1
|
Kinoshita-Terauchi N, Shiba K, Terauchi M, Noguchi H, Inaba K. Flagellar proteomic analysis of the brown alga Mutimo cylindricus revealed a novel calcium-binding protein abundantly localized in the anterior flagellum. Protist 2024; 175:126070. [PMID: 39499999 DOI: 10.1016/j.protis.2024.126070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 12/10/2024]
Abstract
Mutimo cylindricus gametes have two flagella with different structures : an anterior and a posterior flagellum. Their flagellar waveforms are regulated by calcium ions through various mechanisms, however the factors involved in this regulation remain largely unknown To elucidate the molecular basis underlying the difference between the two flagella, we performed a flagellar proteomic analysis of male M. cylindricus gametes. We identified 848 proteins shared with Ectocarpus siliculosus, including 28 calcium-binding proteins. Among the EF-hand proteins, a 111 kDa protein showed predominant localization along the anterior flagellum. Immunogold localization suggested that this protein is associated with outer doublet microtubules. This is the first report to show heterogeneous localization of a calcium-binding protein between two flagellar axonemes and suggests that calcium-binding proteins are involved in the specific regulation of the anterior flagellum.
Collapse
Affiliation(s)
- Nana Kinoshita-Terauchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
2
|
Kasteel M, Rajamuthu TP, Sprakel J, Ketelaar T, Govers F. Phytophthora zoospores display klinokinetic behaviour in response to a chemoattractant. PLoS Pathog 2024; 20:e1012577. [PMID: 39348406 PMCID: PMC11554144 DOI: 10.1371/journal.ppat.1012577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/11/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Microswimmers are single-celled bodies powered by flagella. Typical examples are zoospores, dispersal agents of oomycete plant pathogens that are used to track down hosts and infect. Being motile, zoospores presumably identify infection sites using chemical cues such as sugars, alcohols and amino acids. With high-speed cameras we traced swimming trajectories of Phytophthora zoospores over time and quantified key trajectory parameters to investigate chemotactic responses. Zoospores adapt their native run-and-tumble swimming patterns in response to the amino acid glutamic acid by increasing the rate at which they turn. Simulations predict that tuneable tumble frequencies are sufficient to explain zoospore aggregation, implying positive klinokinesis. Zoospores thus exploit a retention strategy to remain at the plant surface once arriving there. Interference of G-protein mediated signalling affects swimming behaviour. Zoospores of a Phytophthora infestans G⍺-deficient mutant show higher tumbling frequencies but still respond and adapt to glutamic acid, suggesting chemoreception to be intact.
Collapse
Affiliation(s)
- Michiel Kasteel
- Laboratory of Cell and Developmental Biology, Wageningen University & Research, Wageningen, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, the Netherlands
| | - Tharun P. Rajamuthu
- Laboratory of Cell and Developmental Biology, Wageningen University & Research, Wageningen, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell and Developmental Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Kage A, Takahashi K, Nozaki H, Higashiyama T, Baba SA, Nishizaka T. Swimming ability and flagellar motility of sperm packets of the volvocine green alga Pleodorina starrii. PLoS One 2024; 19:e0287561. [PMID: 39024288 PMCID: PMC11257277 DOI: 10.1371/journal.pone.0287561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Eukaryotic flagella collectively form metachronal waves that facilitate the ability to cause flow or swim. Among such flagellated and planktonic swimmers, large volvocine genera such as Eudorina, Pleodorina and Volvox form bundles of small male gametes (sperm) called "sperm packets" for sexual reproduction. Although these sperm packets reportedly have flagella and the ability to swim, previous studies on volvocine motility have focused on asexual forms and the swimming characteristics of sperm packets remain unknown. However, it is important to quantify the motility of sperm packets and sperm in order to gain insights into the significance of motility in the sexual reproduction of planktonic algae. In this study, we quantitatively described the behavior of three flagellated forms of a male strain of Pleodorina starrii-asexual colonies, sperm packets, and single dissociated sperm-with emphasis on comparison of the two multicellular forms. Despite being smaller, sperm packets swam approximately 1.4 times faster than the asexual colonies of the same male strain. Body length was approximately 0.5 times smaller in the sperm packets than in asexual colonies. The flagella from sperm packets and asexual colonies showed asymmetric waveforms, whereas those from dissociated single sperm showed symmetric waveforms, suggesting the presence of a switching mechanism between sperm packets and dissociated sperm. Flagella from sperm packets were approximately 0.5 times shorter and had a beat period approximately twice as long as those from asexual colonies. The flagella of sperm packets were densely distributed over the anterior part of the body, whereas the flagella of asexual colonies were sparse and evenly distributed. The distribution of flagella, but not the number of flagella, appear to illustrate a significant difference in the speeds of sperm packets and asexual colonies. Our findings reveal novel aspects of the regulation of eukaryotic flagella and shed light on the role of flagellar motility in sexual reproduction of planktonic algae.
