1
|
Kozyra I, Kocki J, Rzeżutka A. Detection of Porcine-Human Reassortant and Zoonotic Group A Rotaviruses in Humans in Poland. Transbound Emerg Dis 2024; 2024:4232389. [PMID: 40303033 PMCID: PMC12017087 DOI: 10.1155/2024/4232389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/05/2024] [Accepted: 08/13/2024] [Indexed: 01/05/2025]
Abstract
Group A rotaviruses (RVAs) are widespread in humans and many animal species and represent the most epidemiologically important rotavirus group. The aim of the study was the identification of the genotype pattern of human RVA strains circulating in Poland, assessment of their phylogenetic relationships to pig RVAs and identification of reassortant and zoonotic virus strains. Human stool samples which were RVA positive (n = 166) were collected from children and adults at the age of 1 month to 74 years with symptoms of diarrhoea. Identification of the G and P genotypes of human RVAs as well as the complete genotype of reassortant and zoonotic virus strains was performed by the use of an RT-PCR method. The G (G1-G4, G8 or G9) and/or P (P[4], P[6], P[8] or P[9]) genotypes were determined for 148 (89.2%) out of 166 RVA strains present in human stool. G1P[8] RVA strains prevailed, and G4P[8] (20.5%), G9P[8] (15.7%) and G2P[4] (13.3%) human RVA strains were also frequently identified. The full genome analysis of human G4P[6] as well as pig G1P[8] and G5P[6] RVAs revealed the occurrence of porcine-human reassortants and zoonotic RVAs. Detection of G4P[6] in pigs confirms their role as a reservoir of zoonotic RVAs.
Collapse
Affiliation(s)
- Iwona Kozyra
- Department of Food and Environmental VirologyNational Veterinary Research Institute, Al. Partyzantów 57, Puławy 24-100, Poland
| | - Janusz Kocki
- Department of Medical GeneticsMedical University of Lublin, ul. Radziwiłłowska 11, Lublin 20-080, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental VirologyNational Veterinary Research Institute, Al. Partyzantów 57, Puławy 24-100, Poland
| |
Collapse
|
2
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
3
|
Abass G, Dubal ZB, Rajak KK, Kale BM, Raorane A, Dudhe N, Malla BA, Desai D, Sinha DK, Vinodh Kumar OR, Malik YS. Molecular characterization of porcine rotavirus A from India revealing zooanthroponotic transmission. Anim Biotechnol 2021; 33:1073-1085. [PMID: 33455537 DOI: 10.1080/10495398.2020.1868486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rotaviruses A (RVA) are leading causes of diarrhea and dehydration in piglets and imply great economic loss to the pig farming community. In this study, the porcine RVA genotypes circulating in western and northern parts of India were determined by screening 214 fecal samples from diarrheic (n = 144) and non-diarrheic (n = 70) pigs. Subsequently, the structural (VP4 and VP7) and nonstructural (NSP3, and NSP4) genes were amplified, sequenced, and genetically characterized. The RVA positivity percentage was 7.94% (17/214) by RNA-PAGE and 10.28% (22/214) by RT-PCR. Higher RVA positivity was observed in samples from Uttar Pradesh (24.07%) followed by Maharashtra (6.77%) and Goa (2.38%). The sequence and automated genotyping software analysis confirmed the circulation of G4P[6] and G9P[13] RVA strains in porcine population. To note, the sequence similarity of the VP7 gene of Porcine/INDIA/RVA/PK-13 IVRI/Maharashtra/G4 and Porcine/INDIA/RVA/P-8/IVRI/U.P./G9 strain showed a relationship of 96.83 and 98.89% at the nucleotide level with human RVA strains indicating inter-species transmission. Additionally, the NSP3 (T1) and NSP4 (E1) genes (genotypes) also showed genetic relatedness with human RVA strains. Overall, the nucleotide sequences of VP7, NSP3, and NSP4 genes of porcine RVA indicate zooanthroponotic transmission. Further, we report the detection of G9P[13] RVA strain in porcine for the first time from India.HIGHLIGHTSRVA positivity was 7.94% (17/214) by RNA-PAGE and 10.28% (22/214) by RT-PCRThe RVA strain G9P[13] reported for the first time in Indian pigletsVP7, NSP3 and NSP4 genes analysis of porcine RVA showed genetic relatedness with human strains indicating evidence of zooanthroponotic transmission.
Collapse
Affiliation(s)
- Gazanfar Abass
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | | | - Kaushal K Rajak
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Balasaheb M Kale
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Abhay Raorane
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Nitin Dudhe
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Bilal Ahmad Malla
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Dhananjay Desai
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Dharmendra K Sinha
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Obli R Vinodh Kumar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| |
Collapse
|
4
|
Flores PS, Costa FB, Amorim AR, Mendes GS, Rojas M, Santos N. Rotavirus A, C, and H in Brazilian pigs: potential for zoonotic transmission of RVA. J Vet Diagn Invest 2020; 33:129-135. [PMID: 33090086 DOI: 10.1177/1040638720967673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) have been identified as one of the main infectious causes of diarrhea in young pigs. We determined the prevalence of rotavirus A (RVA), C (RVC), and H (RVH) in pigs on a Brazilian farm. Samples were screened by reverse-transcription (RT)-PCR, and samples positive for RVA were genotyped by PCR amplification and sequencing analysis. Of the 329 fecal samples analyzed, 102 (30.9%) were positive for RV, 25 (7.6%) contained RVA only, 32 (9.7%) contained RVC only, and 31 (9.4%) contained RVH only. Co-circulation, the presence of ≥ 2 RVs in a sample, was detected in 14 (4.2%) samples. Of the 15 animals with diarrhea, 6 (40%) were positive for RV, and of the 314 asymptomatic animals, 96 (30.6%) were positive for RV; there was no statistically significant difference between the 2 groups (p = 0.441). Genotyping of RVA strains showed co-circulation of genotypes G1, G3, G9-P[8]-I1, and I2-E1. Phylogenetic analysis showed that some of the RVA genotypes found in pigs had high percentages of identity when compared with reference strains from humans, which suggests interspecies transmission. Because RVs may be zoonotic, excretion of RVs into the environment can result in transmission to agricultural workers causing interspecies infections and allowing the emergence of new reassorted viruses.
