal shedding; viral distribution in various tissues; thymic atrophy; and apparent macroscopic and microscopic lung lesions, including interstitial pneumonia and viral colonization, compared with control piglets, suggesting that both isolates were virulent to pigs. Remarkably, GNU-2353 caused higher fever, mortality rate (40%) with cyanosis, viremia, and viral shedding within 2 weeks and significantly higher viral loads in several organs than GNU-2377 infection. Thus, NADC34-like GNU-2353 was more pathogenic than NADC30-like GNU-2377. Our findings provide insights into the current epizootic circumstance of NADC30- and NADC34-like PRRSV in South Korea and can aid in tailoring improved control strategies.
Collapse
Affiliation(s)
- Haemin Jeong
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youngjoon Eo
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nawoo Veterinary Group, Yangsan 50573, Republic of Korea
| | - Duri Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyeng-Cheol Min
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - An Kook Choi
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Hokeun Won
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Jungjoon Cho
- SoJung Animal Hospital, Yesan 32416, Republic of Korea
| | | | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Lee MA, Jayaramaiah U, You SH, Shin EG, Song SM, Ju L, Kang SJ, Hyun BH, Lee HS. Molecular Characterization of Porcine Reproductive and Respiratory Syndrome Virus in Korea from 2018 to 2022. Pathogens 2023; 12:757. [PMID: 37375447 DOI: 10.3390/pathogens12060757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in the Republic of Korea. Surveillance of PRRS virus (PRRSV) types is critical to tailor control measures. This study collected 5062 serum and tissue samples between 2018 and 2022. Open reading frame 5 (ORF5) sequences suggest that subgroup A (42%) was predominant, followed by lineage 1 (21%), lineage 5 (14%), lineage Korea C (LKC) (9%), lineage Korea B (LKB) (6%), and subtype 1C (5%). Highly virulent lineages 1 (NADC30/34/MN184) and 8 were also detected. These viruses typically mutate or recombine with other viruses. ORF5 and non-structural protein 2 (NSP2) deletion patterns were less variable in the PRRSV-1. Several strains belonging to PRRSV-2 showed differences in NSP2 deletion and ORF5 sequences. Similar vaccine-like isolates to the PRRSV-1 subtype 1C and PRRSV-2 lineage 5 were also found. The virus is evolving independently in the field and has eluded vaccine protection. The current vaccine that is used in Korea offers only modest or limited heterologous protection. Ongoing surveillance to identify the current virus strain in circulation is necessary to design a vaccine. A systemic immunization program with region-specific vaccinations and stringent biosecurity measures is required to reduce PRRSV infections in the Republic of Korea.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
5
|
Li C, Qiu M, Li S, Sun Z, Huang Z, Qi W, Qiu Y, Li J, Feng B, Zhao D, Lin H, Zheng W, Yu X, Tian K, Fan K, Zhu J, Chen N. Metagenomic and Pathogenic Assessments Identify a Pathogenic Porcine Reproductive and Respiratory Syndrome Virus 1 with New Deletions from Adult Slaughter Pig in 2022. Transbound Emerg Dis 2023; 2023:1975039. [PMID: 40303817 PMCID: PMC12016735 DOI: 10.1155/2023/1975039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2025]
Abstract
Since we first reported porcine reproductive and respiratory syndrome virus 1 (PRRSV1) wild type strains in mainland China in 2011, PRRSV1 infection has been detected in more than 20 provinces in China. During the routine investigation of PRRSV1 epidemiology in 2022, we isolated a novel PRRSV1 strain (SD1291) from an adult slaughter pig in Linyi, Shandong Province. The SD1291 could only be isolated with primary alveolar macrophages (PAMs), not with Marc-145 cells. In addition, the 2022 SD1291 isolate has higher in vitro replication efficacy than the 2014 PRRSV1 HLJB1 isolate in PAMs. Due to high genetic variation, the complete genome of SD1291 was determined by metagenomic sequencing, which showed that SD1291 shares the highest genome similarity (88.12%) with the PRRSV1 HeB47 isolate. Sequence alignment results identified a four-amino-acid deletion in nsp2 and a five-amino-acid deletion in the GP3 and GP4 overlap region of SD1291. A complete-genome-based phylogenetic tree showed that SD1291 is grouped with BJEU06-1-like PRRSV1 isolates. A piglets' challenge study showed that SD1291 can cause high fever (the highest is 41°C), reduced weight gain, mild lung consolidation, and interstitial pneumonia indicating that SD1291 is a pathogenic PRRSV1 isolate. Overall, this study first identified a novel pathogenic PRRSV1 isolate from an adult slaughter pig in China. Our findings also suggested that new PRRSV1 variants could escape the current PRRSV vaccination system and circulate in adult swine herds, which deserve more attention.
Collapse
Affiliation(s)
- Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Zitao Huang
- Animal Health Supervision Institute of Fengxi District, Chaozhou 521031, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Dashi Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Kewei Fan
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
6
|
Kim JH, Kim SC, Kim HJ, Jeong CG, Park GS, Choi JS, Kim WI. Insight into the Economic Effects of a Severe Korean PRRSV1 Outbreak in a Farrow-to-Nursery Farm. Animals (Basel) 2022; 12:ani12213024. [PMID: 36359148 PMCID: PMC9656131 DOI: 10.3390/ani12213024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease that has inflicted economic losses in the swine industry. The causative agent, porcine reproductive and respiratory syndrome virus (PRRSV), is known to have a high genetic diversity which leads to heterogeneous pathogenicity. To date, the impact of PRRS outbreaks on swine production and the economy of the swine industry in South Korea has been rarely reported. In this study, we compare the reproductive performance in the breeding-farrowing phase and growth performance in the nursery phase, in two 27-week periods, one before and one after a PRRSV1 outbreak on a 650-sow farrow-to-nursery farm caused by a Korean PRRSV1 isolate which was genetically distinct from vaccine strains or other global strains. The reproductive performance of sows and the growth performance of nursery pigs were compared using row data consisting of 1907 mating records, 1648 farrowing records, and 17,129 weaning records from 32 breeding batches. The following variables were significantly different between the pre-PRRS outbreak period and the post-PRRS outbreak period: the farrowing rate (−7.1%, p < 0.0001), the abortion rate (+3.9%, p < 0.0001), the return rate (+2.9%, p = 0.0250), weaning to estrus interval days (+1.9 days, p < 0.0001), total piglets born (−1.2 pigs/litter, p < 0.0001), piglets born alive (−2.2 pigs/litter, p < 0.0001), weaned piglets (−2.7 pigs/litter, p < 0.0001), pre-weaning mortality (+7.4%, p < 0.0001), weaning weight (−0.9 kg/pig, p = 0.0015), the mortality rate (+2.8%, p < 0.0001), average daily gain (−69.8 g/d, p < 0.0001), and the feed conversion ratio (+0.26, p = 0.0036). Economic losses for a period of 27 weeks after a PRRS outbreak were calculated at KRW 99,378 (USD 82.8) per mated female for the breeding-farrowing phase, KRW 8,968 (USD 7.5) per pig for the nursery growth phase, and KRW 245,174 (USD 204.3) per sow in the post-outbreak period. In conclusion, the farrow-to-nursery farm in our study suffered extensive production and economic losses as a result of a PRRSV1 outbreak.