Collapse
Affiliation(s)
- Azusa Kage
- Department of Physics, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Kohei Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoji A. Baba
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
4
|
Cimini J, Asnaghi V, Chiantore M, Kaleb S, Onida A, Falace A. Can thermal anomalies impair the restoration of Cystoseira s.l. forests? MARINE ENVIRONMENTAL RESEARCH 2024; 198:106537. [PMID: 38728798 DOI: 10.1016/j.marenvres.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Marine macroalgal forests are facing unprecedented challenges worldwide due to the accelerating impacts of climate change. These ecosystems play a crucial role in supporting biodiversity, coastal ecosystem functions and services, and are indeed object of several conservation and restoration measures. The Mediterranean Sea is warming faster than the oceans and thermal anomalies are occurring with increasing intensity, frequency and duration. Along the Mediterranean coasts, Cystoseira sensu lato species are the main representatives of macroalgal forests and their decline has been widely documented. Some relevant achievements in the implementation of ecological restoration have been obtained, but rising temperatures and the occurrence of thermal anomalies increasingly threaten the success of these restoration attempts. In the summer of 2022, ex-situ restoration actions of Ericaria amentacea were carried out by collecting fertile material from three donor sites of the Italian coasts along a latitudinal gradient, during the period of sexual maturity (June/July). Noteworthy during the summer of 2022, anomalous thermal conditions were recorded at the donor sites, with sea surface temperatures exceeding the climatological mean up to 4.3 °C and heatwaves lasting up to 78 days. Our results suggest that these thermal anomalies may have affected the culture of the embryos in both the pre- and post-zygotic phases, resulting in significantly low culture efficiency at the three donor sites. The reproductive structures showed some abnormalities, fertilization of eggs was lower and embryo growth was slower, resulting in lower percent cover of seedlings on the tiles and lower survival rate. The observations underscore the vulnerability of Mediterranean algal forests to global change and highlight additional challenges for their restoration due to the increasing frequency and severity of thermal anomalies, emphasizing the need for adaptive strategies and a comprehensive understanding of the species in a changing climate. Marine forest restoration requires long lasting projects, to allow for long-term monitoring and better understanding the biology of the species and for mitigating stochastic events that can cause the temporary failure of efforts.
