1
|
Tian XB, Luo J, Sun X, Tang W, Qin Y, Guan X. Microtubule-mediated defence reaction of grapevine to Neofusicoccum parvum via the transcription factor VrWRKY22 promoting the kinesin-like protein VrKIN10C. Int J Biol Macromol 2025; 308:142519. [PMID: 40147667 DOI: 10.1016/j.ijbiomac.2025.142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Grapevine Trunk Diseases (GTDs) are among the most destructive diseases in viticulture due to global climate change. Some causal agents like Neofusicoccum parvum can be latent endophytic and become pathogenic under abiotic stress. Microtubules (MTs) have been found to play a role in mediating the pathogen-related signaling in grapevine. In this study, a novel transcription factor VrWRKY22 was identified and cloned from the native American grapevine Vitis rupestris. Leaves of the table grape variety 'Kyoho' (V. vinifera × V. labrusca L.) overexpressing VrWRKY22 showed less necroses after N. parvum Bt-67 inoculation and activated signaling pathways. VrWRKY22 interacted with VrMPK3 and then bounded to the TTGACC motif in the promoter of VrKIN10C, which was confirmed by Y2H and Y1H assays. Since VrKIN10C is one of the important kinesin-like proteins associated with MTs, a grapevine MT marker line overexpressing VrWRKY22 was generated to test the responses of grapevine cells to N. parvum Bt-67. An increased number of prompt movement proteins can be traced within the peri-nuclear MTs and along the cortical MTs. The skewness and thickness of both central and cortical MTs were significantly increased. Moreover, a prominent (resulting from both the number and the rate) accumulation of speckles appeared in the nucleus and cortical MTs. A significant reduction in cell mortality and a stronger antioxidant capacity were detected. This study demonstrates that VrWRKY22 plays positive roles during N. parvum Bt-67 invasion by rapidly increasing the concentration and dynamics of MTs in the peri-nuclear and cortical regions via VrKIN10, and will facilitate the interpretation of the results of further GTD mitigation studies.
Collapse
Affiliation(s)
- Xu-Bin Tian
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jiaxin Luo
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaoye Sun
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Wanting Tang
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yafei Qin
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xin Guan
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China.
| |
Collapse
|
2
|
Lucas J, Geisler M. Plant Kinesin Repertoires Expand with New Domain Architecture and Contract with the Loss of Flagella. J Mol Evol 2024; 92:381-401. [PMID: 38926179 DOI: 10.1007/s00239-024-10178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Kinesins are eukaryotic microtubule motor proteins subdivided into conserved families with distinct functional roles. While many kinesin families are widespread in eukaryotes, each organismal lineage maintains a unique kinesin repertoire composed of many families with distinct numbers of genes. Previous genomic surveys indicated that land plant kinesin repertoires differ markedly from other eukaryotes. To determine when repertoires diverged during plant evolution, we performed robust phylogenomic analyses of kinesins in 24 representative plants, two algae, two animals, and one yeast. These analyses show that kinesin repertoires expand and contract coincident with major shifts in the biology of algae and land plants. One kinesin family and five subfamilies, each defined by unique domain architectures, emerged in the green algae. Four of those kinesin groups expanded in ancestors of modern land plants, while six other kinesin groups were lost in the ancestors of pollen-bearing plants. Expansions of different kinesin families and subfamilies occurred in moss and angiosperm lineages. Other kinesin families remained stable and did not expand throughout plant evolution. Collectively these data support a radiation of kinesin domain architectures in algae followed by differential positive and negative selection on kinesins families and subfamilies in different lineages of land plants.
Collapse
Affiliation(s)
- Jessica Lucas
- Department of Biology, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI, 54901, USA.
| | - Matt Geisler
- School of Biological Science, Southern Illinois University, Carbondale, IL, 54901, USA
| |
Collapse
|
3
|
Nguyen DT, Zavadil Kokáš F, Gonin M, Lavarenne J, Colin M, Gantet P, Bergougnoux V. Transcriptional changes during crown-root development and emergence in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:438. [PMID: 38778283 PMCID: PMC11110440 DOI: 10.1186/s12870-024-05160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.
Collapse
Affiliation(s)
- Dieu Thu Nguyen
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Filip Zavadil Kokáš
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- Present address: Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Mathieu Gonin
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Jérémy Lavarenne
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Myriam Colin
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia.
| |
Collapse
|
4
|
Tourdot E, Martin PGP, Maza E, Mauxion JP, Djari A, Gévaudant F, Chevalier C, Pirrello J, Gonzalez N. Ploidy-specific transcriptomes shed light on the heterogeneous identity and metabolism of developing tomato pericarp cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:997-1015. [PMID: 38281284 DOI: 10.1111/tpj.16646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Frédéric Gévaudant
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| |
Collapse
|
5
|
Lamanchai K, Smirnoff N, Salmon DL, Ngernmuen A, Roytrakul S, Leetanasaksakul K, Kittisenachai S, Jantasuriyarat C. OsVTC1-1 Gene Silencing Promotes a Defense Response in Rice and Enhances Resistance to Magnaporthe oryzae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2189. [PMID: 36079570 PMCID: PMC9460107 DOI: 10.3390/plants11172189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Rice blast disease is a serious disease in rice caused by Magnaporthe oryzae (M. oryzae). Ascorbic acid (AsA), or vitamin C, is a strong antioxidant that prevents oxidative damage to cellular components and plays an essential role in plant defense response. GDP-D-mannose pyrophosphorylase (GMP or VTC1) is an enzyme that generates GDP-D-mannose for AsA, cell wall, and glycoprotein synthesis. The OsVTC1 gene has three homologs in the rice genome: OsVTC1-1, OsVTC1-3, and OsVTC1-8. Using OsVTC1-1 RNAi lines, this study investigated the role of the OsVTC1-1 gene during rice blast fungus inoculation. The OsVTC1-1 RNAi inoculated with rice blast fungus induced changes to cell wall monosaccharides, photosynthetic efficiency, reactive oxygen species (ROS) accumulation, and malondialdehyde (MDA) content. Additionally, the OsVTC1-1 RNAi lines were shown to be more resistant to rice blast fungus than the wild type. Genes and proteins related to defense response, plant hormone synthesis, and signaling pathways, especially salicylic acid and jasmonic acid, were up-regulated in the OsVTC1-1 RNAi lines after rice blast inoculation. These results suggest that the OsVTC1-1 gene regulates rice blast resistance through several defense mechanisms, including hormone synthesis and signaling pathways.
Collapse
Affiliation(s)
- Kanyanat Lamanchai
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Deborah L. Salmon
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Athipat Ngernmuen
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kantinan Leetanasaksakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Suthathip Kittisenachai
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart (CASTNAR, NRU-KU), Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Cai G. The legacy of kinesins in the pollen tube thirty years later. Cytoskeleton (Hoboken) 2022; 79:8-19. [PMID: 35766009 PMCID: PMC9542081 DOI: 10.1002/cm.21713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
The pollen tube is fundamental in the reproduction of seed plants. Particularly in angiosperms, we now have much information about how it grows, how it senses extracellular signals, and how it converts them into a directional growth mechanism. The expansion of the pollen tube is also related to dynamic cytoplasmic processes based on the cytoskeleton (such as polymerization/depolymerization of microtubules and actin filaments) or motor activity along with the two cytoskeletal systems and is dependent on motor proteins. While a considerable amount of information is available for the actomyosin system in the pollen tube, the role of microtubules in the transport of organelles or macromolecular structures is still quite uncertain despite that 30 years ago the first work on the presence of kinesins in the pollen tube was published. Since then, progress has been made in elucidating the role of kinesins in plant cells. However, their role within the pollen tube is still enigmatic. In this review, I will postulate some roles of kinesins in the pollen tube 30 years after their initial discovery based on information obtained in other plant cells in the meantime. The most concrete hypotheses predict that kinesins in the pollen tube enable the short movement of specific organelles or contribute to generative cell or sperm cell transport, as well as mediate specific steps in the process of endocytosis.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|
7
|
Zhang Y, Dong G, Chen F, Xiong E, Liu H, Jiang Y, Xiong G, Ruan B, Qian Q, Zeng D, Ma D, Yu Y, Wu L. The kinesin-13 protein BR HYPERSENSITIVE 1 is a negative brassinosteroid signaling component regulating rice growth and development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1751-1766. [PMID: 35258682 DOI: 10.1007/s00122-022-04067-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phytohormones performed critical roles in regulating plant architecture and thus determine grain yield in rice. However, the roles of brassinosteroids (BRs) compared to other phytohormones in shaping rice architecture are less studied. In this study, we report that BR hypersensitive1 (BHS1) plays a negative role in BR signaling and regulate rice architecture. BHS1 encodes the kinesin-13a protein and regulates grain length. We found that bhs1 was hypersensitive to BR, while BHS1-overexpression was less sensitive to BR compare to WT. BHS1 was down-regulated at RNA and protein level upon exogenous BR treatment, and proteasome inhibitor MG132 delayed the BHS1 degradation, indicating that both the transcriptional and posttranscriptional regulation machineries are involved in BHS1-mediated regulation of plant growth and development. Furthermore, we found that the BR-induced degradation of BHS1 was attenuated in Osbri1 and Osbak1 mutants, but not in Osbzr1 and Oslic mutants. Together, these results suggest that BHS1 is a novel component which is involved in negative regulation of the BR signaling downstream player of BRI1.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huijie Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 310036, China.