Collapse
Affiliation(s)
- Jung-Hee Kim
- Department of Veterinary Clinic, Dodram Pig Farmers Cooperative, Daejeon 35377, Korea
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Seung-Chai Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Hwan-Ju Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Chang-Gi Jeong
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Gyeong-Seo Park
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Jong-San Choi
- Department of Agri-Food Marketing, Jeonbuk National Univeristy, Jeonju 54896, Korea
| | - Won-Il Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
- Correspondence: ; Tel.: +82-63-270-3981
| |
Collapse
|
7
|
Park J, Choi S, Jeon JH, Lee KW, Lee C. Novel lineage 1 recombinants of porcine reproductive and respiratory syndrome virus isolated from vaccinated herds: genome sequences and cytokine production profiles. Arch Virol 2020; 165:2259-2277. [PMID: 32699981 DOI: 10.1007/s00705-020-04743-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 01/19/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a widely disseminated, macrophage-tropic arterivirus that exhibits profound genetic and pathogenic heterogeneity. The present study was conducted to determine the complete genome sequences of two novel Korean lineage 1 PRRSV-2 strains, KNU-1901 and KNU-1902, which were isolated from vaccinated pig farms experiencing unusually high morbidity and mortality. Both isolates contained notable discontinuous 423-nucleotide deletions (DELs) within the genes encoding nonstructural protein 2 (nsp2) and GP3 when compared with the prototype strain VR-2332. In particular, the nsp2 DEL viruses had unique quadripartite discontinuous DEL signatures (111-1-19-9) in nsp2; this is an expanded version of the tripartite 111-1-19 DEL previously identified in virulent lineage 1 PRRSV-2 strains. Phylogenetic analysis revealed that both novel nsp2 DEL viruses belong to the Korean clade (KOR C) of lineage 1 isolates based on ORF5 but cluster with lineage KOR A strains based on the nsp2 or complete genome sequence. Recombination detection analysis suggested that both novel isolates are recombinants and may have evolved via natural inter-lineage recombination between circulating KOR A and KOR C strains. Interestingly, compared with the prototype VR-2332 virus, the novel nsp2 DEL variants were less efficient at promoting the expression of immune response genes in porcine alveolar macrophage culture. Taken together, we conclude that KNU-1901 and KNU-1902 are recently evolved recombinant variants of the virulent lineage 1 family that caused the regional severe PRRS outbreaks.
Collapse
Affiliation(s)
- Jonghyun Park
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Subin Choi
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji Hyun Jeon
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | | | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Xie C, Ha Z, Sun W, Nan F, Zhang P, Han J, Zhao G, Zhang H, Zhuang X, Lu H, Jin N. Construction and immunological evaluation of recombinant adenovirus vaccines co-expressing GP3 and GP5 of EU-type porcine reproductive and respiratory syndrome virus in pigs. J Vet Med Sci 2019; 81:1879-1886. [PMID: 31694992 PMCID: PMC6943305 DOI: 10.1292/jvms.19-0283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) keeps causing economic
damages in the swine sector across the globe. There has been emergence of the European
(EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) in
China in recent years. The presently available vaccines cannot unable to provide safeguard
against PRRSV infection completely. This study was aimed to construct recombinant
adenovirus expressing the ORF3 and ORF5 genes of the EU-type PRRSV strain. Then, the
recombinant adenovirus vaccines for EU-type PRRSV (rAd-E3518, rAd-E35, rAd-E3 and rAd-E5)
which we constructed and evaluated were constructed and identified by western blot and
PCR. All recombinant adenovirus vaccines were evaluated for humoral and cellular responses
and EU-type PRRSV challenge in pigs. The results showed that the group of rAd-E3518+Quil A
developed higher GP3 and GP5 specific antibody responses compared to the group of
rAd-E3518. The majority of the neutralizing antibody titers were higher than 1:16
(P<0.05), the fusion of IL-18 has increased significantly
PRRSV-stimulated secretion of IFN-γ and IL-4 in porcine serum, the group of rAd-E3518+Quil
A produced highest T-lymphocytes (CD3+CD4+ and
CD3+CD8+ T cells) proliferative in peripheral blood of pigs. The
animals were challenged with the EU-type PRRSV strain and the viral load was detected in
the several tissues, the viral load of rAd-E3518 and rAd-E3518+Quil A were lower than the
wild-type adenovirus group. Our findings provide evidence to confirm that the recombinant
adenovirus vaccine can protect pigs from EU-PRRSV infection.
Collapse
Affiliation(s)
- Changzhan Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhuo Ha
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Wenchao Sun
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Fulong Nan
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Ping Zhang
- Institute of specialty, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jicheng Han
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Guanyu Zhao
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - He Zhang
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xinyu Zhuang
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Huijun Lu
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ningyi Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
9
|
Genetic diversity of porcine reproductive and respiratory syndrome virus 1 in the United States of America from 2010 to 2018. Vet Microbiol 2019; 239:108486. [PMID: 31767088 DOI: 10.1016/j.vetmic.2019.108486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/27/2023]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) was first detected in the United States of America (USA) in 1999, several strains were also recognized soon later, and these isolates are typically called North American (NA) PRRSV-1. However, few reports have characterized PRRSV-1 viruses in the USA. We explored the genetic characteristics and diversity of PRRSV-1 viruses circulating in the USA. PRRSV-1 PCR-positive samples collected from seven states in 2010-2018 (n = 27) were subjected to next-generation sequencing. The 27 PRRSV-1 viruses had 88.4-91.3% nucleotide identity to the PRRSV-1 Lelystad-virus strain (the type 1 prototype strain) and 87.4-89.8% to the previously reported NA PRRSV-1 viruses. Individual proteins had several unique genetic characteristics and only one of the 27 tested samples had the characteristic 17-amino acid (aa) deletion in Nsp2, a genetic marker of NA PRRSV-1 viruses described previously. Fourteen isolates displayed a 3-aa C-terminal truncation in the highly conserved Nsp12 gene; 16 samples had a 21- or 18-aa C-terminal truncation in GP3 gene; and one was observed with a 1-aa deletion at the overlapping region of GP3 and GP4. In addition, the GP5 protein in most isolates, excluding one exception, demonstrated similar genetic variation as other reported NA PRRSV-1 isolates. All tested isolates clustered within subtype 1 together with other available NA PRRSV-1 viruses. Collectively, our results provide up-to-date information on PRRSV-1 viruses circulating in the USA in the past 9 years although the number of PRRSV-1 isolates included in this study is limited. These PRRSV-1 viruses have undergone gradual genetic variation and exhibited some previously undescribed genetic characteristics and diversity, which complicates the diagnosis and control of NA PRRSV-1.
Collapse
|
10
|
Dortmans JCFM, Buter GJ, Dijkman R, Houben M, Duinhof TF. Molecular characterization of type 1 porcine reproductive and respiratory syndrome viruses (PRRSV) isolated in the Netherlands from 2014 to 2016. PLoS One 2019; 14:e0218481. [PMID: 31246977 PMCID: PMC6597066 DOI: 10.1371/journal.pone.0218481] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/03/2019] [Indexed: 11/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a devastating pig disease present all over the world. The remarkable genetic variation of PRRSV, makes epidemiological and molecular analysis of circulating viruses highly important to review current diagnostic tools and vaccine efficacy. Monitoring PRRS viruses supports modern herd management by explaining the source of found viruses, either internally or externally from the herd. No epidemiological or molecular study has been published on circulating PRRS-viruses in the Netherlands, since the early nineties. Therefore, the objective of this study is to investigate circulating PRRS-viruses in the Netherlands in 2014, 2015 and 2016 on a molecular level by sequencing ORF2, ORF3, ORF4, ORF5, ORF6 and ORF7. The results demonstrate that the 74 PRRSV strains belong to PRRSV-1, but the diversity among strains is high, based on nucleotide identity, individual ORF length and phylogenetic trees of individual ORFs. Furthermore, the data presented here show that the phylogenetic topology of some viruses is ORF dependent and suggests recombination. The identity of the strain of interest might be misinterpreted and wrong conclusions may be drawn in a diagnostic and epidemiological perspective, when only ORF5 is analyzed, as performed in many routine sequencing procedures.
