1
|
Alibardi L. Keratinization and cornification of avian skin appendages during development. Insights from immunolabeling and electron microscopic studies. Dev Biol 2025; 522:196-219. [PMID: 40154782 DOI: 10.1016/j.ydbio.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
The basal cytoskeleton of avian keratinocytes consists in a number of Intermediate Filament Keratins (IFKs, also indicated as alpha-keratins), poor (soft) or rich (hard) in cysteine. In keratinocytes of developing skin appendages Corneous Beta Proteins (CBPs, formerly termed beta-keratins), build most of the corneous material of developing scutate scales, claws, beak and feathers. CBPs derive from a gene locus termed Epidermal Differentiation Complex (EDC), unrelated to genes for IFKs. CBPs and IFKs belong to two different gene families that evolved independently during the evolution of birds. The evolution of feathers derived from the initial morphogenesis of barb ridges containing specialized proteins. During feather development, the framework of IFKs that combine with CBPs in differentiating keratinocytes, barb and barbule cells, give rise to resistant but flexible corneocytes in feathers and hard corneocytes in scales, claws and beaks. Here, we mainly deal with avian IFKs that are accumulated during the development of skin derivatives of birds, especially downfeathers. The latter are corneous appendages and, when mature, are composed from a prevalent mass of feather-CBPs (fCBPs, formerly indicated as feather beta-keratins). During development fCBPs are deposited over a IFKs cytoskeleton formed in barb and barbule cells, and these small beta-proteins rapidly overcame in amount IFKs, generating the corneous barbs and barbules of downfeathers. This process likely occurs through electrostatic interactions between acidic IFKs and basic CBPs, and later by the formation of covalent bonds (-S-S- and epsilon-bonds). Proteome and molecular studies have sequenced most of IFKs and CBPs of feathers in some species of birds. Most of the proteins extracted from feathers are fCBPs, while a lower amount is constituted from IFKs and other minor proteins.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Dept Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
2
|
Holthaus KB, Steinbinder J, Sachslehner AP, Eckhart L. Skin Appendage Proteins of Tetrapods: Building Blocks of Claws, Feathers, Hair and Other Cornified Epithelial Structures. Animals (Basel) 2025; 15:457. [PMID: 39943227 PMCID: PMC11816140 DOI: 10.3390/ani15030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Reptiles, birds, mammals and amphibians, together forming the clade tetrapods, have a large diversity of cornified skin appendages, such as scales, feathers, hair and claws. The skin appendages consist of dead epithelial cells that are tightly packed with specific structural proteins. Here, we review the molecular diversity and expression patterns of major types of skin appendage proteins, namely keratin intermediate filament proteins, keratin-associated proteins (KRTAPs) and proteins encoded by genes of the epidermal differentiation complex (EDC), including corneous beta-proteins, also known as beta-keratins. We summarize the current knowledge about the components of skin appendages with a focus on keratins and EDC proteins that have recently been identified in reptiles and birds. We discuss gaps of knowledge and suggest directions of future research.
Collapse
Affiliation(s)
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.H.)
| |
Collapse
|
3
|
Holthaus KB, Steinbinder J, Sachslehner AP, Eckhart L. Convergent Evolution Has Led to the Loss of Claw Proteins in Snakes and Worm Lizards. Genome Biol Evol 2025; 17:evae274. [PMID: 39696999 PMCID: PMC11704414 DOI: 10.1093/gbe/evae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
The evolution of cornified skin appendages, such as hair, feathers, and claws, is closely linked to the evolution of proteins that establish the unique mechanical stability of these epithelial structures. We hypothesized that the evolution of the limbless body anatomy of the Florida worm lizard (Rhineura floridana) and the concomitant loss of claws had led to the degeneration of genes with claw-associated functions. To test this hypothesis, we investigated the evolution of three gene families implicated in epithelial cell architecture, namely type I keratins, type II keratins, and genes of the epidermal differentiation complex in R. floridana in comparison with other squamates. We report that the orthologs of mammalian hair and nail keratins have undergone pseudogenization in R. floridana. Likewise, the epidermal differentiation complex genes tentatively named EDYM1 and EDCCs have been lost in R. floridana. The aforementioned genes are conserved in various lizards with claws, but not in snakes. Proteomic analysis of the cornified claws of the bearded dragon (Pogona vitticeps) confirmed that type I and type II hair keratin homologs, EDYM1 and EDCCs, are protein components of claws in squamates. We conclude that the convergent evolution of a limbless body was associated with the convergent loss of claw keratins and differentiation genes in squamates.