| |
Collapse
|
8
|
Chaparro-Encinas LA, Santoyo G, Peña-Cabriales JJ, Castro-Espinoza L, Parra-Cota FI, Santos-Villalobos SDL. Transcriptional Regulation of Metabolic and Cellular Processes in Durum Wheat (Triticum turgidum subsp. durum) in the Face of Temperature Increasing. PLANTS 2021; 10:plants10122792. [PMID: 34961263 PMCID: PMC8703274 DOI: 10.3390/plants10122792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
The Yaqui Valley, Mexico, has been historically considered as an experimental field for semiarid regions worldwide since temperature is an important constraint affecting durum wheat cultivation. Here, we studied the transcriptional and morphometrical response of durum wheat at an increased temperature (+2 °C) for deciphering molecular mechanisms involved in the thermal adaptation by this crop. The morphometrical assay showed a significant decrease in almost all the evaluated traits (shoot/root length, biovolume index, and dry/shoot weight) except in the dry root weight and the root:shoot ratio. At the transcriptional level, 283 differentially expressed genes (DEGs) were obtained (False Discovery Rate (FDR) ≤ 0.05 and |log2 fold change| ≥ 1.3). From these, functional annotation with MapMan4 and a gene ontology (GO) enrichment analysis with GOSeq were carried out to obtain 27 GO terms significantly enriched (overrepresented FDR ≤ 0.05). Overrepresented and functionally annotated genes belonged to ontologies associated with photosynthetic acclimation, respiration, changes in carbon balance, lipid biosynthesis, the regulation of reactive oxygen species, and the acceleration of physiological progression. These findings are the first insight into the regulation of the mechanism influenced by a temperature increase in durum wheat.
Collapse
Affiliation(s)
- Luis Abraham Chaparro-Encinas
- Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico; (L.A.C.-E.); (L.C.-E.)
- Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro (UAAAN) Unidad Laguna, Periférico Raúl López Sánchez, Valle Verde, Torreón 27054, Coahuila, Mexico
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Juan José Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Libramiento Norte Carretera Irapuato León Kilómetro 9.6, Carr Panamericana Irapuato León, Irapuato 36821, Guanajuato, Mexico;
| | - Luciano Castro-Espinoza
- Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico; (L.A.C.-E.); (L.C.-E.)
| | - Fannie Isela Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Norman E. Borlaug Km. 12, Valle del Yaqui, Ciudad Obregón 85000, Sonora, Mexico
- Correspondence: (F.I.P.-C.); (S.d.l.S.-V.); Tel.: +52-(644)-410-0900 (ext. 2124) (S.d.l.S.-V.)
| | - Sergio de los Santos-Villalobos
- Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico; (L.A.C.-E.); (L.C.-E.)
- Correspondence: (F.I.P.-C.); (S.d.l.S.-V.); Tel.: +52-(644)-410-0900 (ext. 2124) (S.d.l.S.-V.)
| |
Collapse
|
9
|
Gao Y, Chen Y, Song Z, Zhang J, Lv W, Zhao H, Huo X, Zheng L, Wang F, Zhang J, Zhang T. Comparative Dynamic Transcriptome Reveals the Delayed Secondary-Cell-Wall Thickening Results in Altered Lint Percentage and Fiber Elongation in a Chromosomal Segment Substitution Line of Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:756434. [PMID: 34759948 PMCID: PMC8573213 DOI: 10.3389/fpls.2021.756434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Lint percentage (LP) is an important yield component in cotton that is usually affected by initial fiber number and cell wall thickness. To explore how fiber cell wall development affects LP, phenotypic identification and dynamic transcriptome analysis were conducted using a single segment substitution line of chromosome 15 (SL15) that harbors a major quantitative trait locus (QTL) for LP. Compared to its recurrent parent LMY22, SL15 did not differ in initial fiber number, but the fiber cell wall thickness and single-fiber weight decreased significantly, altering LP. The comparative transcriptome profiles revealed that the secondary cell wall (SCW) development phase of SL15 was relatively delayed. Meanwhile, the expression of genes related to cell expansion decreased more slightly in SL15 with fiber development, resulting in relatively higher expression at SL15_25D than at LMY22_25D. SCW development-related genes, such as GhNACs and GhMYBs, in the putative NAC-MYB-CESA network differentially expressed at SL15_25D, along with the lower expression of CESA6, CSLC12, and CSLA2. The substituted chromosomal interval was further investigated, and found 6 of 146 candidate genes were differentially expressed in all four cell development periods including 10, 15, 20 and 25 DPA. Genetic variation and co-expression analysis showed that GH_D01G0052, GH_D01G0099, GH_D01G0100, and GH_D01G0140 may be important candidate genes associated with qLP-C15-1. Our results provide novel insights into cell wall development and its relationship with LP, which is beneficial for lint yield and fiber quality improvement.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wanyu Lv
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Han Zhao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xuehan Huo
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ling Zheng
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Goodson HV, Kelley JB, Brawley SH. Cytoskeletal diversification across 1 billion years: What red algae can teach us about the cytoskeleton, and vice versa. Bioessays 2021; 43:e2000278. [PMID: 33797088 DOI: 10.1002/bies.202000278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/05/2022]
Abstract
The cytoskeleton has a central role in eukaryotic biology, enabling cells to organize internally, polarize, and translocate. Studying cytoskeletal machinery across the tree of life can identify common elements, illuminate fundamental mechanisms, and provide insight into processes specific to less-characterized organisms. Red algae represent an ancient lineage that is diverse, ecologically significant, and biomedically relevant. Recent genomic analysis shows that red algae have a surprising paucity of cytoskeletal elements, particularly molecular motors. Here, we review the genomic and cell biological evidence and propose testable models of how red algal cells might perform processes including cell motility, cytokinesis, intracellular transport, and secretion, given their reduced cytoskeletons. In addition to enhancing understanding of red algae and lineages that evolved from red algal endosymbioses (e.g., apicomplexan parasites), these ideas may also provide insight into cytoskeletal processes in animal cells.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, Maine, USA
| |
Collapse
|
11
|
Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, D’Agostino N, Rao R. Zucchini Plants Alter Gene Expression and Emission of ( E)-β-Caryophyllene Following Aphis gossypii Infestation. FRONTIERS IN PLANT SCIENCE 2021; 11:592603. [PMID: 33488643 PMCID: PMC7820395 DOI: 10.3389/fpls.2020.592603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 05/11/2023]
Abstract
Zucchini (Cucurbita pepo L.) is widely cultivated in temperate regions. One of the major production challenges is the damage caused by Aphis gossypii (Homoptera: Aphididae), a polyphagous aphid, which can negatively affect its host plant, both directly by feeding and indirectly by vectoring viruses. To gain insights into the transcriptome events that occur during the zucchini-aphid interaction and to understand the early-to-late defense response through gene expression profiles, we performed RNA-sequencing (RNA-Seq) on zucchini leaves challenged by A. gossypii (24, 48, and 96 h post-infestation; hpi). Data analysis indicated a complex and dynamic pattern of gene expression and a transient transcriptional reconfiguration that involved more than 700 differentially expressed genes (DEGs), including a large number of defense-related genes. The down-regulation of key genes of plant immunity, such as leucine-rich repeat (LRR) protein kinases, transcription factors, and genes associated with direct (i.e., protease inhibitors, cysteine peptidases, etc.) and indirect (i.e., terpene synthase) defense responses, suggests the aphid ability to manipulate plant immune responses. We also investigated the emission of volatile organic compounds (VOCs) from infested plants and observed a reduced emission of (E)-β-caryophyllene at 48 hpi, likely the result of aphid effectors, which reflects the down-regulation of two genes involved in the biosynthesis of terpenoids. We showed that (E)-β-caryophyllene emission was modified by the duration of plant infestation and by aphid density and that this molecule highly attracts Aphidius colemani, a parasitic wasp of A. gossypii. With our results we contributed to the identification of genes involved in cucurbit plant interactions with phloem feeders. Our findings may also help pave the way toward developing tolerant zucchini varieties and to identify molecules for sustainable management of harmful insect populations.