Collapse
Affiliation(s)
| | | | - R. Dijkman
- GD Animal Health, Deventer, The Netherlands
| | - M. Houben
- GD Animal Health, Deventer, The Netherlands
| | | |
Collapse
|
11
|
Differential evolution of antigenic regions of porcine reproductive and respiratory syndrome virus 1 before and after vaccine introduction. Virus Res 2018; 260:12-19. [PMID: 30428309 DOI: 10.1016/j.virusres.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/13/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a widespread viral pathogen that has caused tremendous economic losses throughout most pig-producing countries. Nowadays, both PRRSV-1 and PRRSV-2 co-circulate in Korean pig populations, and commercial modified live vaccine (MLV) is predominantly used to control PRRS. Specifically, control strategy using only PRRSV-2 MLV that was used since 1995 cannot prevent the spread of PRRSV-1 and damage from its infection, which led to the first introduction of two additional PRRSV-1 vaccines in 2014. Despite the wide implementation with PRRSV-1 vaccines, there is a lack of knowledge about the currently circulating Korean PRRSV-1 strains. Whole structural genes of PRRSV-1 before (11) and after (17) the introduction of vaccine were compared to determine the genetic evolutionary features of PRRSV. Genetic and phylogenetic analysis indicated that Korean PRRSV-1 shared 91.5 ± 1.7% nucleotide identity but formed a unique clade based on ORF2-7 phylogeny. Bioinformatics showed increased genetic heterogeneity, enhanced diversifying selection, and the emergence of novel glycosylation sites within neutralizing epitopes of minor structural proteins after vaccine introduction. Taken together, our data provide novel insight into the evolution of minor structural proteins of PRRSV-1 in the vaccination era.
Collapse
|
12
|
Jeong J, Park C, Oh T, Park KH, Yang S, Kang I, Park SJ, Chae C. Cross-protection of a modified-live porcine reproductive and respiratory syndrome virus (PRRSV)-2 vaccine against a heterologous PRRSV-1 challenge in late-term pregnancy gilts. Vet Microbiol 2018; 223:119-125. [PMID: 30173737 DOI: 10.1016/j.vetmic.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 11/29/2022]
Abstract
We have evaluated the cross-protection of a modified-live virus (MLV) vaccine based on porcine reproductive and respiratory syndrome virus (PRRSV)-2, against a heterologous PRRSV-1 challenge in late term pregnancy gilts. Gilts were vaccinated 42 days prior to breeding and then challenged intranasally with PRRSV-1 at 93 days of gestation. No local or systemic adverse effects related to vaccination were observed in the vaccinated gilts throughout the study. Vaccination resulted in a longer gestation period, a higher number of live-born and weaned piglets, and a significant decrease in the number of stillborn piglets compared to the unvaccinated group. The PRRSV-2 MLV vaccine was also able to significantly reduce PRRSV-1 viremia. At the time of PRRSV-1 challenge, vaccinated gilts had significantly higher PRRSV-1 specific interferon-γ secreting cells but low neutralizing antibody titers against PRRSV-1 compared to unvaccinated gilts. This correlated with a reduction of PRRSV-1 viremia, indicating that cell-mediated rather than humoral immunity played a role in PRRSV-1 clearance from the blood. Fetal thymic tissues from vaccinated pregnant gilts had fewer PRRSV-1 positive cells compared to unvaccinated gilts. Taken together these results indicate that vaccination of gilts with PRRSV-2 MLV vaccine can provide cross-protection against PRRSV-1 challenge and improve reproductive performance.
Collapse
Affiliation(s)
- Jiwoon Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changhoon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kee Hwan Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Siyeon Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ikjae Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Su-Jin Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Lee SC, Lee S, Yoo GW, Choi HW, Noh YH, Park CE, Shin JH, Yoon IJ, Kang SY, Lee C. Phenotypic and genotypic analyses of an attenuated porcine reproductive and respiratory syndrome virus strain after serial passages in cultured porcine alveolar macrophages. J Vet Sci 2018; 19:358-367. [PMID: 29486535 PMCID: PMC5974517 DOI: 10.4142/jvs.2018.19.3.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 12/02/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is a globally ubiquitous swine viral pathogen that causes major economic losses worldwide. We previously reported an over-attenuated phenotype of cell-adapted PRRSV strain CA-2-P100 in vivo. In the present study, CA-2-P100 was serially propagated in cultured porcine alveolar macrophage (PAM) cells for up to 20 passages to obtain the derivative strain CA-2-MP120. Animal inoculation studies revealed that both CA-2-P100 and CA-2-MP120 had decreased virulence, eliciting weight gains, body temperatures, and histopathologic lesions similar to those in the negative control group. However, compared to CA-2-P100 infection, CA-2-MP120 yielded consistently higher viremia kinetics and enhanced antibody responses in pigs. All pigs inoculated with CA-2-MP120 developed viremia and seroconverted to PRRSV. During 20 passages in PAM cells, CA-2-MP120 acquired 15 amino acid changes that were mostly distributed in nsp2 and minor structural protein-coding regions. Among these changes, 6 mutations represented reversions to the sequences of the reference CA-2 and parental CA-2-P20 strains. These genetic drifts may be hypothetical molecular markers associated with PRRSV macrophage tropism and virulence. Our results indicate that the PAM-passaged CA-2-MP120 strain is a potential candidate for developing a live, attenuated PRRSV vaccine.