Collapse
Affiliation(s)
- Patrícia S Flores
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio B Costa
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariane R Amorim
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriella S Mendes
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miguel Rojas
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru.,Current address: Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Norma Santos
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Kozyra I, Rzeżutka A. Farmed and companion animals as reservoirs of zoonotic rotavirus strains. POSTĘPY MIKROBIOLOGII - ADVANCEMENTS OF MICROBIOLOGY 2018; 57:156-166. [DOI: 10.21307/pm-2018.57.2.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Rotavirus (RV) infections are a major epidemiological problem in humans and farm animals. So far, a number of human and animal RV strains have been identified. Based on the antigenic properties of the VP6 capsid protein, they have been classified into eight serogroups (A-H). The most important of them are viruses from group A (RVA), which are responsible for more than 90% of cases of rotaviral diarrhoea. The segmented structure of the virus genome and the presence of animals in human neighbourhood favour genetic reassortment between RV strains originating from different hosts. This could result in an emergence of zoonotic virus strains. The increasing number of human infections caused by virus strains having genotypes which have only been identified in animals indicates the need for epidemiological surveillance of infections. Additionally, the identification of epidemic virus strains in the outbreaks of disease in humans should be conducted. The identification of RVA strains circulating in humans and animals will allow the assessment of the impact of vaccination on the selection and emergence of zoonotic RVA strains.
1. Introduction. 2. General characteristics and classification of rotaviruses. 3. Group A rotavirus infection in humans. 4. Group A rotavirus infection in animals. 5. Genetic changes and reassortment as factors leading to the formation of zoonotic rotavirus strains. 6. Impact of human immunization on changes in genotype profile of circulating rotavirus strains. 7. Conclusions
Collapse
Affiliation(s)
- Iwona Kozyra
- Zakład Wirusologii Żywności i Środowiska , Państwowy Instytut Weterynaryjny – Państwowy Instytut Badawczy , Poland , Poland
| | - Artur Rzeżutka
- Zakład Wirusologii Żywności i Środowiska , Państwowy Instytut Weterynaryjny – Państwowy Instytut Badawczy , Poland , Poland
| |
Collapse
|
6
|
Yodmeeklin A, Khamrin P, Chuchaona W, Kumthip K, Kongkaew A, Vachirachewin R, Okitsu S, Ushijima H, Maneekarn N. Analysis of complete genome sequences of G9P[19] rotavirus strains from human and piglet with diarrhea provides evidence for whole-genome interspecies transmission of nonreassorted porcine rotavirus. INFECTION GENETICS AND EVOLUTION 2016; 47:99-108. [PMID: 27894992 DOI: 10.1016/j.meegid.2016.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand.
Collapse
Affiliation(s)
- Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Watchaporn Chuchaona
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Animal House Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchaya Vachirachewin
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
7
|
Silva FDF, Gregori F, McDonald SM. Distinguishing the genotype 1 genes and proteins of human Wa-like rotaviruses vs. porcine rotaviruses. INFECTION GENETICS AND EVOLUTION 2016; 43:6-14. [PMID: 27180895 DOI: 10.1016/j.meegid.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022]
Abstract
Group A rotaviruses (RVAs) are 11-segmented, double-stranded RNA viruses and important causes of gastroenteritis in the young of many animal species. Previous studies have suggested that human Wa-like RVAs share a close evolutionary relationship with porcine RVAs. Specifically, the VP1-VP3 and NSP2-5/6 genes of these viruses are usually classified as genotype 1 with >81% nucleotide sequence identity. Yet, it remains unknown whether the genotype 1 genes and proteins of human Wa-like strains are distinguishable from those of porcine strains. To investigate this, we performed comprehensive bioinformatic analyses using all known genotype 1 gene sequences. The RVAs analyzed represent wildtype strains isolated from humans or pigs at various geographical locations during the years of 2004-2013, including 11 newly-sequenced porcine RVAs from Brazil. We also analyzed archival strains that were isolated during the years of 1977-1992 as well as atypical strains involved in inter-species transmission between humans and pigs. We found that, in general, the genotype 1 genes of typical modern human Wa-like RVAs clustered together in phylogenetic trees and were separate from those of typical modern porcine RVAs. The only exception was for the NSP5/6 gene, which showed no host-specific phylogenetic clustering. Using amino acid sequence alignments, we identified 34 positions that differentiated the VP1-VP3, NSP2, and NSP3 genotype 1 proteins of typical modern human Wa-like RVAs versus typical modern porcine RVAs and documented how these positions vary in the archival/unusual isolates. No host-specific amino acid positions were identified for NSP4, NSP5, or NSP6. Altogether, the results of this study support the notion that human Wa-like RVAs and porcine RVAs are evolutionarily related, but indicate that some of their genotype 1 genes and proteins have diverged over time possibly as a reflection of sequestered replication and protein co-adaptation in their respective hosts.
Collapse
Affiliation(s)
- Fernanda D F Silva
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Brazil
| | - F Gregori
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Brazil
| | - Sarah M McDonald
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Wilhelm BJ, Leblanc D, Avery B, Pearl DL, Houde A, Rajić A, McEwen SA. Factors Affecting Detection of Hepatitis E Virus on Canadian Retail Pork Chops and Pork Livers Assayed Using Real-Time RT-PCR. Zoonoses Public Health 2015; 63:152-9. [PMID: 26192650 DOI: 10.1111/zph.12216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/30/2022]
Abstract
We collected 599 Canadian retail pork chops and 283 pork livers routinely (usually weekly) from April 2011 to March 2012 using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) retail sampling platform. Samples were assayed using validated real-time (q) reverse transcriptase polymerase chain reaction (RT-PCR) and nested classical RT-PCR for the detection of hepatitis E virus (HEV), porcine enteric calicivirus (PEC) and rotavirus (RV). The presence of Escherichia coli, Salmonella spp. and Campylobacter spp. was measured on a subset of our samples. Exact logistic regression models were fitted for predictors for HEV detection, for each assay. For both assays, sample type (pork chop versus liver) was a significant predictor for HEV RNA detection. For nested classical RT-PCR but not qRT-PCR, region of sample collection was a significant predictor (P = 0.008) of HEV detection. Odds of HEV detection were greatest in spring relative to other seasons. E. coli was a significant predictor for HEV RNA detection using the qRT-PCR (P = 0.03). Overall, the prevalence of E. coli, Salmonella spp. and Campylobacter spp. was significantly greater than HEV, PEC or RV on our retail pork samples. Our sparse data set for the detection of PEC and RV precluded modelling of risk factors for the detection of these viruses.
