1
|
Ebrahimi N, Javadinia SA, Salek R, Fanipakdel A, Sepahi S, Dehghani M, Valizadeh N, Mohajeri SA. Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Concurrent Use of Crocin During Chemoradiation for Esophageal Squamous Cell Carcinoma. Cancer Invest 2024; 42:155-164. [PMID: 38385429 DOI: 10.1080/07357907.2024.2319754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Crocin is the major active carotenoid of saffron (Crocus sativus L.). Its pluripotent effects have led to a growing body of literature investigating its antitumor properties as well as its diverse potentials for mood stabilization, normal tissue protection, and inflammation reduction; However, there is a gap in clinical trials testing this substance in cancer patients. In this randomized, double-blind, placebo-controlled clinical trial, patients with newly diagnosed esophageal squamous cell carcinoma were randomly assigned to either 30 mg/day of crocin or placebo, prescribed during the neoadjuvant chemo-radiotherapy. The primary endpoints were pathological response and toxicity, and secondary endpoints were depression and anxiety levels and survival analysis.
Collapse
Affiliation(s)
- Nima Ebrahimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Javadinia
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Roham Salek
- Cancer Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Fanipakdel
- Cancer Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sepahi
- Food and Beverages Safety Research Center, Urmia University of Medical sciences, Urmia, Iran
| | - Mansoureh Dehghani
- Cancer Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Valizadeh
- Department of Radiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Bao X, Hu J, Zhao Y, Jia R, Zhang H, Xia L. Advances on the anti-tumor mechanisms of the carotenoid Crocin. PeerJ 2023; 11:e15535. [PMID: 37404473 PMCID: PMC10315134 DOI: 10.7717/peerj.15535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
Saffron is located in the upper part of the crocus stigma of iridaceae, which has a long history of medicinal use. Crocin (molecular formula C44H64O24) is a natural floral glycoside ester compound extracted from saffron, which is a type carotenoid. Modern pharmacological studies have shown that crocin has multiple therapeutic effects including anti-inflammatory, anti-oxidant, anti-hyperlipidemic and anti-stone effects. In recent years, crocin has been widely noticed due to its considerable anti-tumor effects manifested by the induction of tumor cell apoptosis, inhibition of tumor cell proliferation, inhibition of tumor cell invasion and metastasis, enhancement of chemotherapy sensitivity and improvement of immune status. The anti-tumor effects have been shown in various malignant tumors such as gastric cancer, liver cancer, cervical cancer, breast cancer and colorectal cancer. In this review, we compiled recent studies on the anti-tumor effects of crocin and summarized its anti-tumor mechanism for developing ideas of treating malignancies and exploring anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhua Hu
- Shandong Provincial Hospital, Jinan, China
| | - Yan Zhao
- The Third Hospital of Jinan, Jinan, China
| | - Ruixue Jia
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Lei Xia
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Pugh KW, Alnaed M, Brackett CM, Blagg BSJ. The biology and inhibition of glucose-regulated protein 94/gp96. Med Res Rev 2022; 42:2007-2024. [PMID: 35861260 PMCID: PMC10003671 DOI: 10.1002/med.21915] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
The 94 kDa molecular chaperone, glucose-regulated protein 94 (Grp94), has garnered interest during the last decade due to its direct association with endoplasmic reticulum (ER) stress and disease. Grp94 belongs to the Hsp90 family of molecular chaperones and is a master regulator of ER homeostasis due to its ability to fold and stabilize proteins/receptors, and to chaperone misfolded proteins for degradation. Multiple studies have demonstrated that Grp94 knockdown or inhibition leads to the degradation of client protein substrates, which leads to disruption of disease-dependent signaling pathways. As a result, small molecule inhibitors of Grp94 have become a promising therapeutic approach to target a variety of disease states. Specifically, Grp94 has proven to be a promising target for cancer, glaucoma, immune-mediated inflammation, and viral infection. Moreover, Grp94-peptide complexes have been utilized effectively as adjuvants for vaccines against a variety of disease states. This work highlights the significance of Grp94 biology and the development of therapeutics that target this molecular chaperone in multiple disease states.