Collapse
Affiliation(s)
- Seung-Chul Lee
- Choongang Vaccine Laboratory, Daejeon 34055, Korea.,College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Sunhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Gun-Woo Yoo
- Choongang Vaccine Laboratory, Daejeon 34055, Korea
| | | | - Yun-Hee Noh
- Choongang Vaccine Laboratory, Daejeon 34055, Korea
| | - Chang Eon Park
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | | | - Shien-Young Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
14
|
Canelli E, Catella A, Borghetti P, Ferrari L, Ogno G, De Angelis E, Corradi A, Passeri B, Bertani V, Sandri G, Bonilauri P, Leung FC, Guazzetti S, Martelli P. Phenotypic characterization of a highly pathogenic Italian porcine reproductive and respiratory syndrome virus (PRRSV) type 1 subtype 1 isolate in experimentally infected pigs. Vet Microbiol 2017; 210:124-133. [DOI: 10.1016/j.vetmic.2017.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
|
15
|
Lee DU, Yoo SJ, Kwon T, Je SH, Shin JY, Byun JJ, Kim MH, Lyoo YS. Genetic diversity of ORF 4–6 of type 1 porcine reproductive and respiratory syndrome virus in naturally infected pigs. Vet Microbiol 2017; 199:54-61. [DOI: 10.1016/j.vetmic.2016.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
16
|
Wang X, Yang X, Zhou R, Zhou L, Ge X, Guo X, Yang H. Genomic characterization and pathogenicity of a strain of type 1 porcine reproductive and respiratory syndrome virus. Virus Res 2016; 225:40-49. [DOI: 10.1016/j.virusres.2016.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
|
17
|
Choi K, Park C, Jeong J, Chae C. Comparison of protection provided by type 1 and type 2 porcine reproductive and respiratory syndrome field viruses against homologous and heterologous challenge. Vet Microbiol 2016; 191:72-81. [DOI: 10.1016/j.vetmic.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022]
|
18
|
The Attenuation Phenotype of a Ribavirin-Resistant Porcine Reproductive and Respiratory Syndrome Virus Is Maintained during Sequential Passages in Pigs. J Virol 2016; 90:4454-4468. [PMID: 26889041 DOI: 10.1128/jvi.02836-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED In a previous study, ribavirin-resistant porcine reproductive and respiratory syndrome virus (PRRSV) mutants (RVRp13 and RVRp22) were selected, and their resistance against random mutation was shown in cultured cells. In the present study, these ribavirin-resistant mutants were evaluated in terms of their genetic and phenotypic stability during three pig-to-pig passages in comparison with modified live virus (MLV) (Ingelvac PRRS MLV). Pigs challenged with RVRp22 had significantly lower (P< 0.05) viral loads in sera and tissues than pigs challenged with MLV or RVRp13 at the first passage, and the attenuated replication of RVRp22 was maintained until the third passage. Viral loads in sera and tissues dramatically increased in pigs challenged with MLV or RVRp13 during the second passage. Consistently, all five sequences associated with the attenuation of virulent PRRSV in RVRp13 and MLV quickly reverted to wild-type sequences during the passages, but two attenuation sequences were maintained in RVRp22 even after the third passage. In addition, RVRp22 showed a significantly lower (P< 0.001) mutation frequency in nsp2, which is one of the most variable regions in the PRRSV genome, than MLV. Nine unique mutations were found in open reading frames (ORFs) 1a, 2, and 6 in the RVRp22 genome based on full-length sequence comparisons with RVRp13, VR2332 (the parental virus of RVRp13 and RVRp22), and MLV. Based on these results, it was concluded that RVRp22 showed attenuated replication in pigs; further, because of the high genetic stability of RVRp22, its attenuated phenotype was stable even after three sequential passages in pigs. IMPORTANCE PRRSV is a rapidly evolving RNA virus. MLV vaccines are widely used to control PRRS; however, there have been serious concerns regarding the use of MLV as a vaccine virus due to the rapid reversion to virulence during replication in pigs. As previously reported, ribavirin is an effective antiviral drug against many RNA viruses. Ribavirin-resistant mutants reemerged by escaping lethal mutagenesis when the treatment concentration was sublethal, and those mutants were genetically more stable than parental viruses. In a previous study, two ribavirin-resistant PRRSV mutants (RVRp13 and RVRp22) were selected, and their higher genetic stability was shown in vitro Consequently, in the present study, both of the ribavirin-resistant mutants were evaluated in terms of their genetic and phenotypic stability in vivo RVRp22 was found to exhibit higher genetic and phenotypic stability than MLV, and nine unique mutations were identified in the RVRp22 genome based on a full-length sequence comparison with the RVRp13, VR2332, and MLV genomes.
Collapse
|
19
|
Lee SC, Choi HW, Nam E, Noh YH, Lee S, Lee YJ, Park GS, Shin JH, Yoon IJ, Kang SY, Lee C. Pathogenicity and genetic characteristics associated with cell adaptation of a virulent porcine reproductive and respiratory syndrome virus nsp2 DEL strain CA-2. Vet Microbiol 2016; 186:174-88. [PMID: 27016772 DOI: 10.1016/j.vetmic.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most common and world-widespread viral pathogen of swine. We previously reported genomic sequences and pathogenicity of type 2 Korean PRRSV strains belonging to the virulent lineage 1 family, which contain remarkable amino acid deletions in nonstructural protein 2 (nsp2 DEL) compared to VR-2332. Here, a virulent type 2 Korean PRRSV nsp2 DEL strain, CA-2, was serially propagated in MARC-145 cells for up to 100 passages (CA-2-P100). As the passage number increased, the phenotypic characteristics of cell-adapted CA-2 strains were altered, in terms of higher viral titers and larger plaque sizes compared to the parental virus. Pro-inflammatory cytokine genes, including TNF-α, IL-8, MCP-1, and MCP-2, were found to be significantly down-regulated in PAM cells with the CA-2-P100 strain compared to its parental nsp2 DEL virus. Animal inoculation studies demonstrated that the virulence of CA-2-P100 was reduced significantly, with showing normal weight gain, body temperatures, and lung lesions comparable to the control group. Furthermore, high-passage CA-2-P100 showed declined and transient viremia kinetics, as well as delayed and low PRRSV-specific antibody responses in infected pigs. In addition, we determined whole genome sequences of low to high-passage derivatives of CA-2. The nsp2 DEL pattern was conserved for 100 passages, whereas no other deletions or insertions arose during the cell adaptation process. However, CA-2-P100 possessed 54 random nucleotide substitutions that resulted in 27 amino acid changes distributed throughout the genome, suggesting that these genetic drifts provide a possible molecular basis correlated with the cell-adapted features in vitro and the attenuated phenotype in vivo. Taken together, our data indicate that the cell-attenuated CA-2-P100 strain is a promising candidate for developing a safe and effective live PRRSV vaccine.
Collapse
Affiliation(s)
- Seung-Chul Lee
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hwan-Won Choi
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Eeuri Nam
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Yun-Hee Noh
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Sunhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoo Jin Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gun-Seok Park
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Joong Yoon
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Shien-Young Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
20
|
Sinn LJ, Zieglowski L, Koinig H, Lamp B, Jansko B, Mößlacher G, Riedel C, Hennig-Pauka I, Rümenapf T. Characterization of two Austrian porcine reproductive and respiratory syndrome virus (PRRSV) field isolates reveals relationship to East Asian strains. Vet Res 2016; 47:17. [PMID: 26754154 PMCID: PMC4709888 DOI: 10.1186/s13567-015-0293-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes major problems for the swine industry worldwide. Due to Austria's central location in Europe, a large number of animals are transported through the country. However, little is known about current PRRSV strains and epidemiology. We determined full-length genome sequences of two Austrian field isolates (AUT13-883 and AUT14-440) from recent PRRSV outbreaks and of a related German isolate (GER09-613). Phylogenetic analysis revealed that the strains belong to European genotype 1 subtype 1 and form a cluster together with a South Korean strain. Remarkably, AUT14-440 infected the simian cell line MARC-145 without prior adaptation. In addition, this isolate showed exceptional deletions in nonstructural protein 2, in the overlapping region of glycoprotein 3 and 4 and in the 3' untranslated region. Both Austrian isolates caused similar lung lesions but only pigs infected with AUT14-440 developed clear clinical signs of infection. Taken together, the genetic and biological characterization of two novel Austrian PRRSV field isolates revealed similarities to East Asian strains. This stresses the necessity for a more detailed analysis of current PRRSV strains in Europe beyond the determination of short ORF5 and ORF7 sequences.
Collapse
Affiliation(s)
- Leonie J Sinn
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Leonie Zieglowski
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Hanna Koinig
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Benjamin Lamp
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Bettina Jansko
- Animal Health Service Upper Austria, Molkereistraße 5, 4910, Ried im Innkreis, Austria.
| | - Georg Mößlacher
- Animal Health Service Upper Austria, Molkereistraße 5, 4910, Ried im Innkreis, Austria.
| | - Christiane Riedel
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Isabel Hennig-Pauka
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Till Rümenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
21
|
Complete Genome Sequence of Type 1 Porcine Reproductive and Respiratory Syndrome Virus Strain E38, Isolated from South Korea with a Novel Deletion. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01180-15. [PMID: 26472832 PMCID: PMC4611684 DOI: 10.1128/genomea.01180-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the complete genome sequence of the European type 1 porcine reproductive and respiratory syndrome virus E38 strain, isolated from South Korea with a novel deletion. It contains a 61-nucleotide discontinuous deletion of the Nsp2 and Nsp12 regions. This study will aid in understanding the genetic diversity of type 1 PRRSV and in manufacturing a construct based on Korean vaccine candidate development.
