1
|
Sun Y, Huang S, Li F, Huang S, Li P, Zhao Q, Wang T, Bao H, Fu Y, Sun P, Bai X, Yuan H, Ma X, Zhao Z, Zhang J, Wang J, Li D, Zhang Q, Cao Y, Li K, Lu Z, Fan H. Porcine antibodies reveal novel non-neutralizing universal epitopes on FMDV and their overlaps with neutralization sites. Vet Microbiol 2025; 303:110440. [PMID: 40037011 DOI: 10.1016/j.vetmic.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Foot-and-mouth disease virus (FMDV) is highly infectious and lacks cross-protection among serotypes, with antibodies playing a key role in antiviral immunity. To map conserved epitopes on the FMDV surface that exhibit cross-serotype reactivity, we constructed a pig-specific B-cell receptor (BCR) library through single B-cell sorting and high-throughput sequencing. This led to the identification of 16 broadly reactive, non-neutralizing monoclonal antibodies (mAbs), with 10 targeting VP2 (pOTB-1, pOTB-10, pOTB-13, pOTB-33, pOTB-37, pONY-14, pONY-17, pONY-23, pONY-30, pONY-60) and 6 targeting VP3 (pOTB-6, pOTB-11, pOTB-22, pOTB-23, pONY-3, pONY-59). Among these, a novel free linear epitope was identified at the C-terminus of VP2, recognized by pOTB-1, with the minimal recognition motif "KE." Key residues, T53 and W101, within the complementarity-determining region (CDR) of the pOTB-1 heavy chain, interact with the carboxyl group of the C-terminal glutamate through hydrogen bonding, contributing to the free-form nature of the epitope. Competitive enzyme-linked immunosorbent assays (cELISA) showed that most non-neutralizing antibodies (nNAbs) interfered with the binding of neutralizing antibodies B82 (site 2) and C4 (site 4), confirming the overlap between non-neutralizing and neutralizing epitopes. It has been confirmed that nNAbs mediate antiviral activity in vivo through various mechanisms, such as the formation of immune complexes. These findings reveal new epitopes on VP2 and VP3 and their spatial overlap with neutralizing sites, enhancing our understanding of FMDV immunogenicity and providing novel targets for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Ying Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Shenglin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fengjuan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Shulun Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qiongqiong Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| |
Collapse
|
2
|
Cao Y, Li F, Xing X, Zhang H, Zhao Q, Sun P, Fu Y, Li P, Ma X, Zhang J, Zhao Z, yuan H, Wang J, Wang T, Bao H, Bai X, Li D, Zhang Q, Li K, Lu Z. Preparation and application of porcine broadly neutralizing monoclonal antibodies in an immunoassay for efficiently detecting neutralizing antibodies against foot-and-mouth disease virus serotype O. Microbiol Spectr 2025; 13:e0223424. [PMID: 39772731 PMCID: PMC11792482 DOI: 10.1128/spectrum.02234-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
Neutralizing antibodies provide vital protection against foot-and-mouth disease virus (FMDV). The virus neutralization test (VNT) is a gold standard method for the detection of neutralizing antibodies. However, its application is limited due to the requirement for live virus and unsuitability for large-scale serological surveillance. In this study, a porcine broadly neutralizing monoclonal antibody (PO18-10) against FMDV was obtained from the heterologous sequentially vaccinated pig using single-B-cell antibody technology. A competitive enzyme-linked immunosorbent assay (C-ELISA) for detecting neutralizing antibodies against FMDV serotype O was developed using biotinylated PO18-10 as a detector antibody. The sensitivity and specificity of the assay were 100% and 99.55%, respectively, and the positive/negative coincidence rate with VNT was 94%, suggesting that C-ELISA based on natural host-derived monoclonal antibody (mAb) could be a promising tool to detect neutralizing antibodies against FMDV serotype O and evaluate the vaccine efficacy.IMPORTANCEFoot-and-mouth disease virus (FMDV) serotype O is one of the most prevalent serotypes in the world. The neutralizing antibody titers in primo-vaccinated animals are directly related to their level of protection against a virus challenge. The development of a safe, rapid, and accurate method for the detection of the neutralizing antibody is essential for the control and eradication of FMD. In this study, an inter-serotype broadly neutralizing monoclonal antibody PO18-10 was successfully produced using single-B-cell antibody technology from sequentially vaccinated pigs. A competitive ELISA based on this natural host-derived mAb for the detection of neutralizing antibodies against FMDV serotype O was developed and validated. The assay demonstrates high sensitivity, specificity, and coincidence rate with VNT, making it an alternative tool for confirming FMDV infection and evaluating the vaccine efficacy.
