1
|
Tran PTH, Kabir MH, Asghar N, Hathaway MR, Hayderi A, Karlsson R, Karlsson A, Taylor T, Melik W, Johansson M. Identification of TRIM21 and TRIM14 as Antiviral Factors Against Langat and Zika Viruses. Viruses 2025; 17:644. [PMID: 40431659 DOI: 10.3390/v17050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Flaviviruses are usually transmitted to humans via mosquito or tick bites, whose infections may lead to severe diseases and fatality. During intracellular infection, they remodel the endoplasmic reticulum (ER) membrane to generate compartments scaffolding the replication complex (RC) where replication of the viral genome takes place. In this study, we purified the ER membrane fraction of virus infected cells to identify the proteins that were enriched during flavivirus infection. We found that tripartite motif-containing proteins (TRIMs) including TRIM38, TRIM21, and TRIM14 were significantly enriched during infection with mosquito-borne (West Nile virus strain Kunjin and Zika virus (ZIKV)) and tick-borne (Langat virus (LGTV)) flaviviruses. Further characterizations showed that TRIM21 and TRIM14 act as restriction factors against ZIKV and LGTV, while TRIM38 hinders ZIKV infection. These TRIMs worked as interferon-stimulated genes to mediate IFN-I response against LGTV and ZIKV infections. Restriction of ZIKV by TRIM14 and TRIM38 coincides with their colocalization with ZIKV NS3. TRIM14-mediated LGTV restriction coincides with its colocalization with LGTV NS3 and NS5 proteins. However, TRIM21 did not colocalize with ZIKV and LGTV NS3 or NS5 protein suggesting its antiviral activity is not dependent on direct targeting the viral enzyme. Finally, we demonstrated that overexpression of TRIM21 and TRIM14 restricted LGTV replication.
Collapse
Affiliation(s)
- Pham-Tue-Hung Tran
- School of Medical Science, Faculty of Medicine and Health, Örebro University, SE-70362 Örebro, Sweden
| | - Mir Himayet Kabir
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43612, USA
| | - Naveed Asghar
- School of Medical Science, Faculty of Medicine and Health, Örebro University, SE-70362 Örebro, Sweden
| | - Matthew R Hathaway
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43612, USA
| | - Assim Hayderi
- School of Medical Science, Faculty of Medicine and Health, Örebro University, SE-70362 Örebro, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-41346 Gothenburg, Sweden
- Nanoxis Consulting AB, SE-40016 Gothenburg, Sweden
| | | | - Travis Taylor
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43612, USA
| | - Wessam Melik
- School of Medical Science, Faculty of Medicine and Health, Örebro University, SE-70362 Örebro, Sweden
| | - Magnus Johansson
- School of Medical Science, Faculty of Medicine and Health, Örebro University, SE-70362 Örebro, Sweden
| |
Collapse
|
2
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
3
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
4
|
Palacios-Rápalo SN, Farfan-Morales CN, Cordero-Rivera CD, De Jesús-González LA, Reyes-Ruiz JM, Meraz-Ríos MA, Del Ángel RM. An ivermectin - atorvastatin combination impairs nuclear transport inhibiting dengue infection in vitro and in vivo. iScience 2023; 26:108294. [PMID: 38034354 PMCID: PMC10682259 DOI: 10.1016/j.isci.2023.108294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Dengue virus (DENV) uses cellular nuclear transport machinery to import some proteins into the nucleus. Recently, the non-structural protein 3 (NS3) of DENV was localized in the nucleus of infected cells; however, its nuclear import mechanism is still unknown. In this study, we demonstrate that Ivermectin (IVM) inhibits the nuclear localization of NS3 through the inhibition of the Importin α/β1 pathway. We also report that Atorvastatin (ATV) can modulate the nuclear transport of NS3 protease and NS5 polymerase of DENV-2. On the other hand, we found that IVM and ATV treatments reduce the alteration of nuclear pore complex (NPC) proteins, and an IVM+ATV combination reduced DENV infection both in vitro and in vivo. Hence, we conclude that ATV transport inhibition is an additional antiviral effect of this drug, suggesting a potential anti-DENV therapy in combination with IVM.