Collapse
Affiliation(s)
- B J Wilhelm
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - D Leblanc
- Agriculture and Agri-Food Canada, Food Research and Development Centre, St-Hyacinthe, QC, Canada
| | - B Avery
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON, Canada
| | - D L Pearl
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A Houde
- Agriculture and Agri-Food Canada, Food Research and Development Centre, St-Hyacinthe, QC, Canada
| | - A Rajić
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Nutrition and Consumer Protection Division, Food and Agriculture Organization, Roma, Italy
| | - S A McEwen
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:55-71. [PMID: 25891280 DOI: 10.1016/j.meegid.2015.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022]
Abstract
We report here the whole genomic analyses of two G4P[6] (RVA/Human-wt/CHN/E931/2008/G4P[6], RVA/Human-wt/CHN/R1954/2013/G4P[6]), one G3P[6] (RVA/Human-wt/CHN/R946/2006/G3P[6]) and one G4P[8] (RVA/Human-wt/CHN/E2484/2011/G4P[8]) group A rotavirus (RVA) strains detected in sporadic cases of diarrhea in humans in the city of Wuhan, China. All the four strains displayed a Wa-like genotype constellation. Strains E931 and R1954 shared a G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 constellation, whilst the 11 gene segments of strains R946 and E2484 were assigned to G3-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 genotypes, respectively. Phylogenetically, the VP7 gene of R946, NSP3 gene of E931, and 10 of 11 gene segments of E2484 (except for VP7 gene) belonged to lineages of human RVAs. On the other hand, based on available data, it was difficult to ascertain porcine or human origin of VP3 genes of strains E931 and R946, and NSP2 genes of strains R946 and R1954. The remaining genes of E2484, E931, R946 and R1954 were close to those of porcine RVAs from China, and/or porcine-like human RVAs. Taken together, our observations suggested that strain R1954 might have been derived from porcine RVAs, whilst strains R946 and E931 might be reassortants possessing human RVA-like gene segments on a porcine RVA genetic backbone. Strain E2484 might be derived from reassortment events involving acquisition of a porcine-like VP7 gene by a Wa-like human RVA strain. The present study provided important insights into zoonotic transmission and complex reassortment events involving human and porcine RVAs, reiterating the significance of whole-genomic analysis of RVA strains.
Collapse
|
10
|
Wilhelm B, Waddell L, Greig J, Rajić A, Houde A, McEwen SA. A scoping review of the evidence for public health risks of three emerging potentially zoonotic viruses: hepatitis E virus, norovirus, and rotavirus. Prev Vet Med 2015; 119:61-79. [PMID: 25681862 DOI: 10.1016/j.prevetmed.2015.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 01/15/2023]
Abstract
Emerging zoonoses are defined as those newly recognized, or increasing in incidence or geographic range. Hepatitis E virus (HEV), norovirus (NoV), and rotavirus (RV), while well known to be transmitted person-person, have also been hypothesized to be emerging zoonoses. Our objective was to investigate their potential public health risks from animal reservoirs. Given the diversity of evidence sources, a scoping review incorporating a mixed methods synthesis approach was used. A broad search was conducted in five electronic databases. Each citation was appraised independently by two reviewers using screening tools designed and tested a priori. Level 1 relevance screening excluded irrelevant citations; level 2 confirmed relevance and categorized. At level 3 screening, data were extracted to support a risk profile. A stakeholder group provided input on study tools and knowledge translation and transfer. Level 1 screening captured 2471 citations, with 1270 advancing to level 2 screening, and 1094 to level 3. We defined criteria for case attribution to zoonosis for each virus. Using these criteria, we identified a small number of zoonotic cases (HEV n=3, NoV=0, RV=40 (zoonoses=3; human-animal re-assortants=37)) categorized as 'likely'. The available evidence suggests the following potential HEV human exposure sources: swine, other domestic animals, wildlife, surface waters, and asymptomatic human shedders. Possible at-risk groups include the immunocompromised and the elderly. Reports of NoV intergenogroup recombinants suggest potential for human-animal recombination. Greatest public health impact for RV zoonoses may be the potential effect of human-animal reassortants on vaccination efficacy.
Collapse
Affiliation(s)
- Barbara Wilhelm
- University of Guelph, Department of Population Medicine, Guelph, ON N1G 2W1, Canada.
| | - Lisa Waddell
- University of Guelph, Department of Population Medicine, Guelph, ON N1G 2W1, Canada; Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 160 Research Lane, Suite 206, Guelph, ON N1G 5B2, Canada.
| | - Judy Greig
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 160 Research Lane, Suite 206, Guelph, ON N1G 5B2, Canada.
| | - Andrijana Rajić
- University of Guelph, Department of Population Medicine, Guelph, ON N1G 2W1, Canada; Nutrition and Consumer Protection Division, Food and Agriculture Organization, Viale delle Terme di Caracalla, Roma, Italy.
| | - Alain Houde
- Agriculture and Agri-Food Canada, Food Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Scott A McEwen
- University of Guelph, Department of Population Medicine, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
11
|
Ndze VN, Esona MD, Achidi EA, Gonsu KH, Dóró R, Marton S, Farkas S, Ngeng MB, Ngu AF, Obama-Abena MT, Bányai K. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: Diverse combinations of the G and P genes and lack of reassortment of the backbone genes. INFECTION GENETICS AND EVOLUTION 2014; 28:537-60. [DOI: 10.1016/j.meegid.2014.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/17/2022]
|
12
|
Dóró R, Mihalov-Kovács E, Marton S, László B, Deák J, Jakab F, Juhász Á, Kisfali P, Martella V, Melegh B, Molnár P, Sántha I, Schneider F, Bányai K. Large-scale whole genome sequencing identifies country-wide spread of an emerging G9P[8] rotavirus strain in Hungary, 2012. INFECTION GENETICS AND EVOLUTION 2014; 28:495-512. [PMID: 25239526 DOI: 10.1016/j.meegid.2014.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/03/2014] [Accepted: 09/11/2014] [Indexed: 11/19/2022]
Abstract
With the availability of rotavirus vaccines routine strain surveillance has been launched or continued in many countries worldwide. In this study relevant information is provided from Hungary in order to extend knowledge about circulating rotavirus strains. Direct sequencing of the RT-PCR products obtained by VP7 and VP4 genes specific primer sets was utilized as routine laboratory method. In addition we explored the advantage of random primed RT-PCR and semiconductor sequencing of the whole genome of selected strains. During the study year, 2012, we identified an increase in the prevalence of G9P[8] strains across the country. This genotype combination predominated in seven out of nine study sites (detection rates, 45-83%). In addition to G9P[8]s, epidemiologically major strains included genotypes G1P[8] (34.2%), G2P[4] (13.5%), and G4P[8] (7.4%), whereas unusual and rare strains were G3P[8] (1%), G2P[8] (0.5%), G1P[4] (0.2%), G3P[4] (0.2%), and G3P[9] (0.2%). Whole genome analysis of 125 Hungarian human rotaviruses identified nine major genotype constellations and uncovered both intra- and intergenogroup reassortment events in circulating strains. Intergenogroup reassortment resulted in several unusual genotype constellations, including mono-reassortant G1P[8] and G9P[8] strains whose genotype 1 (Wa-like) backbone gene constellations contained DS1-like NSP2 and VP3 genes, respectively, as well as, a putative bovine-feline G3P[9] reassortant strain. The conserved genomic constellations of epidemiologically major genotypes suggested the clonal spread of the re-emerging G9P[8] genotype and several co-circulating strains (e.g., G1P[8] and G2P[4]) in many study sites during 2012. Of interest, medically important G2P[4] strains carried bovine-like VP1 and VP6 genes in their genotype constellation. No evidence for vaccine associated selection, or, interaction between wild-type and vaccine strains was obtained. In conclusion, this study reports the reemergence of G9P[8] strains across the country and indicates the robustness of whole genome sequencing in routine rotavirus strain surveillance.