Collapse
Affiliation(s)
- Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fengjuan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangchuan Xing
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huiyan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - QiongQiong Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Tommeurd W, Thueng-in K, Theerawatanasirikul S, Tuyapala N, Poonsuk S, Petcharat N, Thangthamniyom N, Lekcharoensuk P. Identification of Conserved Linear Epitopes on Viral Protein 2 of Foot-and-Mouth Disease Virus Serotype O by Monoclonal Antibodies 6F4.D11.B6 and 8D6.B9.C3. Antibodies (Basel) 2024; 13:67. [PMID: 39189238 PMCID: PMC11348169 DOI: 10.3390/antib13030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious disease of cloven-hoofed animals with a significant economic impact. Early diagnosis and effective prevention and control could reduce the spread of the disease which could possibly minimize economic losses. Epitope characterization based on monoclonal antibodies provide essential information for developing diagnostic assays and vaccine designs. In this study, monoclonal antibodies raised against FMD virus (FMDV) were produced. Sixty-six monoclonal antibodies demonstrated strong reactivity and specificity to FMDV. The purified monoclonal antibodies were further used for bio-panning to select phage expressing specific epitopes from phage-displayed 12 mer-peptide library. The phage peptide sequences were analyzed using multiple sequence alignment and evaluated by peptide ELISA. Two hybridoma clones secreted monoclonal antibodies recognizing linear epitopes on VP2 of FMDV serotype O. The non-neutralizing monoclonal antibody 6F4.D11.B6 recognized the residues 67-78 on antigenic site 2 resinding in VP2, while the neutralizing monoclonal antibody 8D6.B9.C3 recognized a novel linear epitope encompassing residues 115-126 on VP2. This information and the FMDV-specific monoclonal antibodies provide valuable sources for further study and application in diagnosis, therapeutics and vaccine designs to strengthen the disease prevention and control measures.
Collapse
Affiliation(s)
- Wantanee Tommeurd
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
| | - Kanyarat Thueng-in
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Sirin Theerawatanasirikul
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nongnaput Tuyapala
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Sukontip Poonsuk
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nantawan Petcharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nattarat Thangthamniyom
- Research and Development Department, Animal Health and Diagnostic Center, CPF (Thailand) Public Company Limited, Bangkok 10530, Thailand;
| | - Porntippa Lekcharoensuk
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
4
|
Li Q, Ma X, Shen Y, Dai J, Nian X, Shang X, Chen J, Wubshet AK, Zhang J, Zheng H. Chimeric Porcine Parvovirus VP2 Virus-like Particles with Epitopes of South African Serotype 2 Foot-and-Mouth Disease Virus Elicits Specific Humoral and Cellular Responses in Mice. Viruses 2024; 16:621. [PMID: 38675963 PMCID: PMC11054767 DOI: 10.3390/v16040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Southern Africa Territories 2 (SAT2) foot-and-mouth disease (FMD) has crossed long-standing regional boundaries in recent years and entered the Middle East. However, the existing vaccines offer poor cross-protection against the circulating strains in the field. Therefore, there is an urgent need for an alternative design approach for vaccines in anticipation of a pandemic of SAT2 Foot-and-mouth disease virus (FMDV). The porcine parvovirus (PPV) VP2 protein can embed exogenous epitopes into the four loops on its surface, assemble into virus-like particles (VLPs), and induce antibodies and cytokines to PPV and the exogenous epitope. In this study, chimeric porcine parvovirus VP2 VLPs (chimeric PPV-SAT2-VLPs) expressing the T-and/or B-cell epitopes of the structural protein VP1 of FMDV SAT2 were produced using the recombinant pFastBac™ Dual vector of baculoviruses in Sf9 and HF cells We used the Bac-to-Bac system to construct the recombinant baculoviruses. The VP2-VLP--SAT2 chimeras displayed chimeric T-cell epitope (amino acids 21-40 of VP1) and/or the B-cell epitope (amino acids 135-174) of SAT FMDV VP1 by substitution of the corresponding regions at the N terminus (amino acids 2-23) and/or loop 2 and/or loop 4 of the PPV VP2 protein, respectively. In mice, the chimeric PPV-SAT2-VLPs induced specific antibodies against PPV and the VP1 protein of SAT2 FMDV. The VP2-VLP-SAT2 chimeras induced specific antibodies to PPV and the VP1 protein specific epitopes of FMDV SAT2. In this study, as a proof-of-concept, successfully generated chimeric PPV-VP2 VLPs expressing epitopes of the structural protein VP1 of FMDV SAT2 that has a potential to prevent FMDV SAT2 and PPV infection in pigs.