Collapse
|
22
|
Park C, Kim T, Choi K, Jeong J, Kang I, Park SJ, Chae C. Two Commercial Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-Modified Live Vaccines Reduce Seminal Shedding of Type 1 PRRSV but not Type 2 PRRSV in Infected Boars. Transbound Emerg Dis 2015; 64:194-203. [PMID: 25879825 DOI: 10.1111/tbed.12361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Indexed: 11/28/2022]
Abstract
The objective of this study was to compare the effects of two commercial type 1 porcine reproductive and respiratory syndrome virus (PRRSV)-modified live vaccines on type 1 and type 2 PRRSV shedding in the semen of experimentally infected boars. Upon challenge with PRRSV, unvaccinated boars exhibited an increase in daily rectal temperature (39.4-39.7°C). Vaccination of boars with type 1 PRRSV significantly reduced the amount of type 1 PRRSV load in blood and semen after challenge with type 1 PRRSV, but barely reduced the amount of type 2 PRRSV load in blood and semen after the type 2 PRRSV challenge. There were no significant differences in the reduction of viremia and seminal shedding of type 1 and type 2 PRRSV between the two commercial vaccines. The seminal shedding of PRRSV is independent of viremia. The reduction of type 1 PRRSV seminal shedding coincided with the appearance of type 1 PRRSV-specific interferon-γ secreting cells (IFN-γ-SC) in vaccinated type 1 PRRSV-challenged boars. The frequencies of type 1 PRRSV-specific IFN-γ-SC induced by type 1 PRRSV vaccine are relatively high compared to type 2 PRRSV-specific IFN-γ-SC induced by the same vaccine which may explain why type 1 PRRSV vaccine is more effective in reducing seminal shedding of type 1 PRRSV when compared to type 2 PRRSV in vaccinated challenged boars. These results provide clinical information on how to reduce seminal shedding of type 1 PRRSV in boars using type 1 PRRSV-modified live vaccine.
Collapse
Affiliation(s)
- C Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - T Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - K Choi
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - J Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - I Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - S-J Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - C Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Comparison of Two Commercial Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Modified Live Vaccines against Heterologous Type 1 and Type 2 PRRSV Challenge in Growing Pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:631-40. [PMID: 25855554 DOI: 10.1128/cvi.00001-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/28/2015] [Indexed: 11/20/2022]
Abstract
The objective of the present study was to compare the efficacy of two commercial type 1 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccines against heterologous type 1 and type 2 PRRSV challenge in growing pigs. Vaccination with a type 1 PRRSV vaccine reduced the level of viremia after type 1 PRRSV challenge but did not reduce the level of viremia after the type 2 PRRSV challenge in pigs. Increased levels of interleukin-10 (IL-10) stimulated by type 2 PRRSV coincided with the low numbers of type 2 PRRSV-specific interferon gamma-secreting cells (IFN-γ-SC) in vaccinated pigs after type 2 PRRSV challenge, whereas low levels of IL-10 stimulated by type 1 PRRSV coincided with high numbers of type 1 PRRSV-specific IFN-γ-SC in vaccinated pigs after type 1 PRRSV challenge. Additionally, vaccination with the type 1 PRRSV vaccine effectively reduced the lung lesions and type 1 PRRSV nucleic acids in type 1 PRRSV-challenged pigs but did not reduce lung lesions and type 2 PRRSV nucleic acids in type 2 PRRSV-challenged pigs. There were no significant differences between two commercial type 1 PRRSV vaccines against type 1 and type 2 PRRSV challenge based on virological results, immunological responses, and pathological outcomes. This study demonstrates that vaccinating pigs with the type 1 PRRSV vaccine provides partial protection against respiratory disease with heterologous type 1 PRRSV challenge but no protection with heterologous type 2 PRRSV challenge.
Collapse
|
24
|
Cross-protection of a new type 2 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccine (Fostera PRRS) against heterologous type 1 PRRSV challenge in growing pigs. Vet Microbiol 2015; 177:87-94. [PMID: 25769646 DOI: 10.1016/j.vetmic.2015.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 11/22/2022]
Abstract
The objective of the present study was to determine the cross-protection of a new type 2 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccine against heterologous type 1 PRRSV challenge in growing pigs. The mean rectal temperature and respiratory score was significantly (P<0.05) lower in vaccinated challenged pigs than in unvaccinated challenged pigs. Vaccination of pigs with type 2 PRRSV reduced the levels of type 1 PRRSV viremia after challenge with type 1 PRRSV. Vaccinated challenged pigs had significantly (P<0.05) higher frequency of interferon-γ secreting cells and lower levels of interleukin-10 compared to unvaccinated challenged pigs. Vaccination of pigs with the type 2 PRRSV effectively reduced the macroscopic and microscopic lung lesion and the type 1 PRRSV antigens within lung lesions in vaccinated challenged pigs. This study demonstrates partial cross-protection of a new type 2 PRRSV modified live vaccine against heterologous type 1 PRRSV challenge in growing pigs.
Collapse
|
25
|
Khatun A, Shabir N, Yoon KJ, Kim WI. Effects of ribavirin on the replication and genetic stability of porcine reproductive and respiratory syndrome virus. BMC Vet Res 2015; 11:21. [PMID: 25890207 PMCID: PMC4344762 DOI: 10.1186/s12917-015-0330-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/20/2015] [Indexed: 11/29/2022] Open
Abstract
Background Although modified live virus (MLV) vaccines are commonly used for porcine reproductive and respiratory syndrome virus (PRRSV) control, there have been safety concerns due to the quick reversion of MLV to virulence during replication in pigs. Previous studies have demonstrated that mutant viruses emerged from lethal mutagenesis driven by antiviral mutagens and that those viruses had higher genetic stability compared to their parental strains because they acquired resistance to random mutation. Thus, this strategy was explored to stabilize the PRRSV genome in the current study. Results Four antiviral mutagens (ribavirin, 5-fluorouracil, 5-azacytidine, and amiloride) were evaluated for their antiviral effects against VR2332, a prototype of type 2 PRRSV. Among the mutagens, ribavirin and 5-fluorouracil had significant antiviral effects against VR2332. Consequently, VR2332 was serially passaged in MARC-145 cells in the presence of ribavirin at several concentrations to facilitate the emergence of ribavirin-resistant mutants. Two ribavirin-resistant mutants, RVRp13 and RVRp22, emerged from serial passages in the presence of 0.1 and 0.2 mM ribavirin, respectively. The genetic stability of these resistant mutants was evaluated in MARC-145 cells and compared with VR2332. As expected, the ribavirin-resistant mutants exhibited higher genetic stability compared to their parental virus. Conclusions In summary, ribavirin and 5-fluorouracil effectively suppressed PRRSV replication in MARC-145 cells. However, ribavirin-resistant mutants emerged when treated with low concentrations (≤0.2 mM) of ribavirin, and those mutants were genetically more stable during serial passages in cell culture.