Collapse
Affiliation(s)
- Kyler W. Pugh
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Marim Alnaed
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Christopher M. Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
4
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
5
|
Efficacy and safety of novel herbal tablets in COVID-19 patients in hospital stay days, ICU admission and mortality rate thereof: An open-label, single-blind randomized clinical trial. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the super-spreading virus, has claimed hundreds of thousands of lives worldwide. Objectives: This study aimed to evaluate the effectiveness of the novel suggested herbal compound, formulated as compressed tablets, in reducing the length of hospital stay (LoS), intensive care unit (ICU) admission, and mortality in confirmed COVID-19 cases. Methods: Following an open-label, single-blind randomized clinical trial design, a total of 200 patients aged 18-65 admitted to Imam Reza hospital in Tabriz, northwest of Iran, were randomized to intervention and control groups in a 1:1 ratio, i.e., 100 subjects in each group. The former received standard treatment along with the compressed herbal tablets, and the latter only received the standard treatment. Adverse reactions incidence within 180 days after the beginning of the intervention was set as the primary safety endpoint. The most important and active ingredients of the tablets were Terminalia chebula, Glycyrrhiza glabra, Anacyclus pyrethrum, Senna alexandrina, Ferrula asafoetida, Pistacia lentiscus, Zizyphus jujuba, Crocus sativus, Echinacea angustifolia, and Hyssopus officinalis. This trial is registered at the Iranian Registry of Clinical Trials (code: IRCT20200522047545N1). Results: Those in the intervention arm had significantly lower rates of LoS (7.38 vs. 9.45, P = 0.030), ICU admission (6 out of 100 vs. 32 out of 100, P = 0.000), and mortality (1 vs. 19 out of 100, P = 0.000). Conclusions: Our observations suggest that adequate improvement is provided by the prepared herbal compound along with substantial savings in hospitalization hoteling costs. While further multi-center studies with a larger sample size are needed to extend our knowledge regarding the effect of this new option, these novel clinical data may well provide a new alternative for the management of COVID-19 disease.
Collapse
|
6
|
Simkin AJ. Carotenoids and Apocarotenoids in Planta: Their Role in Plant Development, Contribution to the Flavour and Aroma of Fruits and Flowers, and Their Nutraceutical Benefits. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112321. [PMID: 34834683 PMCID: PMC8624010 DOI: 10.3390/plants10112321] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Carotenoids and apocarotenoids are diverse classes of compounds found in nature and are important natural pigments, nutraceuticals and flavour/aroma molecules. Improving the quality of crops is important for providing micronutrients to remote communities where dietary variation is often limited. Carotenoids have also been shown to have a significant impact on a number of human diseases, improving the survival rates of some cancers and slowing the progression of neurological illnesses. Furthermore, carotenoid-derived compounds can impact the flavour and aroma of crops and vegetables and are the origin of important developmental, as well as plant resistance compounds required for defence. In this review, we discuss the current research being undertaken to increase carotenoid content in plants and research the benefits to human health and the role of carotenoid derived volatiles on flavour and aroma of fruits and vegetables.
Collapse
Affiliation(s)
- Andrew J. Simkin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; or
- Crop Science and Production Systems, NIAB-EMR, New Road, East Malling, Kent ME19 6BJ, UK
| |
Collapse
|
7
|
Abbasifarid E, Bolhassani A, Irani S, Sotoodehnejadnematalahi F. Synergistic effects of exosomal crocin or curcumin compounds and HPV L1-E7 polypeptide vaccine construct on tumor eradication in C57BL/6 mouse model. PLoS One 2021; 16:e0258599. [PMID: 34648579 PMCID: PMC8516259 DOI: 10.1371/journal.pone.0258599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the most common malignant tumor in females worldwide. Human papillomavirus (HPV) infection is associated with the occurrence of cervical cancer. Thus, developing an effective and low-cost vaccine against HPV infection, especially in developing countries is an important issue. In this study, a novel HPV L1-E7 fusion multiepitope construct designed by immunoinformatics tools was expressed in bacterial system. HEK-293T cells-derived exosomes were generated and characterized to use as a carrier for crocin and curcumin compounds. The exosomes loaded with crocin and curcumin compounds as a chemotherapeutic agent (ExoCrocin and ExoCurcumin) were used along with the L1-E7 polypeptide for evaluation of immunological and anti-tumor effects in C57BL/6 mouse model. In vitro studies showed that ExoCrocin and ExoCurcumin were not cytotoxic at a certain dose, and they could enter tumor cells. In vivo studies indicated that combination of the L1-E7 polypeptide with ExoCrocin or ExoCurcumin could produce a significant level of immunity directed toward Th1 response and CTL activity. These regimens showed the protective and therapeutic effects against tumor cells (the percentage of tumor-free mice: ~100%). In addition, both ExoCrocin and ExoCurcumin represented similar immunological and anti-tumor effects. Generally, the use of exosomal crocin or curcumin forms along with the L1-E7 polypeptide could significantly induce T-cell immune responses and eradicate tumor cells.