Collapse
MESH Headings
- Animals
- Foot-and-Mouth Disease Virus/immunology
- Foot-and-Mouth Disease Virus/genetics
- Mice
- Foot-and-Mouth Disease/immunology
- Foot-and-Mouth Disease/prevention & control
- Foot-and-Mouth Disease/virology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Parvovirus, Porcine/immunology
- Parvovirus, Porcine/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/genetics
- Swine
- Immunity, Humoral
- Immunity, Cellular
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Serogroup
- Mice, Inbred BALB C
- Female
- Epitopes/immunology
- Epitopes/genetics
- Sf9 Cells
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antigens, Viral
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.L.); (X.M.); (J.D.); (X.S.); (J.C.); (A.K.W.)
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xusheng Ma
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.L.); (X.M.); (J.D.); (X.S.); (J.C.); (A.K.W.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yaner Shen
- China Agricultural Vet Biologyand Technology Co., Ltd., Lanzhou 730046, China;
| | - Junfei Dai
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.L.); (X.M.); (J.D.); (X.S.); (J.C.); (A.K.W.)
| | - Xiaofeng Nian
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Xiaofen Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.L.); (X.M.); (J.D.); (X.S.); (J.C.); (A.K.W.)
| | - Jiao Chen
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.L.); (X.M.); (J.D.); (X.S.); (J.C.); (A.K.W.)
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.L.); (X.M.); (J.D.); (X.S.); (J.C.); (A.K.W.)
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.L.); (X.M.); (J.D.); (X.S.); (J.C.); (A.K.W.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
5
|
Mushtaq H, Shah SS, Zarlashat Y, Iqbal M, Abbas W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses 2024; 16:512. [PMID: 38675855 PMCID: PMC11054764 DOI: 10.3390/v16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hassan Mushtaq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Syed Salman Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| |
Collapse
|
6
|
Li Q, Wubshet AK, Wang Y, Heath L, Zhang J. B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development. Viruses 2023; 15:v15030797. [PMID: 36992505 PMCID: PMC10059872 DOI: 10.3390/v15030797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Failure of cross-protection among interserotypes and intratypes of foot-and-mouth disease virus (FMDV) is a big threat to endemic countries and their prevention and control strategies. However, insights into practices relating to the development of a multi-epitope vaccine appear as a best alternative approach to alleviate the cross-protection-associated problems. In order to facilitate the development of such a vaccine design approach, identification and prediction of the antigenic B and T cell epitopes along with determining the level of immunogenicity are essential bioinformatics steps. These steps are well applied in Eurasian serotypes, but very rare in South African Territories (SAT) Types, particularly in serotype SAT2. For this reason, the available scattered immunogenic information on SAT2 epitopes needs to be organized and clearly understood. Therefore, in this review, we compiled relevant bioinformatic reports about B and T cell epitopes of the incursionary SAT2 FMDV and the promising experimental demonstrations of such designed and developed vaccines against this serotype.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ashenafi Kiros Wubshet
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Department of Veterinary Basics and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle 2084, Tigray, Ethiopia
| | - Yang Wang
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Livio Heath