Collapse
Affiliation(s)
| | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
4
|
Eckhart L, Holthaus KB, Sachslehner AP. Cell differentiation in the embryonic periderm and in scaffolding epithelia of skin appendages. Dev Biol 2024; 515:60-66. [PMID: 38964706 DOI: 10.1016/j.ydbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Terminal differentiation of epithelial cells is critical for the barrier function of the skin, the growth of skin appendages, such as hair and nails, and the development of the skin of amniotes. Here, we present the hypothesis that the differentiation of cells in the embryonic periderm shares characteristic features with the differentiation of epithelial cells that support the morphogenesis of cornified skin appendages during postnatal life. The periderm prevents aberrant fusion of adjacent epithelial sites during early skin development. It is shed off when keratinocytes of the epidermis form the cornified layer, the stratum corneum. A similar role is played by epithelia that ensheath cornifying skin appendages until they disintegrate to allow the separation of the mature part of the skin appendage from the adjacent tissue. These epithelia, exemplified by the inner root sheath of hair follicles and the epithelia close to the free edge of nails or claws, are referred to as scaffolding epithelia. The periderm and scaffolding epithelia are similar with regard to their transient functions in separating tissues and the conserved expression of trichohyalin and trichohyalin-like genes in mammals and birds. Thus, we propose that parts of the peridermal differentiation program were coopted to a new postnatal function during the evolution of cornified skin appendages in amniotes.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
5
|
Holthaus KB, Eckhart L. Development-Associated Genes of the Epidermal Differentiation Complex (EDC). J Dev Biol 2024; 12:4. [PMID: 38248869 PMCID: PMC10801484 DOI: 10.3390/jdb12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the periderm. An additional layer, the subperiderm, develops in crocodilians and over scutate scales of birds. Here, we review the expression of EDC genes during embryonic development. Several EDC genes are expressed predominantly or exclusively in embryo-specific cell layers, whereas others are confined to the epidermal layers that are maintained in postnatal skin. The S100 fused-type proteins scaffoldin and trichohyalin are expressed in the avian and mammalian periderm, respectively. Scaffoldin forms the so-called periderm granules, which are histological markers of the periderm in birds. Epidermal differentiation cysteine-rich protein (EDCRP) and epidermal differentiation protein containing DPCC motifs (EDDM) are expressed in the avian subperiderm where they are supposed to undergo cross-linking via disulfide bonds. Furthermore, a histidine-rich epidermal differentiation protein and feather-type corneous beta-proteins, also known as beta-keratins, are expressed in the subperiderm. The accumulating evidence for roles of EDC genes in the development of the epidermis has implications on the evolutionary diversification of the skin in amniotes.
Collapse
Affiliation(s)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Wang J, Wei W, Xing C, Wang H, Liu M, Xu J, He X, Liu Y, Guo X, Jiang R. Transcriptome and Weighted Gene Co-Expression Network Analysis for Feather Follicle Density in a Chinese Indigenous Breed. Animals (Basel) 2024; 14:173. [PMID: 38200904 PMCID: PMC10778273 DOI: 10.3390/ani14010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Feather follicle density plays an important role in appealing to consumers' first impressions when making purchasing decisions. However, the molecular network that contributes to this trait remains largely unknown. The aim of this study was to perform transcriptome and weighted gene co-expression network analyses to determine the candidate genes relating to feather follicle density in Wannan male chickens. In total, five hundred one-day-old Wannan male chickens were kept in a conventional cage system. Feather follicle density was recorded for each bird at 12 weeks of age. At 12 weeks, fifteen skin tissue samples were selected for weighted gene co-expression network analysis, of which six skin tissue samples (three birds in the H group and three birds in the L group) were selected for transcriptome analysis. The results showed that, in total, 95 DEGs were identified, and 56 genes were upregulated and 39 genes were downregulated in the high-feather-follicle-density group when compared with the low-feather-follicle-density group. Thirteen co-expression gene modules were identified. The red module was highly significantly negatively correlated with feather follicle density (p < 0.01), with a significant negative correlation coefficient of -0.72. In total, 103 hub genes from the red module were screened. Upon comparing the 103 hub genes with differentially expressed genes (DEGs), it was observed that 13 genes were common to both sets, including MELK, GTSE1, CDK1, HMMR, and CENPE. From the red module, FOXM1, GTSE1, MELK, CDK1, ECT2, and NEK2 were selected as the most important genes. These genes were enriched in the DNA binding pathway, the heterocyclic compound binding pathway, the cell cycle pathway, and the oocyte meiosis pathway. This study suggests that FOXM1, GTSE1, MELK, CDK1, ECT2, and NEK2 may be involved in regulating the development of feather follicle density in Wannan male chickens. The results of this study reveal the genetic structure and molecular regulatory network of feather follicle density in Wannan male chickens, and provide a basis for further elucidating the genetic regulatory mechanism and identifying molecular markers with breeding value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.W.); (W.W.); (C.X.); (H.W.); (M.L.); (J.X.); (X.H.); (Y.L.); (X.G.)