Collapse
Affiliation(s)
- Alessia Vitiello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Laboratory of Entomology, Wageningen University, Wageningen, Netherlands
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Massimo Giorgini
- Sede Secondaria di Portici, Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Toby J. A. Bruce
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Miguel VN, Ribichich KF, Giacomelli JI, Chan RL. Key role of the motor protein Kinesin 13B in the activity of homeodomain-leucine zipper I transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6282-6296. [PMID: 32882705 DOI: 10.1093/jxb/eraa379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait. The sole protein identified with high confidence as interacting with HaHB11 was Kinesin 13B. The interaction was confirmed by bimolecular fluorescence complementation and by yeast two-hybrid assay. Kinesin 13B also interacted with AtHB7, the Arabidopsis closest ortholog of HaHB11. Histochemical analyses revealed an overlap between the expression patterns of the three genes in hypocotyls, apical meristems, young leaves, vascular tissue, axillary buds, cauline leaves, and cauline leaf nodes at different developmental stages. AtKinesin 13B mutants did not exhibit a differential phenotype when compared with controls; however, both HaHB11 and AtHB7 overexpressor plants lost, partially or totally, their differential phenotypic characteristics when crossed with such mutants. Altogether, the results indicated that Kinesin 13B is essential for the homeodomain-leucine zipper transcription factors I to exert their functions, probably via regulation of the intracellular distribution of these transcription factors by the motor protein.
Collapse
Affiliation(s)
- Virginia Natali Miguel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Jorge Ignacio Giacomelli
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Raquel Lia Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
13
|
Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in T. turgidum-Regulatory Networks of Grain Development and Abiotic Stress Response. Int J Mol Sci 2020; 21:ijms21207772. [PMID: 33096606 PMCID: PMC7589925 DOI: 10.3390/ijms21207772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
Crop reproduction is highly sensitive to water deficit and heat stress. The molecular networks of stress adaptation and grain development in tetraploid wheat (Triticum turgidum durum) are not well understood. Small RNAs (sRNAs) are important epigenetic regulators connecting the transcriptional and post-transcriptional regulatory networks. This study presents the first multi-omics analysis of the sRNAome, transcriptome, and degradome in T. turgidum developing grains, under single and combined water deficit and heat stress. We identified 690 microRNAs (miRNAs), with 84 being novel, from 118 sRNA libraries. Complete profiles of differentially expressed miRNAs (DEMs) specific to genotypes, stress types, and different reproductive time-points are provided. The first degradome sequencing report for developing durum grains discovered a significant number of new target genes regulated by miRNAs post-transcriptionally. Transcriptome sequencing profiled 53,146 T. turgidum genes, swith differentially expressed genes (DEGs) enriched in functional categories such as nutrient metabolism, cellular differentiation, transport, reproductive development, and hormone transduction pathways. miRNA-mRNA networks that affect grain characteristics such as starch synthesis and protein metabolism were constructed on the basis of integrated analysis of the three omics. This study provides a substantial amount of novel information on the post-transcriptional networks in T. turgidum grains, which will facilitate innovations for breeding programs aiming to improve crop resilience and grain quality.
Collapse
|
14
|
Gonulalan EM, Nemutlu E, Bayazeid O, Koçak E, Yalçın FN, Demirezer LO. Metabolomics and proteomics profiles of some medicinal plants and correlation with BDNF activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 74:152920. [PMID: 30979692 DOI: 10.1016/j.phymed.2019.152920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Identification of the low abundance of phytochemicals in plant extracts is very difficult. Pharmacological activity observed in such plants is not due to a single compound. In most cases, plant extracts show activity based on synergistic or antagonistic effects. Therefore, the idea of a holistic approach is more rational. PURPOSE This study was planned to compare the metabolomics and proteomics profiles of Valeriana officinalis L. (Valerianaceae), Melissa officinalis L. (Lamiaceae), Hypericum perforatum L. (Hypericaceae) and Passiflora incarnata L. (Passifloraceae) used in sedative anxiolytic and sleep disorders. Integrated omics analyses were used to provide a better understanding of the effect of plant extracts on the brain-derived neurotrophic factor (BDNF) expression levels on the SH-SY5Y cell line by a holistic approach. METHODS Metabolomic profiling of the plants was performed using the GC-MS and LC-qTOF-MS systems, and the proteomics analysis using the LC-qTOF-MS system after trypsin digestion. The Human BDNF Quantikine ELISA kit was utilized to test BDNF expression activity on the SH-SY5Y cell line. RESULTS The investigated plant extracts showed a significant increase in BDNF expression (p < 0.05). M. officinalis was found as the most active extract. According to the correlation analyses between BDNF activity and metabolomics or proteomics level, 94 metabolites had a positive correlation while 23 metabolites had a highly negative correlation; those for proteins are 24 and 6, respectively. CONCLUSION The multivariate data analysis revealed a similar metabolomics profile of H. perforatum and P. incarnata, which also had a similar activity profile. Remarkably, all the primary metabolites belonging to the Krebs Cycle (citric acid, fumaric acid, succinic acid, pyruvic acid, malic acid and citramalic acid, an analog of malic acid) were positively correlated with BDNF activity. Secondary metabolites with a high BDNF expression belonged to flavonoids, xanthone, coumarines, tannin, naphtalenes, terpenoids and carotenoid skeleton. Two proteins from the cytochrome P450 family (P450 71B11 and P450 94B3) were positively correlated with BDNF activity. Employing omics technologies in the plant research area will offer a better understanding of the role of plant extracts and may lead to the discovery of new compounds with specific activity.
Collapse
Affiliation(s)
- Ekrem M Gonulalan
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Omer Bayazeid
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Engin Koçak
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Funda N Yalçın
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - L Omur Demirezer
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey.
| |
Collapse
|
15
|
Więsyk A, Lirski M, Fogtman A, Zagórski-Ostoja W, Góra-Sochacka A. Differences in gene expression profiles at the early stage of Solanum lycopersicum infection with mild and severe variants of potato spindle tuber viroid. Virus Res 2020; 286:198090. [PMID: 32634444 DOI: 10.1016/j.virusres.2020.198090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Viroids with small, non-coding circular RNA genome can induce diseases in many plant species. The extend of infection symptoms depends on environmental conditions, viroid strain, and host plant species and cultivar. Pathogen recognition leads to massive transcriptional reprogramming to favor defense responses over normal cellular functions. To better understand the interaction between plant host and potato spindle tuber viroid (PSTVd) variants that differ in their virulence, comparative transcriptomic analysis was performed by an RNA-seq approach. The changes of gene expression were analyzed at the time point when subtle symptoms became visible in plants infected with the severe PSTVd-S23 variant, while those infected with the mild PSTVd-M variant looked like non-infected healthy plants. Over 3000 differentially expressed genes (DEGs) were recognized in both infections, but the majority of them were specific for infection with the severe variant. In both infections recognized DEGs were mainly related to biotic stress, hormone metabolism and signaling, transcription regulation, protein degradation, and transport. The DEGs related to cell cycle and microtubule were uniquely down-regulated only in the PSTVd-S23-infected plants. Similarly, expression of transcription factors from C2C2-GATA and growth-regulating factor (GRF) families was only altered upon infection with the severe variant. Both PSTVd variants triggered plant immune response; however expression of genes encoding crucial factors of this process was markedly more changed in the plants infected with the severe variant than in those with the mild one.