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria 0110, South Africa
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| |
Collapse
|
7
|
Analysis of Foot and Mouth Disease Virus Polyprotein for Multi Peptides Vaccine Design: An In silico Strategy. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is small RNA virus from Picornaviridae family; genus Aphthovirus. FMDV causes maximum levels of infectivity in cattle and harmful socioeconomic effects. The present report attempted to design vaccine candidate from the polyprotein of FMDV to stimulate protective immune response. The IEDB server was used to predict B and T cells epitopes that were linked via GPGPG and YAA linkers, respectively. Mycobacterium tuberculosis 50S ribosomal protein was exploited as an adjuvant and a six histidine-tag sequence was linked to the carboxyl end of the vaccine for purification and identification. The predicted vaccine comprised 313aa and was antigenic and not allergic. Moreover, the vaccine was acidic and showed stability and hydrophilicity. Vaccine secondary and tertiary structures were predicted. The tertiary structure was refined to ameliorate the quality of the global and local structures of the vaccine. Vaccine model validation was performed and the final quality score of the structural model was computed. The validated model was used for molecular docking with bovine (N*01801-BoLA-A11) allele. Docking process in terms of binding free energy score was significant. Vaccine solubility was investigated based on the protein of E. coli and the stability was based on the disulfide bonding to lessen the entropic and mobile points in vaccine. Lastly, the in silico cloning ensured the proper cloning and best translation of the DNA of vaccine in molecular vectors.
Collapse
|
8
|
Yang B, Meng R, Feng C, Huang J, Li Q, Wang X, Zhang D. An Antibody Neutralization Determinant on Domain III and the First α-Helical Domain in the Stem-Anchor Region of Tembusu Virus Envelope Protein. THE JOURNAL OF IMMUNOLOGY 2022; 209:684-695. [DOI: 10.4049/jimmunol.2200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Previous studies identified three neutralizing epitopes on domains I, II, and III of the Tembusu virus (TMUV) envelope (E). More evidence is needed to understand the molecular basis of Ab-mediated neutralization and protection against TMUV. In this study, we observed a neutralizing mAb, 6C8, that neutralized TMUV infection primarily by inhibiting cell attachment. In immunofluorescence assays, 6C8 recognized the premembrane and E proteins coexpressed in HEK-293T cells, but failed to react with premembrane or E expressed individually. Epitope mapping identified nine E protein residues positioned on BC/EF loops and F/G strands in domain III and the first α-helical domain in the stem region. Further investigation with mutant viruses showed that 6C8 pressure resulted in mutations at residues 330 of BC loop and 409 of the first α-helical domain, although 6C8 only exhibited a moderate neutralizing activity in BHK-21 cells and a weak protective activity in BALB/c mice and Shaoxing duck models. Mutations A330S and T409M conferred high- and low-level 6C8 resistance, respectively, whereas the combination of A330S and T409M mutations conferred moderate-level 6C8 resistance. As a result, a quasispecies comprising three groups of antigenic variants appeared in BHK-21 cell–derived viral stocks after repeated passages of TMUV strain Y in the presence of 6C8 treatment. Taken together, these findings have raised a concern about Ab-induced antigenic variations in vivo, and they have revealed information concerning the conformational structure of the 6C8 epitope and its role in constraint on antigenic variations. The present work contributes to a better understanding of the complexity of the TMUV immunogen.