Collapse
Affiliation(s)
- Amina Khatun
- College of Veterinary Medicine, Chonbuk National University Jeonju, Korea, 664-14 Deokjin-Dong 1 Ga, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| | - Nadeem Shabir
- College of Veterinary Medicine, Chonbuk National University Jeonju, Korea, 664-14 Deokjin-Dong 1 Ga, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University Jeonju, Korea, 664-14 Deokjin-Dong 1 Ga, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| |
Collapse
|
26
|
Han K, Seo HW, Park C, Chae C. Vaccination of sows against type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) before artificial insemination protects against type 2 PRRSV challenge but does not protect against type 1 PRRSV challenge in late gestation. Vet Res 2014; 45:12. [PMID: 24484238 PMCID: PMC3923437 DOI: 10.1186/1297-9716-45-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/22/2014] [Indexed: 02/03/2023] Open
Abstract
The objective of the present study was to determine the effects of the commercially available type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-based modified live vaccine against type 1 and type 2 PRRSV challenge in pregnant sows. Half of the sows in the study were vaccinated with a type 2 PRRSV-based vaccine 4 weeks prior to artificial insemination while the other half remained non-vaccinated. Sows were then challenged intranasally with type 1 or type 2 PRRSV at 93 days of gestation. The sows which received the type 2 PRRSV-based vaccine followed by type 2 PRRSV challenge had significantly higher neutralizing antibody titers against type 2 PRRSV than they did against type 1 PRRSV. These same sows had higher frequencies of IFN-γ-secreting cells when stimulated with type 2 PRRSV compared to those stimulated with type 1 PRRSV. Subsequent virological evaluation demonstrated that the type 2 PRRSV-based vaccine reduced the type 2 PRRSV load but not the type 1 PRRSV load present in the blood of the sows. Additionally, vaccination of pregnant sows with the type 2 PRRSV-based vaccine effectively reduced the level of type 2 PRRSV nucleic acids observed in fetal tissues from type 2 PRRSV-challenged sows but did not reduce the level of type 1 PRRSV nucleic acid observed in fetal tissues from type 1 PRRSV-challenged sows. This study demonstrates that the vaccination of pregnant sows with the type 2 PRRSV-based vaccine protects against type 2 PRRSV challenge but does not protect against type 1 PRRSV challenge.
Collapse
Affiliation(s)
| | | | | | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
27
|
Yoon SH, Kim H, Kim J, Lee HK, Park B, Kim H. Complete genome sequences of porcine reproductive and respiratory syndrome viruses: perspectives on their temporal and spatial dynamics. Mol Biol Rep 2013; 40:6843-6853. [PMID: 24122560 DOI: 10.1007/s11033-013-2802-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 09/26/2013] [Indexed: 02/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been investigated extensively at the molecular level. Nevertheless, genome wide study on the temporal and spatial dynamics of the virus is non-existed. To explore this topic, we determined complete coding genome sequences for four PRRSV isolates and analyzed them together with 122 global published ones using the Bayesian coalescent approach as well as Bayesian inferences and maximum likelihood methods. All EU-type viruses belonged to one of two groups or were unclassified (5 isolates), and all NA-type isolates were divided into one of three major groups or were unclassified (1 isolate). Here, there was no apparent association between temporal or geographic origin and heterogeneity of global PRRSVs. Of the eight ORFs, ORF1a showed the most powerful evolutionary signal. Our findings also indicated that the PRRS virus evolved at a rate of 1.98 × 10-3 substitutions/site/year, and the most recent common ancestor of the virus existed 786.4 years ago. Here, EU-type viruses segregated 115.7 years ago, while NA-type isolates diverged 179.8 years before the present. In addition, our reconstruction of the effective population size depicted five phases of epidemic growth: an initial constant, followed sequentially by slow decrease, slight increase, sharp decline, and then a rapid expansion approaching the present.
Collapse
Affiliation(s)
- Sook Hee Yoon
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Han K, Seo H, Park C, Oh Y, Kang I, Han H, Kim SH, Chae C. Comparative Pathogenicity of Three Korean and One Lelystad Type 1 Porcine Reproductive and Respiratory Syndrome Virus (Pan-European Subtype 1) Isolates in Experimentally Infected Pigs. J Comp Pathol 2013; 149:331-40. [DOI: 10.1016/j.jcpa.2013.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/23/2013] [Accepted: 03/01/2013] [Indexed: 10/26/2022]
|
29
|
Wang FX, Song N, Chen LZ, Cheng SP, Wu H, Wen YJ. Non-structural protein 2 of the porcine reproductive and respiratory syndrome (PRRS) virus: A crucial protein in viral pathogenesis, immunity and diagnosis. Res Vet Sci 2013; 95:1-7. [DOI: 10.1016/j.rvsc.2013.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 03/04/2013] [Accepted: 03/17/2013] [Indexed: 11/29/2022]
|
30
|
Han K, Seo HW, Park C, Oh Y, Kang I, Chae C. Comparative pathogenesis of type 1 (European genotype) and type 2 (North American genotype) porcine reproductive and respiratory syndrome virus in infected boar. Virol J 2013; 10:156. [PMID: 23687995 PMCID: PMC3663669 DOI: 10.1186/1743-422x-10-156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/15/2013] [Indexed: 01/04/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) now has two main genotypes, genotype 1 (European) and genotype 2 (North American). There is a lack of data on the comparison of pathogenicity of the two genotypes in boars. The objectives of the present study were to evaluate the amount of PRRSV present in semen over time and compare the viral distribution and microscopic lesions of type 1 and type 2 PRRSV-infected boars. Methods Twenty-four 8-month-old PRRSV-naïve Duroc boars were randomly allocated to 3 treatment groups. The boars in groups 1 (n = 9) and 2 (n = 9) were intranasally inoculated with type 1 or type 2 PRRSV, respectively. The boars in groups 1 (n = 6) served as negative controls. Semen and blood samples were collected up to 35 days post-inoculation (dpi), and necropsies were performed on 14, 21, and 35 dpi. Results There were no significant differences in the genomic copy number of PRRSV, microscopic testicular lesion score, number of PRRSV-positive germ cells, or number of apoptotic cells between the type 1 and type 2 PRRSV-infected boars throughout the experiment. Histopathological changes were manifested by the desquamation of spermatocytes and the presence of multinucleated giant cells in seminiferous tubules of both type 1 and type 2 PRRSV-infected boars. The distribution of PRRSV-positive cells was focal; the virus was found in single germ cells or small clusters of germ cells, localized to the spermatogonia, spermatocytes, spermatids, and non-sperm cells in type 1 and type 2 PRRSV-infected boars. Conclusions The results of this study demonstrated that two genotypes of PRRSV do not have significantly different virulence toward the male reproductive system of pigs.
Collapse
|
31
|
Pathogenesis of Korean Type 1 (European Genotype) Porcine Reproductive and Respiratory Syndrome Virus in Experimentally Infected Pregnant Gilts. J Comp Pathol 2013; 148:396-404. [DOI: 10.1016/j.jcpa.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/29/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022]
|
32
|
Tracing the genetic history of porcine reproductive and respiratory syndrome viruses derived from the complete ORF 5-7 sequences: a Bayesian coalescent approach. Arch Virol 2012; 157:2143-51. [DOI: 10.1007/s00705-012-1408-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/26/2012] [Indexed: 11/25/2022]
|
33
|
Wernike K, Bonilauri P, Dauber M, Errington J, LeBlanc N, Revilla-Fernández S, Hjulsager C, Isaksson M, Stadejek T, Beer M, Hoffmann B. Porcine reproductive and respiratory syndrome virus: interlaboratory ring trial to evaluate real-time reverse transcription polymerase chain reaction detection methods. J Vet Diagn Invest 2012; 24:855-66. [PMID: 22807507 DOI: 10.1177/1040638712452724] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To compare the real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays used for the diagnosis of Porcine reproductive and respiratory syndrome virus (PRRSV), a Europe-wide interlaboratory ring trial was conducted. A variety of PRRSV strains including North American (NA) and European (EU) genotype isolates were analyzed by the participants. Great differences regarding qualitative diagnostics as well as analytical sensitivity were observed between the individual RT-qPCR systems, especially when investigating strains from the EU genotype. None of the assays or commercial kits used in the ring trial could identify all different PRRSV strains with an optimal analytical and diagnostic sensitivity. The genetic variability of the PRRSV strains, which is supposed to hinder the diagnostic of the RT-PCR because of mutations at the primer binding sites, was also confirmed by sequencing and subsequent phylogenetic analysis. In summary, a major problem in PRRSV diagnostics by RT-qPCR is false-negative results. To achieve maximum safety in the molecular diagnosis of PRRSV, the combined usage of different assays or kits is highly recommended.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Han K, Seo HW, Oh Y, Kang I, Park C, Chae C. Pathogenesis of Korean type 1 (European genotype) porcine reproductive and respiratory syndrome virus in experimentally infected pigs. J Comp Pathol 2012; 147:275-84. [PMID: 22316433 DOI: 10.1016/j.jcpa.2011.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/22/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
The aim of this study was to elucidate the pathogenesis of experimental infection with Korean type 1 porcine reproductive and respiratory syndrome virus (PRRSV) by defining the virus distribution, sites of viral replication, viraemia and gross and microscopical lesions in conventional pigs studied for 28 days after intranasal inoculation. Mean rectal temperature was significantly higher in infected pigs than in negative control pigs at 2 days post inoculation (dpi) (P=0.004), 3 dpi (P<0.001), 4 dpi (P=0.003) and 5 dpi (P=0.034). The log(10)TCID(50)/ml of type 1 PRRSV increased significantly at 0-1 dpi (P=0.024) and 5-7 dpi (P=0.029), but decreased at 10-14 dpi (P=0.026) and 14-21 dpi (P=0.012) in infected pigs. Infected pigs developed multifocal, tan-mottled areas of lung tissue with irregular and indistinct borders. Microscopical lesions, when present, were multifocal, mild to moderate, generally most extensive at 5-7 dpi (P=0.036), and were nearly resolved at 28 dpi. Type 1 PRRSV nucleic acid and antigen were detected exclusively within the cytoplasm of macrophages and type I and II pneumocytes. The score for PRRSV-positive cells increased at 3-7 dpi (P<0.05) and decreased at 10-14 dpi (P=0.034) in infected pigs. Thus, respiratory disease was reproduced in conventional pigs by infection with Korean type 1 PRRSV.