Collapse
Affiliation(s)
- Renáta Dóró
- Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | - Péter Molnár
- Combined Szent István and Szent László Hospital, Budapest, Hungary
| | - Ildikó Sántha
- Hungarian National Public Health and Medical Officer Service, Miskolc, Hungary
| | | | | |
Collapse
|
13
|
Heylen E, Batoko Likele B, Zeller M, Stevens S, De Coster S, Conceição-Neto N, Van Geet C, Jacobs J, Ngbonda D, Van Ranst M, Matthijnssens J. Rotavirus surveillance in Kisangani, the Democratic Republic of the Congo, reveals a high number of unusual genotypes and gene segments of animal origin in non-vaccinated symptomatic children. PLoS One 2014; 9:e100953. [PMID: 24968018 PMCID: PMC4072759 DOI: 10.1371/journal.pone.0100953] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/27/2014] [Indexed: 12/26/2022] Open
Abstract
Group A rotavirus (RVA) infections form a major public health problem, especially in low-income countries like the Democratic Republic of the Congo (COD). However, limited data on RVA diversity is available from sub-Saharan Africa in general and the COD in particular. Therefore, the first aim of this study was to determine the genetic diversity of 99 RVAs detected during 2007–2010 in Kisangani, COD. The predominant G-type was G1 (39%) and the most predominant P-type was P[6] (53%). A total of eight different G/P-combinations were found: G1P[8] (28%), G8P[6] (26%), G2P[4] (14%), G12P[6] (13%), G1P[6] (11%), G9P[8] (4%), G4P[6] (2%) and G8P[4] (1%). The second aim of this study was to gain insight into the diversity of P[6] RVA strains in the COD. Therefore, we selected five P[6] RVA strains in combination with the G1, G4, G8 (2x) or G12 genotype for complete genome analysis. Complete genome analysis showed that the genetic background of the G1P[6] and G12P[6] strains was entirely composed of genotype 1 (Wa-like), while the segments of the two G8P[6] strains were identified as genotype 2 (DS-1-like). Interestingly, all four strains possessed a NSP4 gene of animal origin. The analyzed G4P[6] RVA strain was found to possess the unusual G4-P[6]-I1-R1-C1-M1-A1-N1-T7-E1-H1 constellation. Although the majority of its genes (if not all), were presumably of porcine origin, this strain was able to cause gastro-enteritis in humans. The high prevalence of unusual RVA strains in the COD highlights the need for continued surveillance of RVA diversity in the COD. These results also underline the importance of complete genetic characterization of RVA strains and indicate that reassortments and interspecies transmission among human and animal RVAs strains occur regularly. Based on these data, RVA vaccines will be challenged with a wide variety of different RVA strain types in the COD.
Collapse
Affiliation(s)
- Elisabeth Heylen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Bibi Batoko Likele
- Department of pediatrics, University Hospital Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Mark Zeller
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Stijn Stevens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sarah De Coster
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nádia Conceição-Neto
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Christel Van Geet
- Department of pediatrics, University Hospital Leuven, Leuven, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | - Dauly Ngbonda
- Department of pediatrics, University Hospital Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
14
|
Shetty SA, Mathur M, Deshpande JM. Complete genome analysis of a rare group A rotavirus, G11P[25], isolated from a child in Mumbai, India, reveals interspecies transmission and reassortment with human rotavirus strains. J Med Microbiol 2014; 63:1220-1227. [PMID: 24951672 DOI: 10.1099/jmm.0.070524-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hospital-based rotavirus surveillance was carried out in Mumbai during 2005-2009. An isolate (B08299) with a rare genotype combination (G11P[25]) was detected. The present study was undertaken to characterize the complete genome of the isolate. B08299 exhibited a G11-P[25]-I12-R1-C1-M1-A1-N1-T1-E1-H1 genotype constellation. Phylogenetic analysis of the 11 gene segments of B08299 revealed that the VP2 and NSP5 genes of B08299 had a human origin, while the VP6 gene represented an I12 genotype of obscure origin. The remaining six genes formed a lineage distinct from human and porcine rotaviruses within genotype 1. Analysis of the structural and non-structural genes suggested that B08299 has evolved by gene reassortment. Our findings provide further evidence that interspecies transmission is an important mechanism involved in the evolution and genetic diversity of human rotaviruses in nature.
Collapse
|
15
|
Pham HA, Carrique-Mas JJ, Nguyen VC, Ngo TH, Nguyet LA, Do TD, Vo BH, Phan VTM, Rabaa MA, Farrar J, Baker S, Bryant JE. The prevalence and genetic diversity of group A rotaviruses on pig farms in the Mekong Delta region of Vietnam. Vet Microbiol 2014; 170:258-65. [PMID: 24679960 PMCID: PMC4003349 DOI: 10.1016/j.vetmic.2014.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 12/15/2022]
Abstract
Group A rotaviruses (ARoVs) are a common cause of severe diarrhea among children worldwide and the cause of approximately 45% of pediatric hospitalizations for acute diarrhea in Vietnam. ARoVs are known to cause significant economic losses to livestock producers by reducing growth performance and production efficiencies, however little is known about the implications of asymptomatic endemic circulation of ARoV. We aimed to determine the prevalence and predominant circulating genotypes of ARoVs on pig farms in a southern province of Vietnam. We found overall animal-level and farm-level prevalence of 32.7% (239/730) and 74% (77/104), respectively, and identified six different G types and 4 P types in various combinations (G2, G3, G4, G5, G9, G11 and P[6], P[13], P[23], and P[34]). There was no significant association between ARoV infection and clinical disease in pigs, suggesting that endemic asymptomatic circulation of ARoV may complicate rotavirus disease attribution during outbreaks of diarrhea in swine. Sequence analysis of the detected ARoVs suggested homology to recent human clinical cases and extensive genetic diversity. The epidemiological relevance of these findings for veterinary practitioners and to ongoing pediatric ARoV vaccine initiatives in Vietnam merits further study.