Collapse
Affiliation(s)
- Baolin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Li K, Zhu G, Zhou S, Sun P, Wang H, Bao H, Fu Y, Li P, Bai X, Ma X, Zhang J, Li D, Chen Y, Liu Z, Cao Y, Lu Z. Isolation and characterization of porcine monoclonal antibodies revealed two distinct serotype-independent epitopes on VP2 of foot-and-mouth disease virus. J Gen Virol 2021; 102. [PMID: 34280085 DOI: 10.1099/jgv.0.001608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigs are susceptible to foot-and-mouth disease virus (FMDV), and the humoral immune response plays an essential role in protection against FMDV infection. However, little information is available about FMDV-specific mAbs derived from single B cells of pigs. This study aimed to determine the antigenic features of FMDV that are recognized by antibodies from pigs. Therefore, a panel of pig-derived mAbs against FMDV were developed using fluorescence-based single B cell antibody technology. Western blotting revealed that three of the antibodies (1C6, P2-7E and P2-8G) recognized conserved antigen epitopes on capsid protein VP2, and exhibited broad reactivity against both FMDV serotypes A and O. An alanine-substitution scanning assay and sequence conservation analysis elucidated that these porcine mAbs recognized two conserved epitopes on VP2: a linear epitope (2KKTEETTLL10) in the N terminus and a conformational epitope involving residues K63, H65, L66, F67, D68 and L81 on two β-sheets (B-sheet and C-sheet) that depended on the integrity of VP2. Random parings of heavy and light chains of the IgGs confirmed that the heavy chain is predominantly involved in binding to antigen. The light chain of porcine IgG contributes to the binding affinity toward an antigen and may function as a support platform for antibody stability. In summary, this study is the first to reveal the conserved antigenic profile of FMDV recognized by porcine B cells and provides a novel method for analysing the antibody response against FMDV in its natural hosts (i.e. pigs) at the clonal level.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Guoqiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Shasha Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Hengmei Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, PR China
| |
Collapse
|
10
|
Zhang Y, Yan H, Yao Y, Zhang S, Xiao Y, Xu X, Huang B, Tian K. Development and validation of a solid-phase competition ELISA based on virus-like particles of foot-and-mouth disease virus serotype A for antibody detection. Arch Virol 2020; 165:1641-1646. [PMID: 32350612 DOI: 10.1007/s00705-020-04641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/27/2020] [Indexed: 11/24/2022]
Abstract
Foot-and-mouth disease (FMD), caused by FMD virus (FMDV), is a highly contagious epidemic disease, which is controlled primarily by prophylactic vaccination and serological monitoring after vaccination. Here, we have developed a solid-phase competition ELISA (SPCE) method based on virus-like particles (VLPs) of FMDV serotype A. The use of VLPs in the SPCE assay as a replacement for inactivated FMDV provides a high level of biosafety. The SPCE showed high concordance rates when compared with the virus neutralization test and liquid-phase blocking ELISA for testing clinical serum samples and successive serological monitoring (kappa = 0.925). Thus, this SPCE is an alternative method for post-immunization detection of antibodies against FMDV serotype A, with high specificity and sensitivity.
Collapse
Affiliation(s)
- Yunjing Zhang
- National Research Center for Veterinary Medicine, No. 3 Cuiwei Road, High-Tech District, Luoyang, 471003, Henan, People's Republic of China
| | - He Yan
- National Research Center for Veterinary Medicine, No. 3 Cuiwei Road, High-Tech District, Luoyang, 471003, Henan, People's Republic of China
| | - Yali Yao
- National Research Center for Veterinary Medicine, No. 3 Cuiwei Road, High-Tech District, Luoyang, 471003, Henan, People's Republic of China
| | - Suling Zhang
- National Research Center for Veterinary Medicine, No. 3 Cuiwei Road, High-Tech District, Luoyang, 471003, Henan, People's Republic of China
| | - Yan Xiao
- National Research Center for Veterinary Medicine, No. 3 Cuiwei Road, High-Tech District, Luoyang, 471003, Henan, People's Republic of China
| | - Xin Xu
- National Research Center for Veterinary Medicine, No. 3 Cuiwei Road, High-Tech District, Luoyang, 471003, Henan, People's Republic of China
| | - Baicheng Huang
- National Research Center for Veterinary Medicine, No. 3 Cuiwei Road, High-Tech District, Luoyang, 471003, Henan, People's Republic of China.
| | - Kegong Tian
- National Research Center for Veterinary Medicine, No. 3 Cuiwei Road, High-Tech District, Luoyang, 471003, Henan, People's Republic of China.