Collapse
Affiliation(s)
- Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | | | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
16
|
Transcriptomic data-driven discovery of global regulatory features of rice seeds developing under heat stress. Comput Struct Biotechnol J 2020; 18:2556-2567. [PMID: 33033578 PMCID: PMC7522763 DOI: 10.1016/j.csbj.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Plants respond to abiotic stressors through a suite of strategies including differential regulation of stress-responsive genes. Hence, characterizing the influences of the relevant global regulators or on stress-related transcription factors is critical to understand plant stress response. Rice seed development is highly sensitive to elevated temperatures. To elucidate the extent and directional hierarchy of gene regulation in rice seeds under heat stress, we developed and implemented a robust multi-level optimization-based algorithm called Minimal Regulatory Network identifier (MiReN). MiReN could predict the minimal regulatory relationship between a gene and its potential regulators from our temporal transcriptomic dataset. MiReN predictions for global regulators including stress-responsive gene Slender Rice 1 (SLR1) and disease resistance gene XA21 were validated with published literature. It also predicted novel regulatory influences of other major regulators such as Kinesin-like proteins KIN12C and STD1, and WD repeat-containing protein WD40. Out of the 228 stress-responsive transcription factors identified, we predicted de novo regulatory influences on three major groups (MADS-box M-type, MYB, and bZIP) and investigated their physiological impacts during stress. Overall, MiReN results can facilitate new experimental studies to enhance our understanding of global regulatory mechanisms triggered during heat stress, which can potentially accelerate the development of stress-tolerant cultivars.
Collapse
|
17
|
Abdelkhalek A, Ismail IA, Dessoky ES, El-Hallous EI, Hafez E. A tomato kinesin-like protein is associated with Tobacco mosaic virus infection. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1673207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Ismail A. Ismail
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Eldessoky S. Dessoky
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ehab I. El-Hallous
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Department of Zoology, Faculty of Science, Arish University, Al-Arish, Egypt
| | - Elsayed Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| |
Collapse
|
18
|
Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Gutiérrez-Guerrero YT, Sánchez de la Vega G, Piñero D, Montes-Hernández S, Lira-Saade R, Eguiarte LE. The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita. MOLECULAR PLANT 2019; 12:506-520. [PMID: 30630074 DOI: 10.1016/j.molp.2018.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2018] [Accepted: 12/28/2018] [Indexed: 05/19/2023]
Abstract
Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes.
Collapse
Affiliation(s)
- Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Enrique Ibarra-Laclette
- Departamento de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec No. 351, Col. El Haya. C.P., Xalapa, Veracruz 91070, Mexico
| | - Alejandra Vázquez-Lobo
- Centro de Investigaciones en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
| | - Yocelyn T Gutiérrez-Guerrero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Guillermo Sánchez de la Vega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km 6.5 Carretera Celaya-San Miguel de Allende, Celaya, Guanajuato 38110, Mexico
| | - Rafael Lira-Saade
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Col. Los Reyes Iztacala, Tlanepantla, Edo. de Mex 54090, Mexico.
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico.
| |
Collapse
|
19
|
Badmi R, Payyavula RS, Bali G, Guo HB, Jawdy SS, Gunter LE, Yang X, Winkeler KA, Collins C, Rottmann WH, Yee K, Rodriguez M, Sykes RW, Decker SR, Davis MF, Ragauskas AJ, Tuskan GA, Kalluri UC. A New Calmodulin-Binding Protein Expresses in the Context of Secondary Cell Wall Biosynthesis and Impacts Biomass Properties in Populus. FRONTIERS IN PLANT SCIENCE 2018; 9:1669. [PMID: 30568662 PMCID: PMC6290091 DOI: 10.3389/fpls.2018.01669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
A greater understanding of biosynthesis, signaling and regulatory pathways involved in determining stem growth and secondary cell wall chemistry is important for enabling pathway engineering and genetic optimization of biomass properties. The present study describes a new functional role of PdIQD10, a Populus gene belonging to the IQ67-Domain1 family of IQD genes, in impacting biomass formation and chemistry. Expression studies showed that PdIQD10 has enhanced expression in developing xylem and tension-stressed tissues in Populus deltoides. Molecular dynamics simulation and yeast two-hybrid interaction experiments suggest interactions with two calmodulin proteins, CaM247 and CaM014, supporting the sequence-predicted functional role of the PdIQD10 as a calmodulin-binding protein. PdIQD10 was found to interact with specific Populus isoforms of the Kinesin Light Chain protein family, shown previously to function as microtubule-guided, cargo binding and delivery proteins in Arabidopsis. Subcellular localization studies showed that PdIQD10 localizes in the nucleus and plasma membrane regions. Promoter-binding assays suggest that a known master transcriptional regulator of secondary cell wall biosynthesis (PdWND1B) may be upstream of an HD-ZIP III gene that is in turn upstream of PdIQD10 gene in the transcriptional network. RNAi-mediated downregulation of PdIQD10 expression resulted in plants with altered biomass properties including higher cellulose, wall glucose content and greater biomass quantity. These results present evidence in support of a new functional role for an IQD gene family member, PdIQD10, in secondary cell wall biosynthesis and biomass formation in Populus.
Collapse
Affiliation(s)
- Raghuram Badmi
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Raja S. Payyavula
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Garima Bali
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Georgia Institute of Technology, Atlanta, GA, United States
| | - Hao-Bo Guo
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sara S. Jawdy
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Lee E. Gunter
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | | | | | - Kelsey Yee
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Miguel Rodriguez
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Stephen R. Decker
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Arthur J. Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gerald A. Tuskan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Udaya C. Kalluri
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
20
|
Cia MC, de Carvalho G, Azevedo RA, Monteiro-Vitorello CB, Souza GM, Nishiyama-Junior MY, Lembke CG, Antunes de Faria RSDC, Marques JPR, Melotto M, Camargo LEA. Novel Insights Into the Early Stages of Ratoon Stunting Disease of Sugarcane Inferred from Transcript and Protein Analysis. PHYTOPATHOLOGY 2018; 108:1455-1466. [PMID: 29969065 DOI: 10.1094/phyto-04-18-0120-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite of the importance of ratoon stunting disease, little is known on the responses of sugarcane to its causal agent, the vascular bacterial endophyte Leifsonia xyli subsp. xyli. The transcriptome and proteome of young plants of a susceptible cultivar with no symptoms of stunting but with relative low and high bacterial titers were compared at 30 and 60 days after inoculation. Increased bacterial titers were associated with alterations in the expression of 267 cDNAs and in the abundance of 150 proteins involved in plant growth, hormone metabolism, signal transduction and defense responses. Some alterations are predicted to benefit the pathogen, such as the up-regulation of genes involved in the synthesis of methionine. Also, genes and proteins of the cell division cycle were all down-regulated in plants with higher titers at both times. It is hypothesized that the negative effects on cell division related to increased bacterial titers is cumulative over time and its modulation by other host and environmental factors results in the stunting symptom.