Collapse
Affiliation(s)
- Jacopo Cimini
- Department of Earth, Environment and Life Science, University of Genoa, Genoa, Italy
| | - Valentina Asnaghi
- Department of Earth, Environment and Life Science, University of Genoa, Genoa, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Science, University of Genoa, Genoa, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Sara Kaleb
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandra Onida
- Department of Earth, Environment and Life Science, University of Genoa, Genoa, Italy
| | - Annalisa Falace
- Department of Life Sciences, University of Trieste, Trieste, Italy; National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| |
Collapse
|
5
|
Gonzalez ST, Alberto F, Molano G. Whole-genome sequencing distinguishes the two most common giant kelp ecomorphs. Evolution 2023; 77:1354-1369. [PMID: 36929706 DOI: 10.1093/evolut/qpad045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 03/18/2023]
Abstract
Giant kelp, Macrocystis pyrifera, exists as distinct morphological variants-or "ecomorphs"-in different populations, yet the mechanism for this variation is uncertain, and environmental drivers for either adaptive or plastic phenotypes have not been identified. The ecomorphs Macrocystis "pyrifera" and M. "integrifolia" are distributed throughout temperate waters of North and South America with almost no geographic overlap and exhibit an incongruous, non-mirrored, distribution across the equator. This study evaluates the degree of genetic divergence between M. "pyrifera" and M. "integrifolia" across 18 populations in Chile and California using whole-genome sequencing and single-nucleotide polymorphism markers. Our results based on a principal component analysis, admixture clustering by genetic similarity, and phylogenetic inference demonstrate that M. "pyrifera" and M. "integrifolia" are genetically distinguishable. Analyses reveal separation by Northern and Southern Hemispheres and between morphs within hemispheres, suggesting that the convergent "integrifolia" morphology arose separately in each hemisphere. This is the first study to use whole-genome sequencing to understand genetic divergence in giant kelp ecomorphs, identifying 83 potential genes under selection and providing novel insights about Macrocystis evolution that were not evident with previous genetic techniques. Future studies are needed to uncover the environmental forces driving local adaptation and presumed convergent evolution of these morphs.
Collapse
Affiliation(s)
- Sara T Gonzalez
- Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, Santa Cruz, CA, United States
| | - Filipe Alberto
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Gary Molano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Constable GWA, Kokko H. Parthenogenesis and the Evolution of Anisogamy. Cells 2021; 10:2467. [PMID: 34572116 PMCID: PMC8467976 DOI: 10.3390/cells10092467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, it was pointed out that classic models for the evolution of anisogamy do not take into account the possibility of parthenogenetic reproduction, even though sex is facultative in many relevant taxa (e.g., algae) that harbour both anisogamous and isogamous species. Here, we complement this recent analysis with an approach where we assume that the relationship between progeny size and its survival may differ between parthenogenetically and sexually produced progeny, favouring either the former or the latter. We show that previous findings that parthenogenesis can stabilise isogamy relative to the obligate sex case, extend to our scenarios. We additionally investigate two different ways for one mating type to take over the entire population. First, parthenogenesis can lead to biased sex ratios that are sufficiently extreme that one type can displace the other, leading to de facto asexuality for the remaining type that now lacks partners to fuse with. This process involves positive feedback: microgametes, being numerous, lack opportunities for syngamy, and should they proliferate parthenogenetically, the next generation makes this asexual route even more prominent for microgametes. Second, we consider mutations to strict asexuality in producers of micro- or macrogametes, and show that the prospects of asexual invasion depend strongly on the mating type in which the mutation arises. Perhaps most interestingly, we also find scenarios in which parthenogens have an intrinsic survival advantage yet facultatively sexual isogamous populations are robust to the invasion of asexuals, despite us assuming no genetic benefits of recombination. Here, equal contribution from both mating types to zygotes that are sufficiently well provisioned can outweigh the additional costs associated with syngamy.