| |
Collapse
|
11
|
Najafi H, FallahMehrabadi MH, Hosseini H, Ziafati Kafi Z, Modiri Hamdan A, Ghalyanchilangeroudi A. The first full genome characterization of an Iranian foot and mouth disease virus. Virus Res 2020; 279:197888. [PMID: 32023478 DOI: 10.1016/j.virusres.2020.197888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/20/2019] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
High transmissibility of FMDV and drop in productivity following infection, make FMD an important economically disease of livestock. According to the endemic nature of the disease in Iran, vaccines have been routinely applied, but not able to prevent frequent outbreaks. Circulation of different FMDV types in Iran along with unrestricted animal movements complicates epidemiological situations. The relatively short length of VP1 does not provide high resolution molecular epidemiological data, therefore FMDV full genome sequencing has been employed. Outbreaks of FMD occurred in Qom province, Iran during 2017. A 8190 nucleotide-long FMDV complete genome was sequenced. Phylogenetic analysis clustered the virus into Asia 1 serotype. Complete genome analysis revealed a high level of homology of the virus to Asia 1 viruses previously detected in Turkey, India, Israel, and Pakistan. The data suggest that Asia 1/Shimi/2017 probably originated from India, have circulating in Iran since the last couple of years and reached Turkey in 2013. The results highlight the role of Iran in westward spreading of FMDV among South-central Asia, hinting the urgent need for an effective vaccine against Asia 1 type FMDV and also applying restriction rules on animal movements.
Collapse
Affiliation(s)
- Hamideh Najafi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hossein FallahMehrabadi
- Department of Poultry Diseases, RAZI Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Modiri Hamdan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Implication of Broadly Neutralizing Bovine Monoclonal Antibodies in the Development of an Enzyme-Linked Immunosorbent Assay for Detecting Neutralizing Antibodies against Foot-and-Mouth Disease Virus Serotype O. J Clin Microbiol 2019; 57:JCM.01030-19. [PMID: 31578261 DOI: 10.1128/jcm.01030-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
Vaccination with inactivated vaccines is still the main measure to control foot-and-mouth disease (FMD) in areas where the disease is endemic, and the level of neutralizing antibody in vaccinated animals is directly related to their protection against virus challenge. Currently, neutralizing antibody is mainly detected using the virus neutralization test (VNT) based on cell culture, which is laborious and time-consuming and requires restrictive biocontainment facilities. In this study, two broadly neutralizing antibodies (bnAbs), E46 and F128, were successfully produced using techniques for the isolation of single B cells from peripheral blood mononuclear cells (PBMCs) from bovines sequentially immunized with three topotypes of foot-and-mouth disease virus (FMDV) serotype O. Based on these bnAbs, a blocking enzyme-linked immunosorbent assay (ELISA) for detecting neutralizing antibodies (NA-ELISA) against FMDV serotype O was developed. The specificity and sensitivity of the test were estimated to be 99.21% and 100%, respectively. A significant correlation (P < 0.01) was observed between the NA-ELISA titers and the VNT titers for all sera from vaccinated animals and for all tested strains, suggesting that the NA-ELISA could detect neutralizing antibodies against FMDV serotype O strains of wide antigenic and molecular diversity and could be used for the evaluation of protective immunity.