Collapse
Affiliation(s)
- Mariana Cicarelli Cia
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Giselle de Carvalho
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Ricardo Antunes Azevedo
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Claudia Barros Monteiro-Vitorello
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Glaucia Mendes Souza
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Milton Yutaka Nishiyama-Junior
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Carolina Gimiliani Lembke
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Raphael Severo da Cunha Antunes de Faria
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - João Paulo Rodrigues Marques
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Maeli Melotto
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Luis Eduardo Aranha Camargo
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| |
Collapse
|
21
|
Onelli E, Scali M, Caccianiga M, Stroppa N, Morandini P, Pavesi G, Moscatelli A. Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes. Open Biol 2018; 8:180078. [PMID: 30381363 PMCID: PMC6223213 DOI: 10.1098/rsob.180078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Fine regulation of exocytosis and endocytosis plays a basic role in pollen tube growth. Excess plasma membrane secreted during pollen tube elongation is known to be retrieved by endocytosis and partially reused in secretory pathways through the Golgi apparatus. Dissection of endocytosis has enabled distinct degradation pathways to be identified in tobacco pollen tubes and has shown that microtubules influence the transport of plasma membrane internalized in the tip region to vacuoles. Here, we used different drugs affecting the polymerization state of microtubules together with SYP21, a marker of prevacuolar compartments, to characterize trafficking of prevacuolar compartments in Nicotiana tabacum pollen tubes. Ultrastructural and biochemical analysis showed that microtubules bind SYP21-positive microsomes. Transient transformation of pollen tubes with LAT52-YFP-SYP21 revealed that microtubules play a key role in the delivery of prevacuolar compartments to tubular vacuoles.
Collapse
Affiliation(s)
- Elisabetta Onelli
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Department of Life Science, Siena University, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Caccianiga
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Nadia Stroppa
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | | |
Collapse
|
22
|
Hu CH, Wei XY, Yuan B, Yao LB, Ma TT, Zhang PP, Wang X, Wang PQ, Liu WT, Li WQ, Meng LS, Chen KM. Genome-Wide Identification and Functional Analysis of NADPH Oxidase Family Genes in Wheat During Development and Environmental Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:906. [PMID: 30083172 PMCID: PMC6065054 DOI: 10.3389/fpls.2018.00906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
As the key producers of reactive oxygen species (ROS), NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), play crucial roles in various biological processes in plants with considerable evolutionary selection and functional diversity in the entire terrestrial plant kingdom. However, only limited resources are available on the phylogenesis and functions of this gene family in wheat. Here, a total of 46 NOX family genes were identified in the wheat genome, and these NOXs could be classified into three subgroups: typical TaNOXs, TaNOX-likes, and ferric reduction oxidases (TaFROs). Phylogenetic analysis indicated that the typical TaNOXs might originate from TaFROs during evolution, and the TaFROs located on Chr 2 might be the most ancient forms of TaNOXs. TaNOXs are highly expressed in wheat with distinct tissue or organ-specificity and stress-inducible diversity. A large-scale expression and/or coexpression analysis demonstrated that TaNOXs can be divided into four functional groups with different expression patterns under a broad range of environmental stresses. Different TaNOXs are coexpressed with different sets of other genes, which widely participate in several important intracellular processes such as cell wall biosynthesis, defence response, and signal transduction, suggesting their vital but diversity of roles in plant growth regulation and stress responses of wheat.
Collapse
Affiliation(s)
- Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- Department of General Biology, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xiao-Yong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bo Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lin-Bo Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tian-Tian Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Qi Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- *Correspondence: Kun-Ming Chen ;
| |
Collapse
|
23
|
Abstract
Despite of their economical and nutritional interest, the biology of fruits is still little studied in comparison with reports of other plant organs such as leaves and roots. Accordingly, research at subcellular and molecular levels is necessary not only to understand the physiology of fruits, but also to improve crop qualities. Efforts addressed to gain knowledge of the peroxisome proteome and how it interacts with the overall metabolism of fruits will provide tools to be used in breeding strategies of agricultural species with added value. In this work, special attention will be paid to peroxisomal proteins involved in the metabolism of reactive oxygen species (ROS) due to the relevant role of these compounds at fruit ripening. The proteome of peroxisomes purified from sweet pepper (Capsicum annuum L.) fruit is reported, where an iron-superoxide dismutase (Fe-SOD) was localized in these organelles, besides other antioxidant enzymes such as catalase and a Mn-SOD, as well as enzymes involved in the metabolism of carbohydrates, malate, lipids and fatty acids, amino acids, the glyoxylate cycle and in the potential organelles' movements.
Collapse
|
24
|
Banerjee A, Roychoudhury A. The gymnastics of epigenomics in rice. PLANT CELL REPORTS 2018; 37:25-49. [PMID: 28866772 DOI: 10.1007/s00299-017-2192-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 05/21/2023]
Abstract
Epigenomics is represented by the high-throughput investigations of genome-wide epigenetic alterations, which ultimately dictate genomic, transcriptomic, proteomic and metabolomic dynamism. Rice has been accepted as the global staple crop. As a result, this model crop deserves significant importance in the rapidly emerging field of plant epigenomics. A large number of recently available data reveal the immense flexibility and potential of variable epigenomic landscapes. Such epigenomic impacts and variability are determined by a number of epigenetic regulators and several crucial inheritable epialleles, respectively. This article highlights the correlation of the epigenomic landscape with growth, flowering, reproduction, non-coding RNA-mediated post-transcriptional regulation, transposon mobility and even heterosis in rice. We have also discussed the drastic epigenetic alterations which are reported in rice plants grown from seeds exposed to the extraterrestrial environment. Such abiotic conditions impose stress on the plants leading to epigenomic modifications in a genotype-specific manner. Some significant bioinformatic databases and in silico approaches have also been explained in this article. These softwares provide important interfaces for comparative epigenomics. The discussion concludes with a unified goal of developing epigenome editing to promote biological hacking of the rice epigenome. Such a cutting-edge technology if properly standardized, can integrate genomics and epigenomics together with the generation of high-yielding trait in several cultivars of rice.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
25
|
Chen R, Cheng Y, Han S, Van Handel B, Dong L, Li X, Xie X. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar - sea rice 86. BMC Genomics 2017; 18:655. [PMID: 28835208 PMCID: PMC5569538 DOI: 10.1186/s12864-017-4037-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 08/08/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Rice (Oryza sativa) is critical for human nutrition worldwide. Due to a growing population, cultivars that produce high yields in high salinity soil are of major importance. Here we describe the discovery and molecular characterization of a novel sea water adapted rice strain, Sea Rice 86 (SR86). RESULTS SR86 can produce nutritious grains when grown in high salinity soil. Compared to a salt resistant rice cultivar, Yanfen 47 (YF47), SR86 grows in environments with up to 3X the salt content, and produces grains with significantly higher nutrient content in 12 measured components, including 2.9X calcium and 20X dietary fiber. Whole genome sequencing demonstrated that SR86 is a relatively ancient indica subspecies, phylogenetically close to the divergence point of the major rice varietals. SR86 has 12 chromosomes with a total genome size of 373,130,791 bps, slightly smaller than other sequenced rice genomes. Via comparison with 3000 rice genomes, we identified 42,359 putative unique, high impact variants in SR86. Transcriptome analysis of SR86 grown under normal and high saline conditions identified a large number of differentially expressed and salt-induced genes. Many of those genes fall into several gene families that have established or suggested roles in salt tolerance, while others represent potentially novel mediators of salt adaptation. CONCLUSIONS Whole genome sequencing and transcriptome analysis of SR86 has laid a foundation for further molecular characterization of several desirable traits in this novel rice cultivar. A number of candidate genes related to salt adaptation identified in this study will be valuable for further functional investigation.
Collapse
Affiliation(s)
- Risheng Chen
- Wuhan Oceanrice International Biotech Co.,Ltd, 30 Rongzhong International building, High-tech Development Zone, No.889 Luoyu Road, Wuhan, FL 430074 China
| | - Yunfeng Cheng
- Wuhan Oceanrice International Biotech Co.,Ltd, 30 Rongzhong International building, High-tech Development Zone, No.889 Luoyu Road, Wuhan, FL 430074 China
| | - Suying Han
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Ben Van Handel
- Owachomo Consulting, LLC, 1101 Laveta Terrace, Ste. 19, Los Angeles, CA 90026 USA
| | - Ling Dong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angels, 650 Charles Young Dr, Los Angeles, CA 90095 USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angels, 650 Charles Young Dr, Los Angeles, CA 90095 USA
| | - Xiaoqing Xie
- Wuhan Oceanrice International Biotech Co.,Ltd, 30 Rongzhong International building, High-tech Development Zone, No.889 Luoyu Road, Wuhan, FL 430074 China
| |
Collapse
|
26
|
Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci U S A 2017; 114:E6361-E6370. [PMID: 28716924 DOI: 10.1073/pnas.1703088114] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.