Collapse
Affiliation(s)
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
7
|
Zhang J, Li Y, Luo S, Cao M, Zhang L, Li X. Differential gene expression patterns during gametophyte development provide insights into sex differentiation in the dioicous kelp Saccharina japonica. BMC PLANT BIOLOGY 2021; 21:335. [PMID: 34261451 PMCID: PMC8278619 DOI: 10.1186/s12870-021-03117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In brown algae, dioicy is the prevalent sexual system, and phenotypic differences between male and female gametophytes have been found in many dioicous species. Saccharina japonica show remarkable sexual dimorphism in gametophytes before gametogenesis. A higher level of phenotypic differentiation was also found in female and male gametes after gametogenesis. However, the patterns of differential gene expression throughout gametophyte development and how these changes might relate to sex-specific fitness at the gamete stage in S. japonica are not well known. RESULTS In this study, differences in gene expression between male and female gametophytes in different developmental stages were investigated using comparative transcriptome analysis. Among the 20,151 genes expressed in the haploid gametophyte generation, 37.53% were sex-biased. The abundance of sex-biased genes in mature gametophytes was much higher than that in immature gametophytes, and more male-biased than female-biased genes were observed in the mature stage. The predicted functions of most sex-biased genes were closely related to the sex-specific characteristics of gametes, including cell wall biosynthesis, sperm motility, and sperm and egg recognition. In addition, 51 genes were specifically expressed in males in both stages, showing great potential as candidate male sex-determining region (SDR) genes. CONCLUSIONS This study describes a thorough investigation into differential gene expression between male and female gametophytes in the dioicous kelp S. japonica. A large number of sex-biased genes in mature gametophytes may be associated with the divergence of phenotypic traits and physiological functions between female gametes (eggs) and male gametes (sperm) during sexual differentiation. These genes may mainly come from new sex-biased genes that have recently evolved in the S. japonica lineage. The duplication of sex-biased genes was detected, which may increase the number of sex-biased genes after gametogenesis in S. japonica to some extent. The excess of male-biased genes over female-biased genes in the mature stage may reflect the different levels of sexual selection across sexes. This study deepens our understanding of the regulation of sex development and differentiation in the dioicous kelp S. japonica.
Collapse
Affiliation(s)
- Jiaxun Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Shiju Luo
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xiaojie Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| |
Collapse
|
8
|
Kinoshita-Terauchi N, Shiba K, Terauchi M, Romero F, Ramírez-Gómez HV, Yoshida M, Motomura T, Kawai H, Nishigaki T. High potassium seawater inhibits ascidian sperm chemotaxis, but does not affect the male gamete chemotaxis of a brown alga. ZYGOTE 2019; 27:225-231. [PMID: 31317854 DOI: 10.1017/s0967199419000224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Male gamete chemotaxis towards the female gamete is a general strategy to facilitate the sexual reproduction in many marine eukaryotes. Biochemical studies of chemoattractants for male gametes of brown algae have advanced in the 1970s and 1980s, but the molecular mechanism of male gamete responses to the attractants remains elusive. In sea urchin, a K+ channel called the tetraKCNG channel plays a fundamental role in sperm chemotaxis and inhibition of K+ efflux through this channel by high K+ seawater blocks almost all cell responses to the chemoattractant. This signalling mechanism could be conserved in marine invertebrates as tetraKCNG channels are conserved in the marine invertebrates that exhibit sperm chemotaxis. We confirmed that high K+ seawater also inhibited sperm chemotaxis in ascidian, Ciona intestinalis (robusta), in this study. Conversely, the male gamete chemotaxis towards the female gamete of a brown alga, Mutimo cylindricus, was preserved even in high K+ seawater. This result indicates that none of the K+ channels is essential for male gamete chemotaxis in the brown alga, suggesting that the signalling mechanism for chemotaxis in this brown alga is quite different from that of marine invertebrates. Correlated to this result, we revealed that the channels previously proposed as homologues of tetraKCNG in brown algae have a distinct domain composition from that of the tetraKCNG. Namely, one of them possesses two repeats of the six transmembrane segments (diKCNG) instead of four. The structural analysis suggests that diKCNG is a cyclic nucleotide-modulated and/or voltage-gated K+ channel.
