1
|
Huang WF, Li R, Jin L, Huang S. Procedures and potential pitfalls for constructing a bee-infecting RNA virus clone. FRONTIERS IN INSECT SCIENCE 2022; 2:908702. [PMID: 38468785 PMCID: PMC10926416 DOI: 10.3389/finsc.2022.908702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 03/13/2024]
Abstract
Viruses are factors that can fluctuate insect populations, including honey bees. Most honey bee infecting viruses are single positive-stranded RNA viruses that may not specifically infect honey bees and can be hazardous to other pollinator insects. In addition, these viruses could synergize with other stressors to worsen the honey bee population decline. To identify the underlying detailed mechanisms, reversed genetic studies with infectious cDNA clones of the viruses are necessary. Moreover, an infectious cDNA clone can be applied to studies as an ideal virus isolate that consists of a single virus species with a uniform genotype. However, only a few infectious cDNA clones have been reported in honey bee studies since the first infectious cDNA clone was published four decades ago. This article discusses steps, rationales, and potential issues in bee-infecting RNA virus cloning. In addition, failed experiences of cloning a Deformed wing virus isolate that was phylogenetically identical to Kakugo virus were addressed. We hope the information provided in this article can facilitate further developments of reverse-genetic studies of bee-infecting viruses to clarify the roles of virus diseases in the current pollinator declines.
Collapse
Affiliation(s)
- Wei-Fone Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | | |
Collapse
|
2
|
Yang S, Deng Y, Zhang L, Wang X, Deng S, Dai P, Hou C. Recovery and genetic characterization of black queen cell virus. J Gen Virol 2022; 103. [PMID: 35947094 DOI: 10.1099/jgv.0.001770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Black queen cell virus (BQCV) is a severe threat to the honeybee (Apis mellifera) worldwide. Although several BQCV strains have been reported in China, the molecular basis for BQCV pathogenicity has not been well understood. Thus, a reverse genetic system of BQCV is required for studying viral replication and its pathogenic mechanism. Here, the complete genome sequence of BQCV was obtained from honeybees using reverse transcription PCR (RT-PCR), namely a BQCV China-GS1 strain (KY741959). Then, a phylogenetic tree was built to analyse the genetic relationships among BQCV strains from different regions. Our results showed that the BQCV China-GS1 contained two ORFs, consistent with the known reference strains, except for the BQCV China-JL1 strain (KP119603). Furthermore, the infectious clone of BQCV was constructed based on BQCV China-GS1 using a low copy vector pACYC177 and gene recombination. Due to the lack of culture cells for bee viruses, we infected the healthy bees with infectious clone of BQCV, and the rescued BQCV resulted in the recovery of recombinant virus, which induced higher mortality than those of the control group. Immune response after inoculated with BQCV further confirmed that the infectious clone of BQCV caused the cellular and humoral immune response of honeybee (A. mellifera). In conclusion, the full nucleotide sequence of BQCV China-GS1 strain was determined, and the infectious clone of BQCV was constructed in this study. These data will improve the understanding of pathogenesis and the host immune responses to viral infection.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, PR China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Li Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, PR China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, PR China
| | - Shuai Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Pingli Dai
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, PR China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| |
Collapse
|
3
|
Erez T, Chejanovsky N. Infection of a Lepidopteran Cell Line with Deformed Wing Virus. Viruses 2020; 12:E739. [PMID: 32659903 PMCID: PMC7412015 DOI: 10.3390/v12070739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Many attempts to develop a reliable cell cultured-based system to study honey bee virus infections have encountered substantial difficulties. We investigated the ability of a cell line from a heterologous insect to sustain infection by a honey bee virus. For this purpose, we infected the Lepidopteran hemocytic cell line (P1) with Deformed wing virus (DWV). The genomic copies of DWV increased upon infection, as monitored by quantitative RT-PCR. Moreover, a tagged-primer-based RT-PCR analysis showed the presence of DWV negative-sense RNA in the cells, indicating virus replication. However, the DWV from infected cells was mildly infectious to P1 cells. Similar results were obtained when the virus was injected into Apis mellifera pupae. Thus, though the virus yields from the infected cells appeared to be very low, we show for the first time that DWV can replicate in a heterologous cell line. Given the availability of many other insect cell lines, our study paves the way for future exploration in this direction. In the absence of adequate A. mellifera cell lines, exploring the ability of alternative cell lines to enable honey bee virus infections could provide the means to study and understand the viral infectious cycle at the cellular level and facilitate obtaining purified isolates of these viruses.