Collapse
Affiliation(s)
- Elnaz Abbasifarid
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
8
|
Crocin Promotes Apoptosis in Human EBV-Transformed B-Lymphocyte via Intrinsic Pathway. Mediterr J Hematol Infect Dis 2021; 13:e2021049. [PMID: 34276918 PMCID: PMC8265378 DOI: 10.4084/mjhid.2021.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background As a major carotenoid in saffron, crocin demonstrates potent anti-cancer impacts. However, its anti-lymphoma effects remain vague, especially in the human EBV-associated B-cell lymphoproliferative disorders. This study examined crocin's apoptogenic potential and its underlying mechanism in CO 88BV59-1 cell line vs. normal human peripheral blood B cells. Methods CO 88BV59-1 cells were treated with crocin alone or in combination with vincristine for up to 72 h. The cell viability was examined using a resazurin assay. Flow cytometry using annexin V and propidium iodide labeling was performed to detect apoptotic cells. Also, the expression levels of genes and proteins involved in apoptosis (CASP3, CASP8, CASP9, P53, Bax, and Bcl-2) were respectively determined via real-time PCR and Western blot analysis. Results Crocin concentration-dependently reduced cell viability in CO 88BV59-1 cells with no significant toxicity toward normal B cells. Similar to vincristine, crocin significantly increased apoptosis in these cells during 72 h of incubation. Furthermore, the combination of crocin (80 μM) and vincristine (1 μM) enhanced apoptosis in CO 88BV59-1 cells. Therefore, this synergistic effect was detected in human EBV-transformed B-lymphocyte. CASP3, CASP9, P53, and Bax/Bcl-2 ratio expressions were significantly raised in CO 88BV59-1 cells, whereas CASP8 was unaltered. It was proposed that crocin promoted apoptosis in CO 88BV59-1 cells in a time- and concentration-dependent manner via the induction of the intrinsic pathway. Conclusion The results suggest that crocin may serve as a good alternative/coadjuvant to vincristine in EBV-associated B-cell lymphoproliferative disorders.
Collapse
|
9
|
Husaini AM, Jan KN, Wani GA. Saffron: A potential drug-supplement for severe acute respiratory syndrome coronavirus (COVID) management. Heliyon 2021; 7:e07068. [PMID: 34007917 PMCID: PMC8118646 DOI: 10.1016/j.heliyon.2021.e07068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/24/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2 (COVID-19), came as a significant health care challenge for humans in 2019-20. Based on recent laboratory and epidemiological studies, a growing list of mutations in the virus has the potential to enhance its transmission or help it evade the immune response. To further compound the problems, there are considerable challenges to the availability of effective, affordable, safe vaccines on a mass scale. These impediments have led some to explore additional options available in traditional medicines, especially immune-boosting natural products. Saffron has been used for centuries to treat fever, bronchitis, cold and other immune, respiratory disorders. Herein, we discuss the potential role of saffron during and after COVID-19 infection, focusing on immunomodulation, respiratory, renal, and cardiovascular functions. As a nutraceutical or drug supplement, it can alleviate the magnitude of COVID-19 symptoms in patients. The anti-inflammatory, antioxidant, and other medicinal properties attributed to saffron bioactive compounds can help in both pre-and post-infection management strategies. The abnormalities associated with COVID-19 survivors include anxiety, depression, sleep disturbances, and post-traumatic stress disorder. Saffron can help manage these post-hospitalization abnormalities (sub-acute and chronic) too, owing to its anti-depressant property. It can help common people boost immunity and manage depression, stress and anxiety caused due to prolonged lockdown, isolation or quarantine.