Collapse
Affiliation(s)
- K Han
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
35
|
Sagong M, Park CK, Kim SH, Lee KK, Lee OS, Lee DS, Cha SY, Lee C. Human telomerase reverse transcriptase-immortalized porcine monomyeloid cell lines for the production of porcine reproductive and respiratory syndrome virus. J Virol Methods 2012; 179:26-32. [DOI: 10.1016/j.jviromet.2011.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/30/2022]
|
36
|
Complete genome characterization of a East European Type 1 subtype 3 porcine reproductive and respiratory syndrome virus. Virus Genes 2011; 44:51-4. [DOI: 10.1007/s11262-011-0665-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/22/2011] [Indexed: 11/26/2022]
|
37
|
Effect of the modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine on European and North American PRRSV shedding in semen from infected boars. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1600-7. [PMID: 21832096 DOI: 10.1128/cvi.05213-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of the present study was to compare the effects of the modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Ingelvac PRRS MLV; Boehringer Ingelheim Animal Health, St. Joseph, MO) on European and North American PRRSV shedding in the semen of experimentally infected boars. The boars were randomly divided into six groups. Vaccinated boars shed the North American PRRSV at the rate of 10(0.1) to 10(1.0) viral genome copies per ml and 3.63 to 10(1.1) 50% tissue culture infective doses (TCID(50))/ml, respectively, in semen, whereas nonvaccinated boars shed the North American PRRSV at the rate of 10(0.2) to 10(4.7) viral genome copies per ml and 1.14 to 10(3.07) TCID(50)/ml, respectively, in semen. Vaccinated boars shed the European PRRSV at the rate of 10(0.1) to 10(4.57) viral genome copies per ml and 1.66 to 10(3.10) TCID(50)/ml, respectively, in semen, whereas nonvaccinated boars shed the European PRRSV at the rate of 10(0.3) to 10(5.14) viral genome copies per ml and 1.69 to 10(3.17) TCID(50)/ml, respectively, in semen. The number of genomic copies of the European PRRSV in semen samples was not significantly different between vaccinated and nonvaccinated challenged European PRRSV boars. The present study demonstrated that boar vaccination using commercial modified live PRRSV vaccine was able to decrease subsequent shedding of North American PRRSV in semen after challenge but was unable to decrease shedding of European PRRSV in semen after challenge.
Collapse
|
38
|
Kim HK, Lee CS, Kang BK, Yeom MJ, Moon HJ, Park SJ, Nguyen VG, Song DS, Park BK. Experimental infection of a newly emerging Korean type I porcine reproductive and respiratory syndrome virus isolate in colostrum-deprived pigs. Virol J 2011; 8:177. [PMID: 21496335 PMCID: PMC3097151 DOI: 10.1186/1743-422x-8-177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, new emergence of type I PRRSV has been reported in Korea by several research groups. Although specific subgroups of type I PRRSVs in Korea were observed in the previous phylogenetic analysis, there is a lack of information about the virulence of type I PRRSV recently isolated in Korea. METHODS One type I PRRSV isolate (G2446, 3 times passaged in primarily cultured pulmonary macrophages) in Korea was experimentally infected in colostrum-deprived pigs. The pathological and serological evaluations were performed and compared to type II PRRSV strain (CP07-401-9, 5 times passaged in MARC-145 cell lines)-infected pigs, for 21 days post challenge (dpc). RESULTS The pneumonia found in gross examination was more severe in type I PRRSV-infected pigs than type II PRRSV-infected pigs. Both groups showed bronchointerstitial pneumonia, mild multifocal perivascular lymphohistiocytic myocarditis and lymphadenopathy at 14 dpc. However, the unique histopathologic lesions were not found in the pigs experimentally infected with a Korean type I PRRSV isolate, when compared to previous data about classical pathology of PRRSV. The PRRS-specific antibodies were detected in the first week after challenge and viremia continued at least until 21 dpc in both groups. CONCLUSION The gross and histopathologic lesion in this study indicated that Korean type I PRRSV strain (G2446) caused classical PRRSV-specific lesions. Although this study evaluated one representative strain of Korean type I PRRSV, the results may provide information regarding the pathogenicity of type I PRRSV recently emerged in Korea.
Collapse
Affiliation(s)
- Hye Kwon Kim
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Gwanak-gu, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen N, Cao Z, Yu X, Deng X, Zhao T, Wang L, Liu Q, Li X, Tian K. Emergence of novel European genotype porcine reproductive and respiratory syndrome virus in mainland China. J Gen Virol 2011; 92:880-892. [DOI: 10.1099/vir.0.027995-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
40
|
Kim HK, Park SJ, Rho SM, Han JY, Nguyen VG, Park BK. One year's study of dynamic and evolution of types I and II PRRSV in a swine farm. Vet Microbiol 2011; 150:230-8. [PMID: 21354720 DOI: 10.1016/j.vetmic.2011.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 11/30/2022]
Abstract
This study was to investigate dynamic and evolution of PRRSV in a seed-stock farm by monitoring PRRSV status from 11 June 2009 to 4 August 2010. For laboratory test, around 18-24 umbilical cords from farrowed sows and 5-95 sera from nursery and grow/finish pigs were submitted around every 2 weeks interval during the study. The submitted samples were tested for PRRSV using IDEXX PRRS 2XR ELISA kit, RT-nested PCR. The PRRSV-positive samples were further sequences based on ORF5 and analyzed using MEGA 3.1 program and Beast 1.5.4 package. The surveyed farm was first infected with type II PRRSV but it was infected newly with type I PRRSV of unknown origin, showing rapid substitution to type I PRRSV as a dominant strain in 2 weeks. The type I PRRSV was first detected from umbilical cord of a farrowed sow in 12 January 2010, and secondly from nursery pigs in 26 January 2010. Although sudden increase of mean S/P ratio was found in grow/finish pigs around 2 months earlier than first type I PRRSV detection, no type I PRRSV viremia was found. Thirty three ORF5 full sequences from 14 type II to 19 type I PRRSVs were obtained chronologically in this farm and the genetic characteristics and evolution rates of those sequences were analyzed. The substitution rates (/site/day) of two types were 4.03×10(-5) (type I), 3.09×10(-5) (type II), respectively, which was more frequent than previous reports. The calculated divergence time of type I PRRSV was consistent with the time when the sudden elevation of serum IgG in grow/finish barn was first observed. This study provided fundamental data for type I PRRSV dynamic in a previously type II PRRSV-infected farm and suggested grow/finisher barn could be a primary site for PRRSV introduction.