Collapse
|
13
|
Lei Y, Shao J, Zhao F, Li Y, Lei C, Ma F, Chang H, Zhang Y. Artificially designed hepatitis B virus core particles composed of multiple epitopes of type A and O foot-and-mouth disease virus as a bivalent vaccine candidate. J Med Virol 2019; 91:2142-2152. [PMID: 31347713 DOI: 10.1002/jmv.25554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Recently, many countries, including China, have experienced a series of type A and O foot-and-mouth disease virus (FMDV) epidemics, causing serious economic losses. Although concerns about the safety of inactivated FMD vaccines have been raised, the development of a safe and effective subunit vaccine is necessary. We constructed two chimeric virus-like particles (VLPs; rHBc/AO and rHBc/AOT VLPs) displaying tandem repeats of B cell epitopes (VP1 residue 134-161 and 200-213) derived from type A and O FMDV and one T cell epitope (3 A residue 21-35) using the truncated hepatitis B virus core (HBc) carrier. Our results indicate that the chimeric HBc can self-assemble into VLPs with these FMDV epitopes displayed on the surface. Immunization with the chimeric VLPs induced specific IgG and neutralization antibodies against type A and O FMDV in mice. Compared with the commercial type A/O FMDV bivalent inactivated vaccine, rHBc/AO and rHBc/AOT VLPs significantly stimulated the production of Th1 type cytokines (IFN-γ and IL-2), whereas Th2 cytokine production (IL-4 and IL-10) was decreased. Compared with rHBc/AO, rHBc/AOT induced increased Th2 cytokine and specific IgG production. These results demonstrate that the VLPs constructed in the current study induced both humoral and cellular immune responses and may represent potential bivalent VLP vaccines targeting both FMDV type A and O strains.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinar y Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Junjun Shao
- State Key Laboratory of Veterinar y Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Furong Zhao
- State Key Laboratory of Veterinar y Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yangfan Li
- State Key Laboratory of Veterinar y Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Chenglin Lei
- State Key Laboratory of Veterinar y Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Feifei Ma
- State Key Laboratory of Veterinar y Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Huiyun Chang
- State Key Laboratory of Veterinar y Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinar y Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Salem R, El-Kholy AA, Omar OA, Abu El-Naga MN, Ibrahim M, Osman G. Construction, Expression and Evaluation of Recombinant VP2 Protein for serotype-independent Detection of FMDV Seropositive Animals in Egypt. Sci Rep 2019; 9:10135. [PMID: 31300744 PMCID: PMC6626030 DOI: 10.1038/s41598-019-46596-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most devastating viral pathogens of cloven-hoofed animals. The detection of antibodies (Ab) against FMDV structural proteins (SP) using virus neutralization test (VNT) and liquid-phase blocking ELISA (LPBE) is the standard procedure in use for monitoring seroconversion in animals post vaccination, the prevalence of infection-surveillance, proving clinical cases and seronegative status of FMDV-free/naïve-animals prior transportation. However, due to variations within SP of FMDV serotypes, each serotype-specific Ab should be detected separately which is laborious and time-consuming. Accordingly, it is crucial to develop a sensitive, rapid, and accurate test capable of detecting FMDV-specific Ab, regardless its serotype. This study describes the heterologous expression of VP2 protein in E. coli, and its evaluation as a capture antigen in a simple indirect ELISA for serotype-independent detection of anti-FMDV Ab. Sequence analysis revealed that the VP2-coding sequence is considerably conserved among FMDV serotypes. The recombinant VP2 (rVP2), a 22 kDa polypeptide, was purified to near homogeneity by affinity chromatography under native conditions. Immunoreactivity of the rVP2 was confirmed by using a panel of positive sera including sera from animals vaccinated with the local trivalent vaccine and guinea pig FMDV antiserum, which is routinely used as tracing/detecting Ab in LPBE testing. The results obtained from the VP2-based ELISA were comparable to those determined by VNT and LPBE standard diagnostic assays. Specificity and sensitivity of rVP2 in capturing anti-FMDV Ab were 98.3% and 100%, respectively. The developed VP2-ELISA is proved reliable and time-efficient assay for detection of FMDV seropositive animals, regardless the FMDV serotype that can be implemented in a combination with VNT and/or LPBE for rapid diagnosis of an ongoing FMDV infection.
Collapse
Affiliation(s)
- Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt.
| | - Alaa A El-Kholy
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, Cairo, Egypt
| | - Omar A Omar
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Mohamed N Abu El-Naga
- Radiation microbiology department, National Center for Radiation Research and Technology, Atomic Energy Authority, 11787, Cairo, Egypt
| | - Mohamed Ibrahim
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, 75083, USA
| | - Gamal Osman
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt. .,Biology Department, Faculty of Science, Umm-Al-Qura University, Mecca, 673, Saudi Arabia. .,Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Mecca, Saudi Arabia.