Collapse
|
27
|
|
28
|
Gao J, Zhang S, He WD, Shao XH, Li CY, Wei YR, Deng GM, Kuang RB, Hu CH, Yi GJ, Yang QS. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network. Sci Rep 2017; 7:40852. [PMID: 28106078 PMCID: PMC5247763 DOI: 10.1038/srep40852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022] Open
Abstract
Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, 510640, China.,Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Wei-Di He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China.,Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiu-Hong Shao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Chun-Yu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Yue-Rong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Gui-Ming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Rui-Bin Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Chun-Hua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Gan-Jun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Qiao-Song Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| |
Collapse
|
29
|
Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A. Comparative Leaf and Root Transcriptomic Analysis of two Rice Japonica Cultivars Reveals Major Differences in the Root Early Response to Osmotic Stress. RICE (NEW YORK, N.Y.) 2016; 9:25. [PMID: 27216147 PMCID: PMC4877341 DOI: 10.1186/s12284-016-0098-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/14/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions and is characterized by a low water-use efficiency and a high sensitivity to a water deficit, with yield reductions occurring at lower stress levels compared to most other crops. To identify genes and pathways involved in the tolerant response to dehydration, a powerful approach consists in the genome-wide analysis of stress-induced expression changes by comparing drought-tolerant and drought-sensitive genotypes. RESULTS The physiological response to osmotic stress of 17 japonica rice genotypes was evaluated. A clear differentiation of the most tolerant and the most sensitive phenotypes was evident, especially after 24 and 48 h of treatment. Two genotypes, which were characterized by a contrasting response (tolerance/sensitivity) to the imposed stress, were selected. A parallel transcriptomic analysis was performed on roots and leaves of these two genotypes at 3 and 24 h of stress treatment. RNA-Sequencing data showed that the tolerant genotype Eurosis and the sensitive genotype Loto mainly differed in the early response to osmotic stress in roots. In particular, the tolerant genotype was characterized by a prompt regulation of genes related to chromatin, cytoskeleton and transmembrane transporters. Moreover, a differential expression of transcription factor-encoding genes, genes involved in hormone-mediate signalling and genes involved in the biosynthesis of lignin was observed between the two genotypes. CONCLUSIONS Our results provide a transcriptomic characterization of the osmotic stress response in rice and identify several genes that may be important players in the tolerant response.
Collapse
Affiliation(s)
- Elena Baldoni
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy.
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| | - Paolo Bagnaresi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, Italy
| | - Franca Locatelli
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy
| | - Monica Mattana
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy
| | - Annamaria Genga
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy.
| |
Collapse
|
30
|
Hu H, Gu X, Xue LJ, Swamy PS, Harding SA, Tsai CJ. Tubulin C-terminal Post-translational Modifications Do Not Occur in Wood Forming Tissue of Populus. FRONTIERS IN PLANT SCIENCE 2016; 7:1493. [PMID: 27790223 PMCID: PMC5061773 DOI: 10.3389/fpls.2016.01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 05/03/2023]
Abstract
Cortical microtubules (MTs) are evolutionarily conserved cytoskeletal components with specialized roles in plants, including regulation of cell wall biogenesis. MT functions and dynamics are dictated by the composition of their monomeric subunits, α- (TUA) and β-tubulins (TUB), which in animals and protists are subject to both transcriptional regulation and post-translational modifications (PTM). While spatiotemporal regulation of tubulin gene expression has been reported in plants, whether and to what extent tubulin PTMs occur in these species remain poorly understood. We chose the woody perennial Populus for investigation of tubulin PTMs in this study, with a particular focus on developing xylem where high tubulin transcript levels support MT-dependent secondary cell wall deposition. Mass spectrometry and immunodetection concurred that detyrosination, non-tyrosination and glutamylation were essentially absent in tubulins isolated from wood-forming tissues of P. deltoides and P. tremula ×alba. Label-free quantification of tubulin isotypes and RNA-Seq estimation of tubulin transcript abundance were largely consistent with transcriptional regulation. However, two TUB isotypes were detected at noticeably lower levels than expected based on RNA-Seq transcript abundance in both Populus species. These findings led us to conclude that MT composition during wood formation depends exclusively on transcriptional and, to a lesser extent, translational regulation of tubulin isotypes.
Collapse
Affiliation(s)
- Hao Hu
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Xi Gu
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Liang-Jiao Xue
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Prashant S. Swamy
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
| | - Scott A. Harding
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Chung-Jui Tsai
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| |
Collapse
|
31
|
Zhu X, Chai M, Li Y, Sun M, Zhang J, Sun G, Jiang C, Shi L. Global Transcriptome Profiling Analysis of Inhibitory Effects of Paclobutrazol on Leaf Growth in Lily (Lilium Longiflorum-Asiatic Hybrid). FRONTIERS IN PLANT SCIENCE 2016; 7:491. [PMID: 27148316 PMCID: PMC4835717 DOI: 10.3389/fpls.2016.00491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/26/2016] [Indexed: 05/23/2023]
Abstract
As a popular ornamental flower, potted lily is an important object of lily breeding. Paclobutrazol, a chemical growth retardation compound, is often used to dwarf plant in producing potted lilies. However, in recent years, the plants with inherited dwarf traits by using genetic engineer breeding technology are being developed. The studies on molecular basis of lily dwarfism will offer some target genes which have profound dwarf effect for genetic engineer breeding. Here, we confirmed that paclobutrazol inhibited plant height and leaf size in Lilium Longiflorum-Asiatic hybrid, and then RNA-Seq technique was employed to analyze gene transcripts of Lilium Longiflorum-Asiatic hybrid leaves by paclobutrazol treatment in order to get a deeper insight into dwarfism mechanism of lily. Approximately 38.6 Gb data was obtained and assemble into 53,681 unigenes. Annotation, pathways, functional classification and phylogenetic classification of these data were analyzed based on Nr, Nt, Swiss-Prot, KEGG, COG, and GO databases. 2704 differentially expressed genes were screened by comparing paclobutrazol-treated samples with untreated samples and quantitative real-time PCR was performed to validate expression profiles. By analyzing dynamic changes of differentially expressed genes, nine metabolic pathways and signal transduction pathways were significantly enriched and many potentially interesting genes were identified that encoded putative regulators or key components of cell division, cell expansion, GA metabolism and signaling transduction and these genes were highlighted to reveal their importance in regulation of plant size. These results will provide a better understanding of the molecular mechanism on lily dwarfism and some potential genes related to lily organ size, which will lay the foundation for molecular breeding of potted lilies. These transcriptome data will also serve as valuable public genomic resources for other genetic research in lily.
Collapse
Affiliation(s)
- Xiaopei Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Min Chai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Yang Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guofeng Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Chuangdao Jiang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Lei Shi
| |
Collapse
|
32
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
33
|
Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). J Proteomics 2015; 131:82-92. [PMID: 26477389 DOI: 10.1016/j.jprot.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/18/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Many cultivated rubber trees (Hevea brasiliensis) are invaded by various Phytophthora species fungi, especially in tropical regions which result in crop yield losses. Comparative proteome analysis coupled with liquid chromatography electrospray/ionization (LC-ESI) mass spectrometry identification was employed to investigate the relative abundance of defense related proteins in Phytophthora sp. susceptible (RRIM600) and tolerant (BPM24) clones of rubber tree. Proteome maps of non-rubber constituent of these two model clones show similar protein counts, although some proteins show significant alterations in their abundance. Most of the differentially abundant proteins found in the serum of BPM24 illustrate the accumulation of defense related proteins that participate in plant defense mechanisms such as beta-1,3-glucanase, chitinase, and lectin. SDS-PAGE and 2-D Western blot analysis showed greater level of accumulation of beta-1,3-glucanase and chitinase in latex serum of BPM24 when compared to RRIM600. A functional study of these two enzymes showed that BPM24 serum had greater beta-1,3-glucanase and chitinase activities than that of RRIM600. These up-regulated proteins are constitutively expressed and would serve to protect the rubber tree BPM24 from any fungal invader. The information obtained from this work is valuable for understanding of defense mechanisms and plantation improvement of H. brasiliensis. BIOLOGICAL SIGNIFICANCE Non-rubber constituents (latex serum) have almost no value and are treated as waste in the rubber agricultural industry. However, the serum of natural rubber latex contains biochemical substances. The comparative proteomics analysis of latex serum between tolerant and susceptible clones reveals that the tolerant BPM24 clone contained a high abundance of several classes of fungal pathogen-responsive proteins, such as glucanase and chitinase. Moreover, other proteins identified highlighted the accumulation of defensive-associated proteins participating in plant fungal immunity. The isolation of beta-1,3-glucanase, chitinase, and lectin from latex serum should be further investigated and may provide a therapeutic application. This investigation will lead to possible use of latex serum as a great biotechnological resource due to the large quantity of serum produced and the biochemicals contained therein.