Collapse
Affiliation(s)
- Hong Anh Pham
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam
| | - Juan J Carrique-Mas
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam
| | - Van Cuong Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam
| | - Thi Hoa Ngo
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam
| | | | - Be Hien Vo
- Sub-Department of Animal Health, Dong Thap, Viet Nam
| | - Vu Tra My Phan
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam; University of Edinburgh, London, United Kingdom
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Medicine, Oxford University, London, United Kingdom
| | - Stephen Baker
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Medicine, Oxford University, London, United Kingdom; The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Medicine, Oxford University, London, United Kingdom.
| |
Collapse
|
16
|
Do LP, Nakagomi T, Nakagomi O. A rare G1P[6] super-short human rotavirus strain carrying an H2 genotype on the genetic background of a porcine rotavirus. INFECTION GENETICS AND EVOLUTION 2014; 21:334-50. [DOI: 10.1016/j.meegid.2013.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 11/16/2022]
|
17
|
Papp H, Borzák R, Farkas S, Kisfali P, Lengyel G, Molnár P, Melegh B, Matthijnssens J, Jakab F, Martella V, Bányai K. Zoonotic transmission of reassortant porcine G4P[6] rotaviruses in Hungarian pediatric patients identified sporadically over a 15 year period. INFECTION GENETICS AND EVOLUTION 2013; 19:71-80. [PMID: 23792183 DOI: 10.1016/j.meegid.2013.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
Genotype G4P[6] Rotavirus A (RVA) strains collected from children admitted to hospital with gastroenteritis over a 15 year period in the pre rotavirus vaccine era in Hungary were characterized in this study. Whole genome sequencing and phylogenetic analysis was performed on eight G4P[6] RVA strains. All these RVA strains shared a fairly conservative genomic configuration (G4-P[6]-I1/I5-R1-C1-M1-A1/A8-N1-T1/T7-E1-H1) and showed striking similarities to porcine and porcine-derived human RVA strains collected worldwide, although genetic relatedness to some common human RVA strains was also seen. The resolution of phylogenetic relationship between porcine and human RVA genes was occasionally low, making the evaluation of host species origin of individual genes sometimes difficult. Yet the whole genome constellations and overall phylogenetic analyses indicated that these eight Hungarian G4P[6] RVA strains may have originated by independent zoonotic transmission, probably from pigs. Future surveillance studies of human and animal RVA should go parallel to enable the distinction between direct interspecies transmission events and those that are coupled with reassortment of cognate genes.
Collapse
Affiliation(s)
- Hajnalka Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Whole-genome sequence analysis of a Korean G11P[25] rotavirus strain identifies several porcine-human reassortant events. Arch Virol 2013; 158:2385-93. [DOI: 10.1007/s00705-013-1720-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/07/2013] [Indexed: 12/11/2022]
|
19
|
Papp H, László B, Jakab F, Ganesh B, De Grazia S, Matthijnssens J, Ciarlet M, Martella V, Bányai K. Review of group A rotavirus strains reported in swine and cattle. Vet Microbiol 2013; 165:190-9. [PMID: 23642647 PMCID: PMC7117210 DOI: 10.1016/j.vetmic.2013.03.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/04/2022]
Abstract
Group A rotavirus (RVA) infections cause severe economic losses in intensively reared livestock animals, particularly in herds of swine and cattle. RVA strains are antigenically heterogeneous, and are classified in multiple G and P types defined by the two outer capsid proteins, VP7 and VP4, respectively. This study summarizes published literature on the genetic and antigenic diversity of porcine and bovine RVA strains published over the last 3 decades. The single most prevalent genotype combination among porcine RVA strains was G5P[7], whereas the predominant genotype combination among bovine RVA strains was G6P[5], although spatiotemporal differences in RVA strain distribution were observed. These data provide important baseline data on epidemiologically important RVA strains in swine and cattle and may guide the development of more effective vaccines for veterinary use.
Collapse
Affiliation(s)
- Hajnalka Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maestri RP, Kaiano JHL, Neri DL, Soares LDS, Guerra SDFDS, Oliveira DDS, Farias YN, Gabbay YB, Leite JPG, Linhares ADC, Mascarenhas JDP. Phylogenetic analysis of probable non-human genes of group A rotaviruses isolated from children with acute gastroenteritis in Belém, Brazil. J Med Virol 2013; 84:1993-2002. [PMID: 23080508 DOI: 10.1002/jmv.23364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rotaviruses (RVs) are the main cause of acute viral gastroenteritis in both humans and young animals of various species such as calves, horses, pigs, dogs, cats, and birds. The genetic diversity of RVs is related to a variety of evolutionary mechanisms, including point mutation, and genome reassortment. The objective of this study was to characterize molecularly genes that encode structural and nonstructural proteins in unusual RV strains. The clinical specimens selected for this study were obtained from children and newborn with RV gastroenteritis, who participated in research projects on viral gastroenteritis conducted at the Evandro Chagas Institute. Structural (VP1-VP4, VP6, and VP7) and nonstructural (NSP1-NSP6) genes were amplified from stool samples by the polymerase chain reaction and subsequently sequenced. Eight unusual RV strains isolated from children and newborn with gastroenteritis were studied. Reassortment between genes of animal origin were observed in 5/8 (62.5%) strains analyzed. These results demonstrate that, although rare, interspecies (animal-human) transmission of RVs occurs in nature, as observed in the present study in strains NB150, HSP034, HSP180, HST327, and RV10109. This study is the first to be conducted in the Amazon region and supports previous data showing a close relationship between genes of human and animal origin, representing a challenge to the large-scale introduction of RV vaccines in national immunization programs.
Collapse
Affiliation(s)
- Régis Piloni Maestri
- Virology Section, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Than VT, Baek IH, Kim W. Whole genomic analysis reveals the co-evolutionary phylodynamics of Korean G9P[8] human rotavirus strains. Arch Virol 2013; 158:1795-803. [DOI: 10.1007/s00705-013-1662-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
|
22
|
Zeller M, Heylen E, De Coster S, Van Ranst M, Matthijnssens J. Full genome characterization of a porcine-like human G9P[6] rotavirus strain isolated from an infant in Belgium. INFECTION GENETICS AND EVOLUTION 2012; 12:1492-500. [DOI: 10.1016/j.meegid.2012.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
23
|
Martel-Paradis O, Laurin MA, Martella V, Sohal JS, L'Homme Y. Full-length genome analysis of G2, G9 and G11 porcine group A rotaviruses. Vet Microbiol 2012; 162:94-102. [PMID: 23017831 DOI: 10.1016/j.vetmic.2012.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
Group A rotaviruses with G2 and G9 VP7 specificity are common in humans, while G11 strains have been detected only sporadically. G2, G9 and G11 rotaviruses also circulate in pigs and swine rotaviruses have been suspected of interspecies and zoonotic transmissions in numerous studies. However, the complete gene constellation of G2 and G9 porcine rotaviruses has not yet been determined. In order to start filling this gap, the genomic make up of two G2, one G9 and one G11 porcine rotavirus strains, detected in Canada in 2005-2007, was determined. With the exception of a G2P[34] strain, with E9 NSP4 type and mixed I5+I14 VP6 type, the constellation of genomic segments was rather conserved and were closely related to prototype porcine strains in the four viruses characterized (I5-R1-C1-M1-A8-N1-T7-E1-H1). Most notably, all the viruses displayed a rare NSP3 genotype, T7, which has also been identified in rare human reassortant strains and in the reference strain RVA/Cow-tc/GBR/UK/1973/G6P[5]. This study provides crucial genetic data on these complex viruses and will help understand the origin and ecological niche of gene segments and the role played by pigs in their evolution.