Collapse
Affiliation(s)
| | - Nor Chejanovsky
- Department of Entomology Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion 7528809, Israel;
| |
Collapse
|
4
|
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, Amiri E, Smagghe G, Schroeder D, Chejanovsky N. Bee Viruses: Routes of Infection in Hymenoptera. Front Microbiol 2020; 11:943. [PMID: 32547504 PMCID: PMC7270585 DOI: 10.3389/fmicb.2020.00943] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have recently reported on the discovery of bee viruses in different arthropod species and their possible transmission routes, vastly increasing our understanding of these viruses and their distribution. Here, we review the current literature on the recent advances in understanding the transmission of viruses, both on the presence of bee viruses in Apis and non-Apis bee species and on the discovery of previously unknown bee viruses. The natural transmission of bee viruses will be discussed among different bee species and other insects. Finally, the research potential of in vivo (host organisms) and in vitro (cell lines) serial passages of bee viruses is discussed, from the perspective of the host-virus landscape changes and potential transmission routes for emerging bee virus infections.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Dalmon
- INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France
| | | | - Panuwan Chantawannakul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Declan Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
5
|
Yang S, Zhao H, Deng Y, Deng S, Wang X, Diao Q, Hou C. A Reverse Genetics System for the Israeli Acute Paralysis Virus and Chronic Bee Paralysis Virus. Int J Mol Sci 2020; 21:ijms21051742. [PMID: 32143291 PMCID: PMC7084666 DOI: 10.3390/ijms21051742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022] Open
Abstract
Honey bee viruses are associated with honey bee colony decline. Israeli acute paralysis virus (IAPV) is considered to have a strong impact on honey bee survival. Phylogenetic analysis of the viral genomes from several regions of the world showed that various IAPV lineages had substantial differences in virulence. Chronic bee paralysis virus (CBPV), another important honey bee virus, can induce two significantly different symptoms. However, the infection characteristics and pathogenesis of IAPV and CBPV have not been completely elucidated. Here, we constructed infectious clones of IAPV and CBPV using a universal vector to provide a basis for studying their replication and pathogenesis. Infectious IAPV and CBPV were rescued from molecular clones of IAPV and CBPV genomes, respectively, that induced typical paralysis symptoms. The replication levels and expression proteins of IAPV and CBPV in progeny virus production were confirmed by qPCR and Western blot. Our results will allow further dissection of the role of each gene in the context of viral infection while helping to study viral pathogenesis and develop antiviral drugs using reverse genetics systems.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
| | - Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Correspondence: ; Tel.: +86-10-62597285
| |
Collapse
|
6
|
Guo Y, Goodman CL, Stanley DW, Bonning BC. Cell Lines for Honey Bee Virus Research. Viruses 2020; 12:E236. [PMID: 32093360 PMCID: PMC7077248 DOI: 10.3390/v12020236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of the virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from the non-target effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for the study of molecular mechanisms of virus-host interaction, for the screening of antiviral agents for potential use within the hive, and for the assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating honey bee cell line has proved challenging. Here, we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods (including recent results) of establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus) in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology.
Collapse
Affiliation(s)
- Ya Guo
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA;
| | - Cynthia L. Goodman
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (D.W.S.)
| | - David W. Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (D.W.S.)
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
7
|
Hassanyar AK, Huang S, Li Z, Rizwan M, Mehmood S, Raza MF, Qasim M, Hussain M, Su S. Prevalence of bee viruses in Apis cerana cerana populations from different locations in the Fujian Province of China. Microbiologyopen 2019; 8:e00830. [PMID: 30884179 PMCID: PMC6741300 DOI: 10.1002/mbo3.830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/24/2023] Open
Abstract
Prevalence of honeybee viral diseases has recently been causing major problems in the beekeeping industry, causing economic losses worldwide. Honeybees are susceptible to a variety of diseases and various pathogens. Among these pathogens, prevalence viruses, along with other factors, are seriously threatening the health of bee species. In the present study, samples were collected from 80 Apis cerana cerana (A. c. cerana) colonies from three different locations, Cangshan, Fuan, and Yongtai, in the Fujian Province of China. All samples were screened using the reverse transcription polymerase chain reaction (RT-PCR) method for detection of seven honeybee viruses, namely, Chinese sacbrood virus (CSBV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), acute bee paralysis virus (ABPV), and Kashmir bee virus (KBV). Our results showed that CSBV was the most prevalent as it was detected in (90%), of the samples, DWV was detected in (81.25%), and IAPV was detected in (26.25%). In contrast, insignificant prevalence results were obtained from all apiaries for BQCV, CBPV, APBV, and KBV, which were not detected in any sample. Here, we are providing the first report on the molecular detection of honeybee viruses, especially the prevalence of IAPV, from different regions in the Fujian Province of China with a high prevalence of bee viruses, on A. c. cerana, and there is great concern for the presence of honeybee viruses in the population of the native honeybee (A. c. cerana) in China.