| |
Collapse
|
15
|
Salem R, El-Kholy AA, Ibrahim M. Eight novel single chain antibody fragments recognising VP2 of foot-and-mouth disease virus serotypes A, O, and SAT 2. Virology 2019; 533:145-154. [PMID: 31170612 DOI: 10.1016/j.virol.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease virus (FMDV) exhibits a high degree of antigenic diversity among its serotypes, requiring several anti-FMDV antibodies for its laboratory diagnosis, which complicated the used techniques. To conquer this cumbersome, we developed a new panel of different single-chain fragment variable (scFv) for serotype-independent detection of FMDV. The recombinant VP2 capsid protein, as a relatively conserved protein among FMDV serotypes, was expressed in E. Coli, and injected in mice. Spleen's RNA was extracted for isolating the coding sequences of IgG variable domains that were assembled into repertoires of scFv. Phage library displaying scFv was constructed with ∼1.9 × 108 plaque forming units. Characterization of the library showed eight of unique scFvs, which were expressed as bacterial periplasmic proteins with apparent molecular weight of ∼27 kDa. Our data revealed the broad-spectrum binding affinity of the eight scFvs as both coating and tracing antibodies to FMDV serotypes A, O, and SAT 2.
Collapse
Affiliation(s)
- Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt.
| | - Alaa A El-Kholy
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, P.O. Box # 131,11381, Cairo, Egypt
| | - Mohamed Ibrahim
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, 75083, USA
| |
Collapse
|
16
|
Foot-and-mouth disease vaccines: recent updates and future perspectives. Arch Virol 2019; 164:1501-1513. [PMID: 30888563 DOI: 10.1007/s00705-019-04216-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Foot-and-mouth disease (FMD) is a major worldwide viral disease in animals, affecting the national and international trade of livestock and animal products and leading to high economic losses and social consequences. Effective control measures of FMD involve prevention through vaccination with inactivated vaccines. These inactivated vaccines, unfortunately, require short-term protection and cold-chain and high-containment facilities. Major advances and pursuit of hot topics in vaccinology and vectorology are ongoing, involving peptide vaccines, DNA vaccines, live vector vaccines, and novel attenuated vaccines. DIVA capability and marker vaccines are very important in differentiating infected animals from vaccinated animals. This review focuses on updating the research progress of these novel vaccines, summarizing their merits and including ideas for improvement.
Collapse
|
17
|
Yang B, Wang M, Liu W, Xu Z, Wang H, Yang D, Ma W, Zhou G, Yu L. Identification of a serotype-independent linear epitope of foot-and-mouth disease virus. Arch Virol 2017; 162:3875-3880. [PMID: 28884236 DOI: 10.1007/s00705-017-3544-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
Foot-and-mouth disease (FMD), caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. VP2 is a structural protein of FMDV. In this study, an FMDV serotype-independent monoclonal antibody (MAb), 10B10, against the viral capsid protein VP2 was generated, and a series of GST fusion proteins expressing a truncated peptide of VP2 was subjected to Western blot analysis using MAb 10B10. Their results indicated that the peptide 8TLLEDRILT16 of VP2 is the minimal requirement of the epitope recognized by MAb 10B10. Importantly, this linear epitope was highly conserved among all seven serotypes of FMDV in a sequence alignment analysis. Subsequent alanine-scanning mutagenesis analysis revealed that the residues Thr8 and Asp12 of the epitope were crucial for MAb-10B10 binding. Furthermore, Western blot analysis also revealed that the MAb 10B10-directed epitope could be recognized by positive sera from FMDV-infected cattle. The discovery that MAb 10B10 recognizes a serotype-independent linear epitope of FMDV suggests potential applications for this MAb in the development of serotype-independent tests for FMDV.
Collapse
Affiliation(s)
- Baolin Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road Xiangfang District, Harbin, 150069, People's Republic of China
| | - Mingxia Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road Xiangfang District, Harbin, 150069, People's Republic of China
| | - Wenming Liu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road Xiangfang District, Harbin, 150069, People's Republic of China
| | - Zhiqiang Xu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road Xiangfang District, Harbin, 150069, People's Republic of China
| | - Haiwei Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road Xiangfang District, Harbin, 150069, People's Republic of China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road Xiangfang District, Harbin, 150069, People's Republic of China
| | - Wenge Ma
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, 151 Eastern Kelamayi Street, Ürümqi, 830000, People's Republic of China
| | - Guohui Zhou
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road Xiangfang District, Harbin, 150069, People's Republic of China.
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road Xiangfang District, Harbin, 150069, People's Republic of China
| |
Collapse
|