Collapse
Affiliation(s)
- Olivier Martel-Paradis
- Canadian Food Inspection Agency, St-Hyacinthe Laboratory, 3400 Blvd Casavant West, St-Hyacinthe, Quebec, Canada
| | | | | | | | | |
Collapse
|
24
|
Mladenova Z, Papp H, Lengyel G, Kisfali P, Steyer A, Steyer AF, Esona MD, Iturriza-Gómara M, Bányai K. Detection of rare reassortant G5P[6] rotavirus, Bulgaria. INFECTION GENETICS AND EVOLUTION 2012; 12:1676-84. [PMID: 22850117 DOI: 10.1016/j.meegid.2012.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022]
Abstract
During the ongoing rotavirus strain surveillance program conducted in Bulgaria, an unusual human rotavirus A (RVA) strain, RVA/Human/BG/BG620/2008/G5P[6], was identified among 2200 genotyped Bulgarian RVAs. This strain showed the following genomic configuration: G5-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. Phylogenetic analysis of the genes encoding the neutralization proteins and backbone genes identified a probable mixture of RVA genes of human and porcine origin. The VP1, VP6 and NSP2 genes were more closely related to typical human rotavirus strains. The remaining eight genes were either closely related to typical porcine and unusual human-porcine reassortant rotavirus strains or were equally distant from reference human and porcine strains. This study is the first to report an unusual rotavirus isolate with G5P[6] genotype in Europe which has most likely emerged from zoonotic transmission. The absence of porcine rotavirus sequence data from this area did not permit to assess if the suspected ancestral zoonotic porcine strain already had human rotavirus genes in its genome when transmitted from pig to human, or, the transmission was coupled or followed by gene reassortment event(s). Because our strain shared no neutralization antigens with rotavirus vaccines used for routine immunization in children, attention is needed to monitor if this G-P combination will be able to emerge in human populations. A better understanding of the ecology of rotavirus zoonoses requires simultaneous monitoring of rotavirus strains in humans and animals.
Collapse
|
25
|
Kim HH, Matthijnssens J, Kim HJ, Kwon HJ, Park JG, Son KY, Ryu EH, Kim DS, Lee WS, Kang MI, Yang DK, Hyun BH, Park SI, Park SJ, Cho KO. Full-length genomic analysis of porcine G9P[23] and G9P[7] rotavirus strains isolated from pigs with diarrhea in South Korea. INFECTION GENETICS AND EVOLUTION 2012; 12:1427-35. [PMID: 22613801 DOI: 10.1016/j.meegid.2012.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Group A rotaviruses (RVAs) are agents causing severe gastroenteritis in infants and young animals. G9 RVA strains are believed to have originated from pigs. However, this genotype has emerged as the fifth major human RVA genotype worldwide. To better understand the relationship between human and porcine RVA strains, complete RVA genome data are needed. For human RVA strains, the number of complete genome data have grown exponentially. However, there is still a lack of complete genome data on porcine RVA strains. Recently, G9 RVA strains have been identified as the third most important genotype in diarrheic pigs in South Korea in combinations with P[7] and P[23]. This study is the first report on complete genome analyses of 1 G9P[7] and 3 G9P[23] porcine RVA strains, resulting in the following genotype constellation: G9-P[7]/P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. By comparisons of these genotype constellations, it was revealed that the Korean G9P[7] and G9P[23] RVA strains possessed a typical porcine RVA backbone, similar to other known porcine RVA strains. However, detailed phylogenetic analyses revealed the presence of intra-genotype reassortments among porcine RVA strains in South Korea. Thus, our data provide genetic information of G9 RVA strains increasingly detected in both humans and pigs, and will help to establish the role of pigs as a source or reservoir for novel human RVA strains.
Collapse
Affiliation(s)
- Ha-Hyun Kim
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hwang KP, Wu FT, Bányai K, Wu HS, Yang DCF, Huang YC, Lin JS, Hsiung CA, Huang JC, Jiang B, Gentsch JR. Identification of porcine rotavirus-like genotype P[6] strains in Taiwanese children. J Med Microbiol 2012; 61:990-997. [PMID: 22466032 DOI: 10.1099/jmm.0.042499-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular characterization of genotype P[6] rotavirus strains collected from children admitted to hospital with acute dehydrating diarrhoea during a 6-year surveillance period in Taiwan is described in this study. In total, three G4P[6] strains, one G5P[6] and one G12P[6] were characterized by sequencing and phylogenetic analysis of the VP4, VP7, VP6 and NSP4 genes. Whilst all four genes of the single Taiwanese G12P[6] strain clustered with the respective genes of globally common human rotavirus strains, the G4 and G5 strains showed remarkable similarities to porcine rotavirus strains and putative porcine-origin human P[19] strains reported previously from Taiwan. The overall proportion of porcine rotavirus-like strains in Taiwan remains around 1 % among hospitalized children; however, the circulation and sporadic transmission of these heterotypic strains from pigs to humans could pose a public-health concern. Therefore, continuation of strain monitoring is needed in the vaccine era to detect any possible vaccine breakthrough events associated with the introduction of such heterologous rotavirus strains.