Collapse
Affiliation(s)
- Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Ciudad de México 05348, México
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, México
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91700, México
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
5
|
Wang SH, Kuo BJ, Ho TC, Wan SW, Yen KL, Huang PH, Perng OGC, Chen PL, Chien YW, Lo YC. Lambda-free light chain: A serum marker of dengue disease via NS3 protease-mediated antibody cleavage. Virulence 2023; 14:2279355. [PMID: 37927064 PMCID: PMC10766417 DOI: 10.1080/21505594.2023.2279355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Dengue poses a significant global public health threat, with diverse clinical manifestations due to complex interactions between the host and the pathogen. Recent reports have highlighted elevated serum-free light chain (FLC) levels in viral infectious diseases. Hence, our study aimed to investigate serum FLC levels in dengue patients. The findings revealed elevated serum λ FLCs, which were associated with the severity of dengue. Receiver operating characteristic curve (ROC) analysis demonstrated that λ FLCs may serve as a serum marker for identifying dengue disease (AUC: 0.7825, sensitivity: 80, specificity: 71.43) and classifying severe dengue (AUC: 0.8102, sensitivity: 75, specificity: 79.52). The viral protease, Dengue virus (DENV) nonstructural protein 3 (NS3), acts as a protease that cleaves viral polyproteins as well as host substrates. Therefore, we proposed that antibodies might be potential targets of NS3 protease, leading to an increase in FLCs. LC/MS-MS analysis confirmed that λ FLCs were the predominant products after antibody degradation by NS3 protease. Additionally, purified NS3 protease cleaved both human IgG and DENV2-neutralizing antibodies, resulting in the presence of λ FLCs. Moreover, NS3 protease administration in vitro led to a reduction in the neutralizing efficacy of DENV2-neutralizing antibodies. In summary, the elevated serum λ FLC levels effectively differentiate dengue patients from healthy individuals and identify severe dengue. Furthermore, the elevation of serum λ FLCs is, at least in part, mediated through NS3 protease-mediated antibody cleavage. These findings provide new insights for developing diagnostic tools and understanding the pathogenesis of DENV infection.
Collapse
Affiliation(s)
- Sheng-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chuan Ho
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Ko-Lun Yen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hui Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Oscar Guey Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Center for Infection Control, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Differential localization of dengue virus protease affects cell homeostasis and triggers to thrombocytopenia. iScience 2023; 26:107024. [PMID: 37534186 PMCID: PMC10391676 DOI: 10.1016/j.isci.2023.107024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023] Open
Abstract
Thrombocytopenia is one of the symptoms of many virus infections which is the "hallmark" in the case of dengue virus. In this study, we show the differential localization of existing two forms of dengue virus protease, i.e., NS2BNS3 to the nucleus and NS3 to the nucleus and mitochondria. We also report a nuclear transcription factor, erythroid differentiation regulatory factor 1 (EDRF1), as the substrate for this protease. EDRF1 regulates the expression and activity of GATA1, which in turn controls spectrin synthesis. Both GATA1 and spectrins are required for platelet formation. On the other hand, we found that the mitochondrial activities will be damaged by NS3 localization which cleaves GrpEL1, a co-chaperone of mitochondrial Hsp70. Levels of both EDRF1 and GrpEL1 were found to deteriorate in dengue virus-infected clinical samples. Hence, we conclude that NS2BNS3-mediated EDRF1 cleavage and the NS3-led mitochondrial dysfunction account for thrombocytopenia.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Nucleo-Cytoplasmic Transport of ZIKV Non-Structural 3 Protein Is Mediated by Importin-α/β and Exportin CRM-1. J Virol 2023; 97:e0177322. [PMID: 36475764 PMCID: PMC9888292 DOI: 10.1128/jvi.01773-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses have a cytoplasmic replicative cycle, and crucial events, such as genome translation and replication, occur in the endoplasmic reticulum. However, some viral proteins, such as C, NS1, and NS5 from Zika virus (ZIKV) containing nuclear localization signals (NLSs) and nuclear export signals (NESs), are also located in the nucleus of Vero cells. The NS2A, NS3, and NS4A proteins from dengue virus (DENV) have also been reported to be in the nucleus of A549 cells, and our group recently reported that the NS3 protein is also located in the nucleus of Huh7 and C636 cells during DENV infection. However, the NS3 protease-helicase from ZIKV locates in the perinuclear region of infected cells and alters the morphology of the nuclear lamina, a component of the nuclear envelope. Furthermore, ZIKV NS3 has been reported to accumulate on the concave face of altered kidney-shaped nuclei and may be responsible for modifying other elements of the nuclear envelope. However, nuclear localization of NS3 from ZIKV has not been substantially investigated in human host cells. Our group has recently reported that DENV and ZIKV NS3 alter the nuclear pore complex (NPC) by cleaving some nucleoporins. Here, we demonstrate the presence of ZIKV NS3 in the nucleus of Huh7 cells early in infection and in the cytoplasm at later times postinfection. In addition, we found that ZIKV NS3 contains an NLS and a putative NES and uses the classic import (importin-α/β) and export pathway via CRM-1 to be transported between the cytoplasm and the nucleus. IMPORTANCE Flaviviruses have a cytoplasmic replication cycle, but recent evidence indicates that nuclear elements play a role in their viral replication. Viral proteins, such as NS5 and C, are imported into the nucleus, and blocking their import prevents replication. Because of the importance of the nucleus in viral replication and the role of NS3 in the modification of nuclear components, we investigated whether NS3 can be localized in the nucleus during ZIKV infection. We found that NS3 is imported into the nucleus via the importin pathway and exported to the cytoplasm via CRM-1. The significance of viral protein nuclear import and export and its relationship with infection establishment is highlighted, emphasizing the development of new host-directed antiviral therapeutic strategies.