Collapse
Affiliation(s)
| | - Shaokang Huang
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhiguo Li
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Muhammad Rizwan
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shahid Mehmood
- Key Laboratory of Tropical Forest EcologyChemical Ecology Group Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingChina
| | - Muhammad Fahad Raza
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Muhammad Qasim
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Mubasher Hussain
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Songkun Su
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
8
|
Wu P, Yu H, Xu J, Wu J, Getachew A, Tu Y, Guo Z, Jin H, Xu S. Purification of Chinese Sacbrood Virus (CSBV), Gene Cloning and Prokaryotic Expression of its Structural Protein VP1. Mol Biotechnol 2018; 60:901-911. [DOI: 10.1007/s12033-018-0121-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Fei D, Wei D, Yu X, Yue J, Li M, Sun L, Jiang L, Li Y, Diao Q, Ma M. Screening of binding proteins that interact with Chinese sacbrood virus VP3 capsid protein in Apis cerana larvae cDNA library by the yeast two-hybrid method. Virus Res 2018; 248:24-30. [PMID: 29452163 DOI: 10.1016/j.virusres.2018.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection.
Collapse
Affiliation(s)
- Dongliang Fei
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China; College of Veterinary Medicine, Northeast Agricultural University, No. 59, Xiangfang the public Hamaji timber Street, Harbin, Heilongjiang Province, 150030, China
| | - Dong Wei
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Xiaolei Yu
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Jinjin Yue
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Ming Li
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Li Sun
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Lili Jiang
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 59, Xiangfang the public Hamaji timber Street, Harbin, Heilongjiang Province, 150030, China
| | - Qingyun Diao
- Honeybee Research Institute, Chinese Academy of Agricultural Sciences, Xiangshan, Beijing 100093, China
| | - Mingxiao Ma
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China.
| |
Collapse
|
10
|
A comparison of biological characteristics of three strains of Chinese sacbrood virus in Apis cerana. Sci Rep 2016; 6:37424. [PMID: 27853294 PMCID: PMC5112594 DOI: 10.1038/srep37424] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/31/2016] [Indexed: 01/17/2023] Open
Abstract
We selected and sequenced the entire genomes of three strains of Chinese sacbrood virus (CSBV): LNQY-2008 (isolated in Qingyuan, Liaoning Province), SXYL-2015 (isolated in Yulin, Shanxi Province), and JLCBS-2014 (isolated in Changbaishan, Jilin Province), by VP1 amino acid (aa) analysis. These strains are endemic in China and infect Apis cerana. Nucleotide sequences, deduced amino acid sequences, genetic backgrounds, and other molecular biological characteristics were analysed. We also examined sensitivity of these virus strains to temperature, pH, and organic solvents, as well as to other physicochemical properties. On the basis of these observations, we compared pathogenicity and tested cross-immunogenicity and protective immunity, using antisera raised against each of the three strains. Our results showed that compared with SXYL-2015, LNQY-2008 has a 10-aa deletion and 3-aa deletion (positions 282–291 and 299–301, respectively), whereas JLCBS-2014 has a 17-aa deletion (positions 284–300). However, the three strains showed no obvious differences in physicochemical properties or pathogenicity. Moreover, there was immune cross-reactivity among the antisera raised against the different strains, implying good protective effects of such antisera. The present study should significantly advance the understanding of the pathogenesis of Chinese sacbrood disease, and offers insights into comprehensive prevention and treatment of, as well as possible protection from, the disease by means of an antiserum.