Collapse
Affiliation(s)
- Kao-Pin Hwang
- Division of Pediatric Infectious Disease, Department of Pediatrics, China Medical University Hospital, China Medical University School of Medicine, Taichung, Taiwan ROC
| | - Fang-Tzy Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan ROC.,Centers for Disease Control, Department of Health, Taiwan ROC
| | | | - Ho-Sheng Wu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan ROC.,Centers for Disease Control, Department of Health, Taiwan ROC
| | | | - Yhu-Chering Huang
- Division of Pediatric Infectious Disease, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan ROC
| | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan ROC
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan ROC
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan ROC
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jon R Gentsch
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
27
|
Ghosh S, Urushibara N, Taniguchi K, Kobayashi N. Whole genomic analysis reveals the porcine origin of human G9P[19] rotavirus strains Mc323 and Mc345. INFECTION GENETICS AND EVOLUTION 2012; 12:471-7. [DOI: 10.1016/j.meegid.2011.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/25/2011] [Accepted: 12/13/2011] [Indexed: 01/24/2023]
|
28
|
Wu FT, Bányai K, Huang JC, Wu HS, Chang FY, Yang JY, Hsiung CA, Huang YC, Lin JS, Hwang KP, Jiang B, Gentsch JR. Diverse origin of P[19] rotaviruses in children with acute diarrhea in Taiwan: Detection of novel lineages of the G3, G5, and G9 VP7 genes. J Med Virol 2011; 83:1279-87. [PMID: 21567431 DOI: 10.1002/jmv.22052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously reported the detection of genotype P[19] rotavirus strains from children hospitalized with acute dehydrating diarrhea during a 5-year surveillance period in Taiwan. The characterization of five P[19] strains (0.4% of all typed), including three G3P[19], a novel G5P[19], and a unique G9P[19] genotype is described in this study. Phylogenetic analysis of the VP4, VP7, VP6, and NSP4 genes was performed, which demonstrated novel lineages for respective genotypes of the VP4 and the VP7 genes. The sequence similarities of the P[19] VP4 gene among Taiwanese human strains was higher (nt, 91.5-96.2%; aa, 93.7-97.6%) than to other P[19] strains (nt, 83.5-86.6%; aa, 89.4-94.1%) from different regions of the world. The VP7 gene of the three G3P[19] Taiwanese strains shared up to 93.4% nt and 97.5% aa identity to each other but had lower similarity to reference strain sequences available in GenBank (nt, <90.1%; aa, <95.6%). Similarly, the VP7 gene of the novel G5P[19] strain was only moderately related to the VP7 gene of reference G5 strains (nt, 82.2-87.3%; aa, 87.0-93.1%), while the VP7 gene of the single G9P[19] strain was genetically distinct from other known human and animal G9 rotavirus strains (nt, ≤ 92.0%; aa, ≤ 95.7%). Together, these findings suggest that the Taiwanese P[19] strains originated by independent interspecies transmission events. Synchronized surveillance of human and animal rotaviruses in Taiwan should identify possible hosts of these uncommon human rotavirus strains.
Collapse
Affiliation(s)
- Fang-Tzy Wu
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ghosh S, Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol 2011; 6:1049-65. [DOI: 10.2217/fmb.11.90] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on genetic diversity of rotaviruses have been primarily based on the genes encoding the antigenically significant VP7 and VP4 proteins. Since the rotavirus genome has 11 segments of RNA that are vulnerable to reassortment events, analyses of the VP7 and VP4 genes may not be sufficient to obtain conclusive data on the overall genetic diversity, or true origin of strains. In the last few years following the advent of the whole-genome-based genotype classification system, the whole genomes of at least 167 human group A rotavirus strains have been analyzed, providing a plethora of new and important information on the complex origin of strains, inter- and intra-genogroup reassortment events, animal–human reassortment events, zoonosis, and genetic linkages involving different group A rotavirus gene segments. In addition, the whole genomes of a limited number of human group B, C and novel group rotavirus strains have been analyzed. This article briefly reviews the available data on whole-genomic analysis of human rotavirus strains. The significance and future prospects of whole-genome-based studies are also discussed.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556, Japan
| | | |
Collapse
|
30
|
El Sherif M, Esona MD, Wang Y, Gentsch JR, Jiang B, Glass RI, Abou Baker S, Klena JD. Detection of the first G6P[14] human rotavirus strain from a child with diarrhea in Egypt. INFECTION GENETICS AND EVOLUTION 2011; 11:1436-42. [PMID: 21640199 DOI: 10.1016/j.meegid.2011.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/18/2011] [Accepted: 05/17/2011] [Indexed: 11/29/2022]
Abstract
We report the first detection of a G6P[14] rotavirus strain in Egypt from the stool of a child participating in a hospital-based diarrhea surveillance study conducted throughout the year 2004. Rotavirus infection was initially detected using a rotavirus group A VP6 enzyme immunoassay; the P (VP4) and G (VP7) genotypes of the strain were identified by RT-PCR. We sequenced the VP7 gene and the VP8* portion of the VP4 gene and the strain displayed the strongest identity to the VP7 [>94% nucleotides (nt), >97% amino acids (aa)] and VP4 (>93% nt, >98% aa) sequences of PA169, a novel G6P[14] strain first isolated from a child in Italy during the winter of 1987. Additional sequencing and analysis of the other remaining structural (VP1-VP3, VP6) and non-structural (NSP1-NSP5) proteins support this animal-to-human reassortment theory. According to the full genome classification system, the G6P[14] strain (EGY3399) was assigned to G6-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotypes. The greatest similarity of EGY3399 NSP4 and NSP5 gene sequences were to those of ovine and simian origin, respectively. Coupled with other observations, our results suggest G6P[14] isolates rarely cause severe diarrhea in Egyptian children, and support other studies that indicate animal rotavirus contribute to the genetic diversity of rotavirus detected from humans through interspecies transmission and single or multiple segments reassortment.
Collapse
Affiliation(s)
- May El Sherif
- United States Naval Medical Research Unit-3, Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gómara M, Johne R, Kirkwood CD, Martella V, Mertens PPC, Nakagomi O, Parreño V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 2011; 156:1397-413. [PMID: 21597953 DOI: 10.1007/s00705-011-1006-z] [Citation(s) in RCA: 769] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/19/2011] [Indexed: 12/31/2022]
Abstract
In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Grant L, Esona M, Gentsch J, Watt J, Reid R, Weatherholtz R, Santosham M, Parashar U, O'Brien K. Detection of G3P[3] and G3P[9] rotavirus strains in American Indian children with evidence of gene reassortment between human and animal rotaviruses. J Med Virol 2011; 83:1288-99. [DOI: 10.1002/jmv.22076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Mijatovic-Rustempasic S, Bányai K, Esona M, Foytich K, Bowen M, Gentsch J. Genome sequence based molecular epidemiology of unusual US Rotavirus A G9 strains isolated from Omaha, USA between 1997 and 2000. INFECTION GENETICS AND EVOLUTION 2011; 11:522-7. [DOI: 10.1016/j.meegid.2010.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023]
|
34
|
Full genomic analysis of Indian G1P[8] rotavirus strains. INFECTION GENETICS AND EVOLUTION 2011; 11:504-11. [DOI: 10.1016/j.meegid.2011.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/27/2010] [Accepted: 01/04/2011] [Indexed: 01/05/2023]
|
35
|
Bányai K, Mijatovic-Rustempasic S, Hull J, Esona M, Freeman M, Frace A, Bowen M, Gentsch J. Sequencing and phylogenetic analysis of the coding region of six common rotavirus strains: Evidence for intragenogroup reassortment among co-circulating G1P[8] and G2P[4] strains from the United States. J Med Virol 2011; 83:532-9. [DOI: 10.1002/jmv.21977] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Shim JO, Baek IH, Le VP, Ko EM, Seok WS, Uh Y, Kim JK, Ahn SY, Lee HS, Ryoo E, Shim SY, Song W, Lim I, Kim W. Molecular characterization of rotavirus diarrhea among children in South Korea: detection of an unusual G11 strain. Arch Virol 2011; 156:887-92. [PMID: 21234769 DOI: 10.1007/s00705-010-0911-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
Among 312 rotavirus-positive samples collected from eight hospitals across South Korea during 2008 and 2009, the most prevalent circulating G genotype was G1 (35.9%), followed by G3 (24.7%), G2 (17.0%), G4 (7.7%), and G9 (2.6%). Notably, one unusual G11 lineage III strain-the first hypoendemic infection case in the world-was found. Of the P genotypes, P[8] (43.9%) was the most common, followed by P[6] (29.5%), P[4] (9.3%) and P[9] (0.6%). Determining G- and P-type combinations showed that G1P[8] was the most prevalent (20.5%), followed by G2P[6] (12.8%) and G3P[8] (12.8%). These findings provide new information concerning the current prevalence and spread of the rare G11 rotavirus.