Collapse
Affiliation(s)
- Hye Kwon Kim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, 599 Gwanangno, Gwanak-Gu, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
41
|
Sagong M, Park CK, Kim SH, Moon SU, Cho SC, Lee C. Development and characterization of stable cell lines constitutively expressing the porcine reproductive and respiratory syndrome virus nucleocapsid protein. J Vet Sci 2011; 11:169-71. [PMID: 20458160 PMCID: PMC2873819 DOI: 10.4142/jvs.2010.11.2.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite global efforts to control porcine reproductive and respiratory syndrome virus (PRRSV) infection, the virus continues to cause economic problems in the swine industry worldwide. In this study, we attempted to generate and characterize a panel of stable BHK cell lines that constitutively express the nucleocapsid (N) protein of type 1 or type 2 PRRSV. The established BHK cell lines were found to react well with N-specific antibodies as well as the hyperimmune serum of pigs raised against each genotype of PRRSV. Taken together, the data implicate a potential usefulness for the newly generated stable cell lines as a diagnostic reagent for PRRSV serology.
Collapse
Affiliation(s)
- Mingeun Sagong
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Darwich L, Gimeno M, Sibila M, Diaz I, de la Torre E, Dotti S, Kuzemtseva L, Martin M, Pujols J, Mateu E. Genetic and immunobiological diversities of porcine reproductive and respiratory syndrome genotype I strains. Vet Microbiol 2011; 150:49-62. [PMID: 21310555 DOI: 10.1016/j.vetmic.2011.01.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/30/2010] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
Genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) has been based on ORF5/GP5 and ORF7/N protein variations. Complete viral genome studies are limited and focused on a single or a few set of strains. Moreover, there is a general tendency to extrapolate results obtained from a single isolate to the overall PRRSV population. In the present study, six genotype-I isolates of PRRSV were sequenced from ORF1a to ORF7. Phylogenetic comparisons and the variability degree of known linear B-epitopes were done considering other available full-length genotype-I sequences. Cytokine induction of all strains was also evaluated in different cellular systems. Non structural protein 2 (nsp2) was the most variable part of the virus with 2 out of 6 strains harboring a 74 aa deletion. Deletions were also found in ORF3 and ORF4. Phylogenetic analyses showed that isolates could be grouped differently depending on the ORF examined and the highest similarity with the full genome cluster was found for the nsp9. Interestingly, most of predicted linear B-epitopes in the literature, particularly in nsp2 and GP4 regions, were found deleted or varied in some of our isolates. Moreover, 4 strains, those with deletions in nsp2, induced TNF-α and 3 induced IL-10. These results underline the high genetic diversity of PRRSV mainly in nsp1, nsp2 and ORFs 3 and 4. This variability also affects most of the known linear B-epitopes of the virus. Accordingly, different PRRSV strains might have substantially different immunobiological properties. These data can contribute to the understanding of PRRSV complexity.
Collapse
Affiliation(s)
- Laila Darwich
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped, positive-sense single-stranded RNA virus belonging to the Arteriviridae family. Arteriviruses and coronaviruses are grouped together in the order Nidovirales, based on similarities in genome organization and expression strategy. Over the past decade, crystal structures of several viral proteins, electron microscopic studies of the virion, as well as biochemical and in vivo studies on protein-protein interactions have led to a greatly increased understanding of PRRSV structural biology. At this point, crystal structures are available for the viral proteases NSP1α, NSP1β and NSP4 and the nucleocapsid protein, N. The NSP1α and NSP1β structures have revealed additional non-protease domains that may be involved in modulation of host functions. The N protein forms a dimer with a novel fold so far only seen in PRRSV and other nidoviruses. Cryo-electron tomographic studies have shown the three-dimensional organization of the PRRSV virion and suggest that the viral nucleocapsid has an asymmetric, linear arrangement, rather than the isometric core previously described. Together, these studies have revealed a closer structural relationship between arteri- and coronaviruses than previously anticipated.
Collapse
Affiliation(s)
- Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
44
|
Zhu L, Zhang G, Ma J, He X, Xie Q, Bee Y, Gong SZ. Complete genomic characterization of a Chinese isolate of porcine reproductive and respiratory syndrome virus. Vet Microbiol 2010; 147:274-82. [PMID: 20667670 DOI: 10.1016/j.vetmic.2010.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/18/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
The genome of one isolate of porcine reproductive and respiratory syndrome virus (PRRSV) from China, designated GDQY2, was sequenced and analyzed. The full length of GDQY2 was 15,215 nucleotides, excluding the poly(A) tail. Comparative analysis with the genomic sequences of numerous worldwide North American isolates revealed that GDQY2 shared 85.0-98.9% identity with these isolates, but only 60.9% with the European virus-LV (Lelystad Virus), indicating that this new Chinese isolate was closely related to the North American PRRSV genotype. Phylogenetic analysis based on the nucleotide sequences of the full length and ORF5 showed that this new isolate belong to the same genetic group with all other Chinese isolates. Comparison with North American PRRSV isolates revealed that GDQY2 exhibited variations in the non-structural protein 2 (NSP2) encoded by ORF1a, namely that an additional 35-amino acid deletion in NSP2 was found in GDQY2. Therefore, GDQY2 was a novel strain with unique deletions. Furthermore, our study demonstrated that North American genotype PRRSVs in China have evolved independently from other countries, indicating that geographic separation might be one factor influencing the molecular evolution of PRRSV.
Collapse
Affiliation(s)
- Ling Zhu
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road, Guangzhou 510642, Guangdong, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Sagong M, Lee C. Differential cellular protein expression in continuous porcine alveolar macrophages regulated by the porcine reproductive and respiratory syndrome virus nucleocapsid protein. Virus Res 2010; 151:88-96. [DOI: 10.1016/j.virusres.2010.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 02/01/2023]
|
46
|
A molecular analysis of European porcine reproductive and respiratory syndrome virus isolated in South Korea. Vet Microbiol 2010; 143:394-400. [DOI: 10.1016/j.vetmic.2009.11.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/20/2009] [Accepted: 11/26/2009] [Indexed: 11/24/2022]
|
47
|
Wang M, Li G, Yin J, Ren X. Phylogenetic characterization of genes encoding for glycoprotein 5 and membrane protein of PRRSV isolate HH08. J Vet Sci 2010; 10:309-15. [PMID: 19934596 PMCID: PMC2807267 DOI: 10.4142/jvs.2009.10.4.309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A porcine reproductive and respiratory syndrome virus (PRRSV) was obtained from clinic samples. Genes 5 and 6 encoding for the viral glycoprotein 5 and a membrane protein of the PRRSV designated as HH08 were amplified by reverse transcription-PCR. These sequences were compared with reference sequences derived from different geographical locations. The results indicated that the virus belongs to the North American type rather than European. Comparative analyses of the genetic diversity between the PRRSV isolate HH08 and other Chinese as well as foreign reference strains of PRRSV were discussed based on the sequence comparison and the topology of phylogenetic trees constructed in this study.
Collapse
Affiliation(s)
- Mingcui Wang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, 150030 Harbin, China
| | | | | | | |
Collapse
|