Collapse
|
11
|
Carrillo-Tripp J, Dolezal AG, Goblirsch MJ, Miller WA, Toth AL, Bonning BC. In vivo and in vitro infection dynamics of honey bee viruses. Sci Rep 2016; 6:22265. [PMID: 26923109 PMCID: PMC4770293 DOI: 10.1038/srep22265] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
The honey bee (Apis mellifera) is commonly infected by multiple viruses. We developed an experimental system for the study of such mixed viral infections in newly emerged honey bees and in the cell line AmE-711, derived from honey bee embryos. When inoculating a mixture of iflavirids [sacbrood bee virus (SBV), deformed wing virus (DWV)] and dicistrovirids [Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV)] in both live bee and cell culture assays, IAPV replicated to higher levels than other viruses despite the fact that SBV was the major component of the inoculum mixture. When a different virus mix composed mainly of the dicistrovirid Kashmir bee virus (KBV) was tested in cell culture, the outcome was a rapid increase in KBV but not IAPV. We also sequenced the complete genome of an isolate of DWV that covertly infects the AmE-711 cell line, and found that this virus does not prevent IAPV and KBV from accumulating to high levels and causing cytopathic effects. These results indicate that different mechanisms of virus-host interaction affect virus dynamics, including complex virus-virus interactions, superinfections, specific virus saturation limits in cells and virus specialization for different cell types.
Collapse
Affiliation(s)
- Jimena Carrillo-Tripp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Adam G. Dolezal
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Amy L. Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Bryony C. Bonning
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Fei D, Zhang H, Diao Q, Jiang L, Wang Q, Zhong Y, Fan Z, Ma M. Codon Optimization, Expression in Escherichia coli, and Immunogenicity of Recombinant Chinese Sacbrood Virus (CSBV) Structural Proteins VP1, VP2, and VP3. PLoS One 2015; 10:e0128486. [PMID: 26067659 PMCID: PMC4466328 DOI: 10.1371/journal.pone.0128486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a small RNA virus family belonging to the genus Iflavirus that causes larval death, and even the collapse of entire bee colonies. The virus particle is spherical, non-enveloped, and its viral capsid is composed of four proteins, although the functions of the structural proteins are unclear. In this study, we used codon recoding to express the recombinant proteins VP1, VP2, and VP3 in Escherichia coli. SDS-PAGE analysis and Western blotting revealed that the target genes were expressed at high levels. Mice were then immunized with the purified, recombinant proteins, and antibody levels and lymphocyte proliferation were analyzed by ELISA and the MTT assay, respectively. The results show that the recombinant proteins induced high antibody levels and promoted lymphocyte proliferation. Polyclonal antibodies directed against these proteins will aid future studies of the molecular pathogenesis of CSBV.
Collapse
Affiliation(s)
- Dongliang Fei
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Haochun Zhang
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Qingyun Diao
- Honeybee Research Institute, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Jiang
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Qiang Wang
- Liaoning Water Conservancy Vocational College, Shenyang, China
| | - Yi Zhong
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Zhaobin Fan
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Mingxiao Ma
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
- * E-mail:
| |
Collapse
|
13
|
Complete genome of Chinese sacbrood virus from Apis cerana and analysis of the 3C-like cysteine protease. Virus Genes 2015; 50:277-85. [PMID: 25557929 DOI: 10.1007/s11262-014-1154-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/02/2014] [Indexed: 01/13/2023]
Abstract
The complete genome sequence of Chinese sacbrood virus (CSBV), isolated from diseased larvae of Apis cerana in Fujian province, China was analyzed. The viral genome consisted of 8,800 nucleotides, encoding 2,848 amino acids. A phylogenetic tree analysis showed the sacbrood virus (SBV) segregated into three distinct groups. The isolates originated from A. c. indica and were the first distinct evolutionary group. The AcSBV-SBM2 isolate, from A. c. cerana, belonged to the second distinct group. The remaining SBV isolates formed the third group. The phylogenetic relationships of SBV isolates suggest that they are derived from similar honeybee species or geographic origins. The 3C-like cysteine protease protein plays an important role in viral replication. The 3C-like cysteine protease protein of CSBV-FZ was predicted to contain a transmembrane domain. The subcellular localization of 3C-like cysteine protease was distributed as discrete punctate inclusions and co-localized with VP1 of CSBV. These results suggest that the non-structural protein 3C-like cysteine protease might be involved in viral replication. Insect cell cultures can further advance our understanding of picorna-like virus replication.
Collapse
|