Collapse
Affiliation(s)
- Jung Ok Shim
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abe M, Ito N, Masatani T, Nakagawa K, Yamaoka S, Kanamaru Y, Suzuki H, Shibano KI, Arashi Y, Sugiyama M. Whole genome characterization of new bovine rotavirus G21P[29] and G24P[33] strains provides evidence for interspecies transmission. J Gen Virol 2011; 92:952-60. [DOI: 10.1099/vir.0.028175-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
38
|
Wang YH, Kobayashi N, Nagashima S, Zhou X, Ghosh S, Peng JS, Hu Q, Zhou DJ, Yang ZQ. Full genomic analysis of a porcine-bovine reassortant G4P[6] rotavirus strain R479 isolated from an infant in China. J Med Virol 2010; 82:1094-102. [PMID: 20419827 DOI: 10.1002/jmv.21760] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During the 2004 surveillance of rotaviruses in Wuhan, China, a G4P[6] rotavirus strain R479 was isolated from a stool specimen collected from a 2-year-old child with diarrhea. The strain R479 had an uncommon subgroup specificity I + II, and analysis of the VP6 gene suggested that it was related to porcine rotaviruses. In the present study, full-length nucleotide sequences of all the RNA segments of R479 were determined and analyzed phylogenetically to identify the origin of individual RNA segments. According to the rotavirus genotyping system based on 11 RNA segments, the genotype of R479 was expressed as G4-P[6]-I5-R1-C1-M1-A1-N1-T7-E1-H1. This genotype includes the porcine-like VP6 genotype (I5) and bovine-like NSP3 genotype (T7). Phylogenetic analysis revealed that R479 genes encoding VP1, VP2, VP3, VP6, VP7, VP8*, NSP1, NSP4, and NSP5 were more closely related to those of porcine rotaviruses than human or other animal rotaviruses. In contrast, it was remarkable that the NSP3 gene of R479 was genetically closely related to only a bovine rotavirus strain UK. The NSP2 gene of R479 was also unique and clustered with only the G5P[8] human strain IAL28 and G3P[24] simian strain TUCH. These results suggested that R479 may be a reassortant virus having the NSP3 gene from a bovine rotavirus in the genetic background of a porcine rotavirus, with an NSP2 gene related to the porcine-human reassortant strain IAL28. To our knowledge, R479 is the first porcine-bovine reassortant rotavirus isolated from a human.
Collapse
Affiliation(s)
- Yuan-Hong Wang
- Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matthijnssens J, Martella V, Van Ranst M. Genomic evolution, host-species barrier, reassortment and classification of rotaviruses. Future Virol 2010. [DOI: 10.2217/fvl.10.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Evaluation of: Yamamoto D, Ghosh S, Ganesh B et al.: Analysis on genetic diversity and molecular evolution of human group B rotaviruses based on whole genome segments. J. Gen. Virol. 91(Pt 7), 1772–1781 (2010). Rotaviruses are members of the Reoviridae family, causing severe diarrheal illness and death in humans and animals. They have been subdivided into at least seven serological groups (A–G), and, recently, a new rotavirus known as ‘new adult diarrhea virus’ or ADRV-N was discovered. Only in group A rotaviruses have a substantial number of strains been analyzed completely on the molecular level. For groups B, C and ADRV-N rotaviruses a very limited number of complete genomes are available, and for group D, E and F no sequence data are available at all. Here, Yamamoto and colleagues describe the full genomic characterization of four human group B rotaviruses isolated in India, Bangladesh and Myanmar. These four strains were analyzed phylogenetically and individual gene segments were compared with their group A and C counterparts, indicating that functionally important motifs and structural characteristics were conserved. This study, together with others, highlights the need for complete genome analysis of rotaviruses, in order to study their genetic evolution, the occurrence of reassortments, crossing of the host-species barrier and their classification. Upcoming new mass sequencing technologies are expected to speed up the process of filling in the gaps in our data.
Collapse
Affiliation(s)
| | - Vito Martella
- Department of Veterinary Public Health, University of Bari, Italy
| | - Marc Van Ranst
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Matthijnssens J, Rahman M, Ciarlet M, Zeller M, Heylen E, Nakagomi T, Uchida R, Hassan Z, Azim T, Nakagomi O, Van Ranst M. Reassortment of human rotavirus gene segments into G11 rotavirus strains. Emerg Infect Dis 2010; 16:625-30. [PMID: 20350376 PMCID: PMC3321964 DOI: 10.3201/eid1604.091591] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
G11 rotaviruses are believed to be of porcine origin. However, a limited number of G11 rotaviruses have been recently isolated from humans in combination with P[25], P[8], P[6], and P[4]. To investigate the evolutionary relationships of these strains, we analyzed the complete genomes of 2 human G11P[25] strains, 2 human G11P[8] strains, and 3 porcine reference strains. Most of the 11 gene segments of these 7 strains belonged to genotype 1 (Wa-like). However, phylogenetic clustering patterns suggested that an unknown G11P[25] strain with a new I12 VP6 genotype was transmitted to the human population, in which it acquired human genotype 1 gene segments through reassortment, resulting in a human G11P[8] rotavirus strain with an entire human Wa-genogroup backbone. This Wa-like backbone is believed to have caused the worldwide spread of human G9 and G12 rotaviruses. G11 human rotavirus strains should be monitored because they may also become major human pathogens.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|