Collapse
|
34
|
Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Żmieńko A, Lutts S, Quinet M. Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:94-113. [PMID: 25575995 DOI: 10.1016/j.plantsci.2014.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 05/03/2023]
Abstract
Rape seeds primed with -1.2 MPa polyethylene glycol 6000 showed improved germination performance. To better understand the beneficial effect of osmopriming on seed germination, a global expression profiling method was used to compare, for the first time, transcriptomic and proteomic data for osmoprimed seeds at the crucial phases of priming procedure (soaking, drying), whole priming process and subsequent germination. Brassica napus was used here as a model to dissect the process of osmopriming into its essential components. A total number of 952 genes and 75 proteins were affected during the main phases of priming and post-priming germination. Transcription was not coordinately associated with translation resulting in a limited correspondence between mRNAs level and protein abundance. Soaking, drying and final germination of primed seeds triggered distinct specific pathways since only a minority of genes and proteins were involved in all phases of osmopriming while a vast majority was involved in only one single phase. A particular attention was paid to genes and proteins involved in the transcription, translation, reserve mobilization, water uptake, cell cycle and oxidative stress processes.
Collapse
Affiliation(s)
- Szymon Kubala
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland.
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland
| | - André Clippe
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 45, boîte L7.07.02, B-1348 Louvain-la-Neuve, Belgium
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszynska 34, 60-479 Poznan, Poland
| | - Agnieszka Żmieńko
- Laboratory of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Science, ul. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
35
|
Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. FRONTIERS IN PLANT SCIENCE 2015; 6:51. [PMID: 25713579 PMCID: PMC4322846 DOI: 10.3389/fpls.2015.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth.
Collapse
Affiliation(s)
| | - Aurora I. Idilli
- Institute of Biophysics, National Research Council and Fondazione Bruno Kessler, Trento, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandra Moscatelli, Department of Biosciences, University of Milan, Via Celoria, 26, 20113 Milano, Italy e-mail:
| |
Collapse
|
36
|
Li J, Zhu L, Lu G, Zhan XB, Lin CC, Zheng ZY. Curdlan β-1,3-glucooligosaccharides induce the defense responses against Phytophthora infestans infection of potato (Solanum tuberosum L. cv. McCain G1) leaf cells. PLoS One 2014; 9:e97197. [PMID: 24816730 PMCID: PMC4016274 DOI: 10.1371/journal.pone.0097197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023] Open
Abstract
Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H₂O₂ and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Zhu
- Jiangsu Rayguang Biotech Company, Ltd., Wuxi, Jiangsu, China
| | - Guangxing Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Rayguang Biotech Company, Ltd., Wuxi, Jiangsu, China
| | - Chi-Chung Lin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhi-Yong Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
37
|
Lu YB, Yang LT, Qi YP, Li Y, Li Z, Chen YB, Huang ZR, Chen LS. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC PLANT BIOLOGY 2014; 14:123. [PMID: 24885979 PMCID: PMC4041134 DOI: 10.1186/1471-2229-14-123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/30/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Boron (B)-deficiency is a widespread problem in many crops, including Citrus. MicroRNAs (miRNAs) play important roles in nutrient deficiencies. However, little is known on B-deficiency-responsive miRNAs in plants. In this study, we first identified miRNAs and their expression pattern in B-deficient Citrus sinensis roots by Illumina sequencing in order to identify miRNAs that might be involved in the tolerance of plants to B-deficiency. RESULTS We isolated 52 (40 known and 12 novel) up-regulated and 82 (72 known and 10 novel) down-regulated miRNAs from B-deficient roots, demonstrating remarkable metabolic flexibility of roots, which might contribute to the tolerance of plants to B-deficiency. A model for the possible roles of miRNAs in the tolerance of roots to B-deficiency was proposed. miRNAs might regulate the adaptations of roots to B-deficiency through following several aspects: (a) inactivating reactive oxygen species (ROS) signaling and scavenging through up-regulating miR474 and down-regulating miR782 and miR843; (b) increasing lateral root number by lowering miR5023 expression and maintaining a certain phenotype favorable for B-deficiency-tolerance by increasing miR394 expression; (c) enhancing cell transport by decreasing the transcripts of miR830, miR5266 and miR3465; (d) improving osmoprotection (miR474) and regulating other metabolic reactions (miR5023 and miR821). Other miRNAs such as miR472 and miR2118 in roots increased in response to B-deficiency, thus decreasing the expression of their target genes, which are involved in disease resistance, and hence, the disease resistance of roots. CONCLUSIONS Our work demonstrates the possible roles of miRNAs and related mechanisms in the response of plant roots to B-deficiency.
Collapse
Affiliation(s)
- Yi-Bin Lu
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Yan Li
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong Li
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan-Bin Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
38
|
Rienth M, Torregrosa L, Kelly MT, Luchaire N, Pellegrino A, Grimplet J, Romieu C. Is transcriptomic regulation of berry development more important at night than during the day? PLoS One 2014; 9:e88844. [PMID: 24551177 PMCID: PMC3923830 DOI: 10.1371/journal.pone.0088844] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/12/2014] [Indexed: 12/22/2022] Open
Abstract
Diurnal changes in gene expression occur in all living organisms and have been studied on model plants such as Arabidopsis thaliana. To our knowledge the impact of the nycthemeral cycle on the genetic program of fleshly fruit development has been hitherto overlooked. In order to circumvent environmental changes throughout fruit development, young and ripening berries were sampled simultaneously on continuously flowering microvines acclimated to controlled circadian light and temperature changes. Gene expression profiles along fruit development were monitored during both day and night with whole genome microarrays (Nimblegen® vitis 12x), yielding a total number of 9273 developmentally modulated probesets. All day-detected transcripts were modulated at night, whereas 1843 genes were night-specific. Very similar developmental patterns of gene expression were observed using independent hierarchical clustering of day and night data, whereas functional categories of allocated transcripts varied according to time of day. Many transcripts within pathways, known to be up-regulated during ripening, in particular those linked to secondary metabolism exhibited a clearer developmental regulation at night than during the day. Functional enrichment analysis also indicated that diurnally modulated genes considerably varied during fruit development, with a shift from cellular organization and photosynthesis in green berries to secondary metabolism and stress-related genes in ripening berries. These results reveal critical changes in gene expression during night development that differ from daytime development, which have not been observed in other transcriptomic studies on fruit development thus far.