Collapse
Affiliation(s)
- Amjad M. Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Jammu & Kashmir, 190025, India
| | - Khan Nadiya Jan
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Jammu & Kashmir, 190025, India
| | - Gowher A. Wani
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Jammu & Kashmir, 190025, India
| |
Collapse
|
10
|
Franconi R, Massa S, Paolini F, Vici P, Venuti A. Plant-Derived Natural Compounds in Genetic Vaccination and Therapy for HPV-Associated Cancers. Cancers (Basel) 2020; 12:cancers12113101. [PMID: 33114220 PMCID: PMC7690868 DOI: 10.3390/cancers12113101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary DNA vaccination represents a useful approach for human papillomavirus (HPV) cancer therapy. The therapeutic potential of plant-based natural compounds for control of HPV- associated cancers has been also widely explored. Genetic vaccines for HPV-associated tumors that include plant protein-encoding gene sequences, used alone or in combinations with plant metabolites, are being investigated but are still in their infancy. Main focus of this paper is to provide an overview of the current state of novel therapeutic strategies employing genetic vaccines along with plant-derived compounds and genes. We highlight the importance of multimodality treatment regimen such as combining immunotherapy with plant-derived agents. Abstract Antigen-specific immunotherapy and, in particular, DNA vaccination provides an established approach for tackling human papillomavirus (HPV) cancers at different stages. DNA vaccines are stable and have a cost-effective production. Their intrinsic low immunogenicity has been improved by several strategies with some success, including fusion of HPV antigens with plant gene sequences. Another approach for the control of HPV cancers is the use of natural immunomodulatory agents like those derived from plants, that are able to interfere in carcinogenesis by modulating many different cellular pathways and, in some instances, to reduce chemo- and radiotherapy resistance of tumors. Indeed, plant-derived compounds represent, in many cases, an abundantly available, cost-effective source of molecules that can be either harvested directly in nature or obtained from plant cell cultures. In this review, an overview of the most relevant data reported in literature on the use of plant natural compounds and genetic vaccines that include plant-derived sequences against HPV tumors is provided. The purpose is also to highlight the still under-explored potential of multimodal treatments implying DNA vaccination along with plant-derived agents.
Collapse
Affiliation(s)
- Rosella Franconi
- Division of Health Protection Technology, Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Silvia Massa
- Division of Biotechnology and Agroindustry, Department for Sustainability, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Francesca Paolini
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Patrizia Vici
- Division of Medical Oncology B, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Venuti
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
11
|
Shakeri M, Hashemi Tayer A, Shakeri H, Sotoodeh Jahromi A, Moradzadeh M, Hojjat-Farsangi M. Toxicity of Saffron Extracts on Cancer and Normal Cells: A Review Article. Asian Pac J Cancer Prev 2020; 21:1867-1875. [PMID: 32711409 PMCID: PMC7573418 DOI: 10.31557/apjcp.2020.21.7.1867] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIM Medicinal plants have played an important role in human health since the Stone Age. According to WHO, 80% of Asian and African people rely on traditional medicine and medicinal plants to conserve their health. Saffron has received much attention among the herbal compounds related to cancer treatment. METHODS This review aims to provide an overview of in-vitro and in-vivo evaluation molecule mechanism for anti-tumor activity, cancer preventing and protective effects of saffron extract. The review is based on the available data accessible in PubMed, Science Direct, Google Scholar, Magiran.ir, and SID.ir databases. RESULTS Saffron has selective toxic and preventive effects on cancerous cells and without adverse effects on normal cells and prevents tumor formation. Saffron appears to reduce the toxic effects of anticancer drugs. Saffron has toxicity effects when used in high amounts, which are far greater than those are used in human food culture. CONCLUSIONS Considering the observed effects of saffron on the removal of cancer cells, saffron extract can be used in the treatment and prevention of cancer after confirmation in human clinical trials. According to the high IC50 of saffron extracts in normal cells, its toxicity against non-cancerous cells is low and its use is safe. Besides, the studies suggested the cytotoxic effects of saffron on some of the more cancers, including nervous system cancer and common cancers. Further studies are required to determine the effective dose and influence of mechanism of saffron in various animal type of cancers.