Collapse
|
8
|
Yang SNY, Maher B, Wang C, Wagstaff KM, Fraser JE, Jans DA. High Throughput Screening Targeting the Dengue NS3-NS5 Interface Identifies Antivirals against Dengue, Zika and West Nile Viruses. Cells 2022; 11:730. [PMID: 35203378 PMCID: PMC8870125 DOI: 10.3390/cells11040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus (DENV) threatens almost 70% of the world's population, with no effective therapeutic currently available and controversy surrounding the one approved vaccine. A key factor in dengue viral replication is the interaction between DENV nonstructural proteins (NS) 5 and 3 (NS3) in the infected cell. Here, we perform a proof-of-principle high-throughput screen to identify compounds targeting the NS5-NS3 binding interface. We use a range of approaches to show for the first time that two small molecules-repurposed drugs I-OMe tyrphostin AG538 (I-OMe-AG238) and suramin hexasodium (SHS)-inhibit NS5-NS3 binding at low μM concentration through direct binding to NS5 that impacts thermostability. Importantly, both have strong antiviral activity at low μM concentrations against not only DENV-2, but also Zika virus (ZIKV) and West Nile virus (WNV). This work highlights the NS5-NS3 binding interface as a viable target for the development of anti-flaviviral therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - David A. Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia; (S.N.Y.Y.); (B.M.); (C.W.); (K.M.W.); (J.E.F.)
| |
Collapse
|
9
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
10
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
11
|
Zeng M, Chen S, Zhang W, Duan Y, Jiang B, Pan X, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Tian B, Gao Q, Cheng A. Nuclear localization of duck Tembusu virus NS5 protein attenuates viral replication in vitro and NS5-NS2B3 interaction. Vet Microbiol 2021; 262:109239. [PMID: 34555732 DOI: 10.1016/j.vetmic.2021.109239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/11/2021] [Indexed: 11/15/2022]
Abstract
Duck Tembusu virus (TMUV) belongs to the flavivirus genus whose genome replication involved in capping and RNA synthesis dominating by nonstructural protein 5 (NS5). Flaviviral replication has been well documented to occur in the cytoplasm, but the effect of NS5 to gain access to the nucleus remains controversial. Here, TMUV NS5 was observed to localize within the cytoplasm of transfected and infected cells and co-localized with the endoplasmic reticulum. We introduced two arginine mutations into the N390 and Q392 (N390R and Q392R) of the NS5 bipartite nuclear localization sequence (α/βNLS) and designated that mutagenesis as NS5NLSmut, which has shown the ability to access the nucleus and hence attenuates viral replication and production in vitro. Additionally, there was no significant difference between the recovered wild-type TMUV (rTMUV-WT) and engineered mutant (rTMUV-NS5NLSmut) on plaque morphology, survival rate of infected duck embryos or virus copies in tissues. Considering that NS5NLSmut is mainly located in the cytoplasm of rTMUV-NS5NLSmut infected cells at the early stage of infection. We further confirmed that NS5NLSmut attenuated its interaction with nonstructural NS2B-NS3 (NS2B3) following transfection and infection. Meanwhile, the rTMUV-NS5NLSmut tended to stimulate more interferon beta (IFNβ) than rTMUV-WT. However, preliminary study on transient NS5 and NS5NLSmut detected the same levels of IFNβ mRNA mediated by RIG-I detection of NS5 RNA polymerase activity in cell. In summary, these results provide further insights into the relationship between the viral property and subcellular localization of flavivirus NS5 in terms of the NS5-NS2B3 interaction.
Collapse
Affiliation(s)
- Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Yanping Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xin Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| |
Collapse
|
12
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
13
|
De Jesús-González LA, Palacios-Rápalo S, Reyes-Ruiz JM, Osuna-Ramos JF, Cordero-Rivera CD, Farfan-Morales CN, Gutiérrez-Escolano AL, del Ángel RM. The Nuclear Pore Complex Is a Key Target of Viral Proteases to Promote Viral Replication. Viruses 2021; 13:v13040706. [PMID: 33921849 PMCID: PMC8073804 DOI: 10.3390/v13040706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Various viruses alter nuclear pore complex (NPC) integrity to access the nuclear content favoring their replication. Alteration of the nuclear pore complex has been observed not only in viruses that replicate in the nucleus but also in viruses with a cytoplasmic replicative cycle. In this last case, the alteration of the NPC can reduce the transport of transcription factors involved in the immune response or mRNA maturation, or inhibit the transport of mRNA from the nucleus to the cytoplasm, favoring the translation of viral mRNAs or allowing access to nuclear factors necessary for viral replication. In most cases, the alteration of the NPC is mediated by viral proteins, being the viral proteases, one of the most critical groups of viral proteins that regulate these nucleus–cytoplasmic transport changes. This review focuses on the description and discussion of the role of viral proteases in the modification of nucleus–cytoplasmic transport in viruses with cytoplasmic replicative cycles and its repercussions in viral replication.
Collapse
|