Collapse
Affiliation(s)
- Nana Kinoshita-Terauchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda City, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda City, Shizuoka 415-0025, Japan
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Makoto Terauchi
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Francisco Romero
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Héctor Vincente Ramírez-Gómez
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
| | - Takuya Nishigaki
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| |
Collapse
|
9
|
Kinoshita-Terauchi N, Shiba K, Umezawa T, Matsuda F, Motomura T, Inaba K. A brown algal sex pheromone reverses the sign of phototaxis by cAMP/Ca 2+-dependent signaling in the male gametes of Mutimo cylindricus (Cutleriaceae). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 192:113-123. [PMID: 30731425 DOI: 10.1016/j.jphotobiol.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 11/29/2022]
Abstract
Male gametes of the brown alga Mutimo cylindricus show positive phototaxis soon after spawning in seawater but gradually change the sign of phototaxis with time. This conversion appears to need the decrease of intracellular Ca2+ concentration. In this study, we revealed that the conversion of male gamete phototactic sign, positive to negative, was accelerated by mixing with female gametes. The supernatant after the centrifugation of female gamete suspension showed the same activity to change the phototactic sign, suggesting that a factor released from female gametes was responsible for the reaction. A known brown algal sex pheromone, ectocarpene, induced chemotaxis of male gametes of M. cylindricus. The addition of this compound induced the change of phototactic sign, clearly indicating that a sex pheromone is essential for the reversal. An inhibitor of phosphodiesterase, theophylline, inhibited the chemotaxis and phototactic sign reversion by a factor released from female gametes and ectocarpene. Measurements of cyclic nucleotides showed that the increase in intracellular concentration of cAMP, not cGMP, was parallel to the change of phototactic sign. The inhibition of phototactic sign by theophylline was not observed in low Ca2+ sea water. These results suggest that a signaling pathway mediated by cAMP and Ca2+ concentrations drives the interconversion between two important behaviors of male gametes, phototaxis and chemotaxis.
Collapse
Affiliation(s)
- Nana Kinoshita-Terauchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan..
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Taiki Umezawa
- Graduate School of Environmental Science, Hokkaido University, N10E5, Sapporo, Hokkaido 060-0810, Japan
| | - Fuyuhiko Matsuda
- Graduate School of Environmental Science, Hokkaido University, N10E5, Sapporo, Hokkaido 060-0810, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, 1-133-31, Funami-cho, Muroran, Hokkaido 051-0013, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
10
|
Iida T, Iwata Y, Mohri T, Baba SA, Hirohashi N. A coordinated sequence of distinct flagellar waveforms enables a sharp flagellar turn mediated by squid sperm pH-taxis. Sci Rep 2017; 7:12938. [PMID: 29021593 PMCID: PMC5636881 DOI: 10.1038/s41598-017-13406-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
Animal spermatozoa navigate by sensing ambient chemicals to reach the site of fertilization. Generally, such chemicals derive from the female reproductive organs or cells. Exceptionally, squid spermatozoa mutually release and perceive carbon dioxide to form clusters after ejaculation. We previously identified the pH-taxis by which each spermatozoon can execute a sharp turn, but how flagellar dynamics enable this movement remains unknown. Here, we show that initiation of the turn motion requires a swim down a steep proton gradient (a theoretical estimation of ≥0.025 pH/s), crossing a threshold pH value of ~5.5. Time-resolved kinematic analysis revealed that the turn sequence results from the rhythmic exercise of two flagellar motions: a stereotypical flagellar ‘bent-cane’ shape followed by asymmetric wave propagation, which enables a sharp turn in the realm of low Reynolds numbers. This turning episode is terminated by an ‘overshoot’ trajectory that differs from either straight-line motility or turning. As with bidirectional pH-taxes in some bacteria, squid spermatozoa also showed repulsion from strong acid conditions with similar flagellar kinematics as in positive pH-taxis. These findings indicate that squid spermatozoa might have a unique reorientation mechanism, which could be dissimilar to that of classical egg-guided sperm chemotaxis in other marine invertebrates.
Collapse
Affiliation(s)
- Tomohiro Iida
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan
| | - Yoko Iwata
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Tatsuma Mohri
- Section of Individual Researches, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho Okazaki, 444-8787, Japan
| | - Shoji A Baba
- Ochanomizu University, 2-2-1 Otsuka, Tokyo, 112-8610, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan.