Collapse
Affiliation(s)
- Masihollah Shakeri
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Akbar Hashemi Tayer
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Heshmatollah Shakeri
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Malihe Moradzadeh
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Bioactive Components of Saffron and Their Pharmacological Properties. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00010-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 2017; 174:1290-1324. [PMID: 27638711 PMCID: PMC5429337 DOI: 10.1111/bph.13625] [Citation(s) in RCA: 440] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | | | - Sepideh Shahbazi
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
14
|
Kyriakoudi A, O'Callaghan YC, Galvin K, Tsimidou MZ, O'Brien NM. Cellular Transport and Bioactivity of a Major Saffron Apocarotenoid, Picrocrocin (4-(β-D-Glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8662-8668. [PMID: 26340688 DOI: 10.1021/acs.jafc.5b03363] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cellular transport and bioactivity of the second major saffron apocarotenoid, picrocrocin, was examined in parallel to that of the major group, crocetin sugar esters, in aqueous extracts. The transport of pure picrocrocin was investigated in comparison to that of other saffron apocarotenoids, trans-crocetin (di-β-D-gentiobiosyl) ester and crocetin using the Caco-2 cell model coupled with an in vitro digestion procedure. RP-HPLC-DAD was employed to quantify the bioaccessible and bioavailable amounts of individual apocarotenoids. Picrocrocin and crocetin sugar esters though highly bioaccessible (75% and 60%, respectively) were transported at minute quantities (0.2% and 0.5%, respectively; 10-fold lower than crocetin). Picrocrocin did not protect against oxidant-induced DNA damage in U937, human monocytic blood cells at the concentration investigated, however, it reduced the proliferation of human adenocarcinoma and hepatocarcinoma cells. Our findings may be useful for the requirements of food legislation regarding saffron preparations, in which both apocarotenoid groups coexist.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki (AUTh) , 54124, Thessaloniki, Greece
| | - Yvonne C O'Callaghan
- School of Food and Nutritional Sciences, University College Cork , Cork, Ireland
| | - Karen Galvin
- School of Food and Nutritional Sciences, University College Cork , Cork, Ireland
| | - Maria Z Tsimidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki (AUTh) , 54124, Thessaloniki, Greece
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork , Cork, Ireland
| |
Collapse
|
15
|
Prados-Rosales R, Toriola S, Nakouzi A, Chatterjee S, Stark R, Gerfen G, Tumpowsky P, Dadachova E, Casadevall A. Structural Characterization of Melanin Pigments from Commercial Preparations of the Edible Mushroom Auricularia auricula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7326-7332. [PMID: 26244793 PMCID: PMC4862413 DOI: 10.1021/acs.jafc.5b02713] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many of the most widely consumed edible mushrooms are pigmented, and these have been associated with some beneficial health effects. Nevertheless, the majority of the reported compounds associated with these desirable properties are non-pigmented. We have previously reported that melanin pigment from the edible mushroom Auricularia auricula can protect mice against ionizing radiation, although no physicochemical characterization was reported. Consequently, in this study we have characterized commercial A. auricula mushroom preparations for melanin content and carried out structural characterization of isolated insoluble melanin materials using a panel of sophisticated spectroscopic and physical/imaging techniques. Our results show that approximately 10% of the dry mass of A. auricula is melanin and that the pigment has physicochemical properties consistent with those of eumelanins, including hosting a stable free radical population. Electron microscopy studies show that melanin is associated with the mushroom cell wall in a manner similar to that of melanin from the model fungus C. neoformans. Elemental analysis of melanin indicated C, H, and N ratios consistent with 5,6-dihydroxyindole-2-carboxylic acid/5,6-dihydroxyindole and 1,8-dihydroxynaphthalene eumelanin. Validation of the identity of the isolated product as melanin was achieved by EPR analysis. A. auricula melanin manifested structural differences, relative to the C. neoformans melanin, with regard to the variable proportions of alkyl chains or oxygenated carbons. Given the necessity for new oral and inexpensive radioprotective materials coupled with the commercial availability of A. auricula mushrooms, this product may represent an excellent source of edible melanin.
Collapse
Affiliation(s)
- Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Stacy Toriola
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Antonio Nakouzi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Subhasish Chatterjee
- Department of Chemistry, Graduate Center and Institute for Macromolecular Assemblies, City University of New York, New York, New York 10031-9101, United States
| | - Ruth Stark
- Department of Chemistry, Graduate Center and Institute for Macromolecular Assemblies, City University of New York, New York, New York 10031-9101, United States
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Paul Tumpowsky
- Goodwin and Wells, New York, New York 10065, United States
| | - Ekaterina Dadachova
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|