Collapse
Affiliation(s)
- Markus Rienth
- Fondation Jean Poupelain, Javrezac, France
- INRA-SupAgro, UMR AGAP, Montpellier, France
| | | | - Mary T. Kelly
- Laboratoire d’Oenologie, UMR1083, Faculté de Pharmacie, Montpellier, France
| | - Nathalie Luchaire
- INRA-SupAgro, UMR AGAP, Montpellier, France
- INRA, UMR LEPSE, Montpellier, France
| | | | - Jérôme Grimplet
- ICVV (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | | |
Collapse
|
39
|
Wu T, Shen Y, Zheng M, Yang C, Chen Y, Feng Z, Liu X, Liu S, Chen Z, Lei C, Wang J, Jiang L, Wan J. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. PLANT CELL REPORTS 2014; 33:235-44. [PMID: 24170341 DOI: 10.1007/s00299-013-1524-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/24/2013] [Accepted: 10/08/2013] [Indexed: 05/23/2023]
Abstract
Grain shape, a complex agronomic trait, plays an important role in determining yield and quality in rice. In the present study, a mutant named short grain length (sgl) was identified among explants of tissue cultured japonica variety Kita-ake. It exhibited reduced plant height (about 72 % of WT) and short grain length (about 80 % of WT). The reduced length was due to decreased cell elongation. The Short Grain Length (SGL) gene was isolated via map-based cloning and identified to encode a kinesin-like protein. SGL was expressed in the whole plant, especially in the stem and panicles. SGL was shown to have transcriptional activity. In onion epidermal cells, SGL protein was found mainly in the nucleus. Real-time PCR analyses showed that expression levels of genes involved in gibberellin metabolic pathways were affected in the sgl mutant. These data suggested that SGL protein may be involved in regulating GA synthesis and response genes, that in turn, regulates grain length and plant height.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Foissner I, Wasteneys GO. Characean internodal cells as a model system for the study of cell organization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:307-64. [PMID: 24952921 DOI: 10.1016/b978-0-12-800179-0.00006-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Giant internodal cells of characean green algae have been widely used for studying cellular physiology. This review emphasizes their significance for understanding cytoarchitecture and cytoplasmic reorganization. The cytoarchitecture of internodal cells undergoes pronounced, cytoskeleton-dependent changes during development and in response to environmental cues. Under bright light, internodes develop alternating bands of acid and alkaline pH at their surface that correlate with the differential size and abundance of cortical organelles and, in the genus Chara, with the size and distribution of convoluted plasma membrane domains known as charasomes. Wounding induces responses ranging from chloroplast detachment to deposition of wound walls. These properties and the possibility for mechanical manipulation make the internodal cell ideal for exploring plasma membrane domains, organelle interactions, vesicle trafficking, and local cell wall deposition. The significance of this model system will further increase with the application of molecular biological methods in combination with metabolomics and proteomics.
Collapse
Affiliation(s)
- Ilse Foissner
- Division of Plant Physiology, Department of Cell Biology, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
41
|
Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4541-57. [PMID: 24023249 PMCID: PMC3808332 DOI: 10.1093/jxb/ert269] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid cell division and expansion in early fruit development are important phases for cucumber fruit yield and quality. Kinesin proteins are microtubule-based motors responsible for modulating cell division and enlargement. In this work, the candidate kinesin genes involved in rapid cell division and expansion during cucumber fruit development were investigated. The morphological and cellular changes during early fruit development were compared in four cucumber genotypes with varied fruit size. The correlation between the expression profiles of cucumber kinesin genes and cellular changes in fruit was investigated. Finally, the biochemical characteristics and subcellular localizations of three candidate kinesins were studied. The results clarified the morphological and cellular changes during early cucumber fruit development. This study found that CsKF2-CsKF6 were positively correlated with rapid cell production; CsKF1 and CsKF7 showed a strongly positive correlation with rapid cell expansion. The results also indicated that CsKF1 localized to the plasma membrane of fast-expanding fruit cells, that CsKF2 might play a role in fruit chloroplast division, and that CsKF3 is involved in the function or formation of phragmoplasts in fruit telophase cells. The results strongly suggest that specific fruit-enriched kinesins are specialized in their functions in rapid cell division and expansion during cucumber fruit development.
Collapse
Affiliation(s)
- Xue Yong Yang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Yan Wang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Wei Jie Jiang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- To whom correspondence should be addressed. E-mail: or /
| | - Xiao Ling Liu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao Meng Zhang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Jun Yu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - San Wen Huang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guo Qin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Brandizzi F, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:339-49. [PMID: 23647215 DOI: 10.1111/tpj.12227] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 05/07/2023]
Abstract
Movement of secretory organelles is a fascinating yet largely mysterious feature of eukaryotic cells. Microtubule-based endomembrane and organelle motility utilizing the motor proteins dynein and kinesin is commonplace in animal cells. In contrast, it has been long accepted that intracellular motility in plant cells is predominantly driven by myosin motors dragging organelles and endomembrane-bounded cargo along actin filament bundles. Consistent with this, defects in the acto-myosin cytoskeleton compromise plant growth and development. Recent findings, however, challenge the actin-centric view of the motility of critical secretory organelles and distribution of associated protein machinery. In this review, we provide an overview of the current knowledge on actin-mediated organelle movement within the secretory pathway of plant cells, and report on recent and exciting findings that support a critical role of microtubules in plant cell development, in fine-tuning the positioning of Golgi stacks, as well as their involvement in cellulose synthesis and auxin polar transport. These emerging aspects of the biology of microtubules highlight adaptations of an ancestral machinery that plants have specifically evolved to support the functioning of the acto-myosin cytoskeleton, and mark new trends in our global appreciation of the complexity of organelle movement within the plant secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
43
|
McMichael CM, Bednarek SY. Cytoskeletal and membrane dynamics during higher plant cytokinesis. THE NEW PHYTOLOGIST 2013; 197:1039-1057. [PMID: 23343343 DOI: 10.1111/nph.12122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/02/2012] [Indexed: 05/08/2023]
Abstract
Following mitosis, cytoplasm, organelles and genetic material are partitioned into daughter cells through the process of cytokinesis. In somatic cells of higher plants, two cytoskeletal arrays, the preprophase band and the phragmoplast, facilitate the positioning and de novo assembly of the plant-specific cytokinetic organelle, the cell plate, which develops across the division plane and fuses with the parental plasma membrane to yield distinct new cells. The coordination of cytoskeletal and membrane dynamics required to initiate, assemble and shape the cell plate as it grows toward the mother cell cortex is dependent upon a large array of proteins, including molecular motors, membrane tethering, fusion and restructuring factors and biosynthetic, structural and regulatory elements. This review focuses on the temporal and molecular requirements of cytokinesis in somatic cells of higher plants gleaned from recent studies using cell biology, genetics, pharmacology and biochemistry.
Collapse
Affiliation(s)
- Colleen M McMichael
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| |
Collapse
|
44
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Nick P, Chong K. Why the taxpayer profits from plant cell biology--special issue "Applied Plant Cell Biology". PROTOPLASMA 2012; 249 Suppl 2:S77-S79. [PMID: 22688805 DOI: 10.1007/s00709-012-0424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
46
|
Cai G, Cresti M. Are kinesins required for organelle trafficking in plant cells? FRONTIERS IN PLANT SCIENCE 2012; 3:170. [PMID: 22837763 PMCID: PMC3402901 DOI: 10.3389/fpls.2012.00170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/09/2012] [Indexed: 05/02/2023]
Abstract
Plant cells exhibit active movement of membrane-bounded materials, which is more pronounced in large cells but is also appreciable in medium-sized cells and in tip-growing cells (such as pollen tubes and root hairs). Trafficking of organelles (such as Golgi bodies, endoplasmic reticulum, peroxisomes, and mitochondria) and vesicles is essential for plant cell physiology and allows a more or less homogeneous distribution of the cell content. It is well established that the long-range trafficking of organelles is dependent essentially on the network of actin filaments and is powered by the enzyme activity of myosins. However, some lines of evidence suggest that microtubules and members of the kinesin microtubule-based motor superfamily might have a role in the positioning and/or short-range movement of cell organelles and vesicles. Data collected in different cells (such as trichomes and pollen tubes), in specific stages of the plant cell life cycle (for example, during phragmoplast development) and for different organelle classes (mitochondria, Golgi bodies, and chloroplasts) encourage the hypothesis that microtubule-based motors might play subtle yet unclarified roles in organelle trafficking. In some cases, this function could be carried out in cooperation with actin filaments according to the model of "functional cooperation" by which motors of different families are associated with the organelle surface. Since available data did not provide an unambiguous conclusion with regard to the role of kinesins in organelle transport, here we want to debate such hypothesis.
Collapse
Affiliation(s)
- Giampiero Cai
- *Correspondence: Giampiero Cai, Dipartimento Scienze Ambientali, University of Siena, Via Mattioli 4, Siena 53100, Italy. e-mail:
| | | |
Collapse
|