| |
Collapse
|
11
|
Kinoshita N, Nagasato C, Motomura T. Calcium Control of the Sign of Phototaxis in Brown Algal Gametes of Mutimo cylindricus. Photochem Photobiol 2017; 93:1216-1223. [PMID: 28295378 DOI: 10.1111/php.12748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 11/26/2022]
Abstract
Brown algal swarmers usually exhibit positive or negative phototaxis. Such behaviors influence the increasing or decreasing dispersal distance or colonization on the new substratum. We confirmed that the sign of phototaxis (negative or positive) in male gametes of Mutimo cylindricus was affected by extracellular Ca2+ influx through Ca2+ channels. Under the control condition (10-2 m [Ca2+ ]), male gametes swimming with a helical rotation of their cell body mostly showed positive phototaxis. At 10-3 m [Ca2+ ], more than half of the male gametes showed positive phototaxis, whereas the others showed negative phototaxis. From 10-4 -10-5 m [Ca2+ ], the phototactic sign changed to negative. When these negative phototactic gametes were transferred back to the control condition, the phototactic sign reverted to positive. At 10-6 m [Ca2+ ], some of male gametes showed negative phototaxis, but most showed no phototaxis or flagellar beating. Lanthanum, a Ca2+ channel blocker, affected the sign of phototaxis at 10-4 m [La3+ ] under 10-2 m [Ca2+ ], and male gametes mostly showed negative phototaxis. A further increase in [La3+ ] inhibited phototaxis and flagellar beating. These results pointed out the involvement of Ca2+ channels that were blocked by La3+ in phototaxis and flagellar beating.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, Japan
| |
Collapse
|
12
|
Alvarez L. The tailored sperm cell. JOURNAL OF PLANT RESEARCH 2017; 130:455-464. [PMID: 28357612 PMCID: PMC5406480 DOI: 10.1007/s10265-017-0936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 05/28/2023]
Abstract
Sperm are ubiquitous and yet unique. Genes involved in sexual reproduction are more divergent than most genes expressed in non-reproductive tissues. It has been argued that sperm have been altered during evolution more than any somatic cell. Profound variations are found at the level of morphology, motility, search strategy for the egg, and the underlying signalling mechanisms. Sperm evolutionary adaptation may have arisen from sperm competition (sperm from rival males compete within the female's body to fertilize eggs), cryptic female choice (the female's ability to choose among different stored sperm), social cues tuning sperm quality or from the site of fertilization (internal vs. external fertilization), to name a few. Unquestionably, sperm represent an invaluable source for the exploration of biological diversity at the level of signalling, motility, and evolution. Despite the richness in sperm variations, only a few model systems for signalling and motility have been studied in detail. Using fast kinetic techniques, electrophysiological recordings, and optogenetics, the molecular players and the sequence of signalling events of sperm from a few marine invertebrates, mammals, and fish are being elucidated. Furthermore, recent technological advances allow studying sperm motility with unprecedented precision; these studies provide new insights into flagellar motility and navigation in three dimensions (3D). The scope of this review is to highlight variations in motile sperm across species, and discuss the great promise that 3D imaging techniques offer into unravelling sperm mysteries.
Collapse
Affiliation(s)
- Luis Alvarez
- Center of Advanced European Studies and Research (caesar). Institute affiliated with the Max Planck Society, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
13
|
Kinoshita N, Nagasato C, Motomura T. Phototaxis and chemotaxis of brown algal swarmers. JOURNAL OF PLANT RESEARCH 2017; 130:443-453. [PMID: 28271338 DOI: 10.1007/s10265-017-0914-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Brown algae exhibit three patterns of sexual reproduction: isogamy, anisogamy, and oogamy. Unicellular swarmers including gametes and zoospores bear two heterogenous flagella, an anterior flagellum with mastigonemes (fine tripartite hairs) and a posterior one. In seawater, these flagellates usually receive physico-chemical signals for finding partners and good habitats. It is well known that brown algal swarmers change their swimming direction depending on blue light (phototaxis), and male gametes do so, based on the sex pheromones from female gametes (chemotaxis). In recent years, the comparative analysis of chemotaxis in isogamy, anisogamy, and oogamy has been conducted. In this paper, we focused on the phototaxis and chemotaxis of brown algal gametes comparing the current knowledge with our recent studies.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, 051-0013, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, 051-0013, Japan.
| |
Collapse
|