| |
Collapse
|
7
|
Establishment of a culture model for the prolonged maintenance of chicken feather follicles structure in vitro. PLoS One 2022; 17:e0271448. [PMID: 36206252 PMCID: PMC9544018 DOI: 10.1371/journal.pone.0271448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/30/2022] [Indexed: 11/05/2022] Open
Abstract
Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation. The integrity of the FF wall epithelium was confirmed by transmission electron microscopy at Day 5 and 7 of culture. A slight elongation of the feathers was detected up to 5 days for 75% of the examined feathers. By immunochemistry, we demonstrated the maintenance of expression and localization of two structural proteins: scaffoldin and fibronectin. Gene expression (assessed by qRT-PCR) of NCAM, LCAM, Wnt6, Notch1, and BMP4 was not altered. In contrast, Shh and HBS1 expression collapsed, DKK3 increased, and KRT14 transiently increased upon cultivation. This indicates that cultivation modifies the mRNA expression of a few genes, possibly due to reduced growth or cell differentiation in the feather, notably in the barb ridges. In conclusion, we have developed the first method that allows the culture and maintenance of chicken FF in vitro that preserves the structure and biology of the FF close to its in vivo state, despite transcriptional modifications of a few genes involved in feather development. This new culture model may serve to study feather interactions with pathogens or toxics and constitutes a way to reduce animal experimentation.
Collapse
|
8
|
Sachslehner AP, Eckhart L. Evolutionary diversification of epidermal barrier genes in amphibians. Sci Rep 2022; 12:13634. [PMID: 35948609 PMCID: PMC9365767 DOI: 10.1038/s41598-022-18053-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes encoding components of the skin barrier in terrestrial vertebrates. EDC genes can be categorized as S100 fused-type protein (SFTP) genes such as filaggrin, which contain two coding exons, and single-coding-exon EDC (SEDC) genes such as loricrin. SFTPs are known to be present in amniotes (mammals, reptiles and birds) and amphibians, whereas SEDCs have not yet been reported in amphibians. Here, we show that caecilians (Amphibia: Gymnophiona) have both SFTP and SEDC genes. Two to four SEDC genes were identified in the genomes of Rhinatrema bivittatum, Microcaecilia unicolor and Geotrypetes seraphini. Comparative analysis of tissue transcriptomes indicated predominant expression of SEDC genes in the skin of caecilians. The proteins encoded by caecilian SEDC genes resemble human SEDC proteins, such as involucrin and small proline-rich proteins, with regard to low sequence complexity and high contents of proline, glutamine and lysine. Our data reveal diversification of EDC genes in amphibians and suggest that SEDC-type skin barrier genes have originated either in a common ancestor of tetrapods followed by loss in Batrachia (frogs and salamanders) or, by convergent evolution, in caecilians and amniotes.
Collapse
Affiliation(s)
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Lachner J, Ehrlich F, Wielscher M, Farlik M, Hermann M, Tschachler E, Eckhart L. Single-cell transcriptomics defines keratinocyte differentiation in avian scutate scales. Sci Rep 2022; 12:126. [PMID: 34997067 PMCID: PMC8742010 DOI: 10.1038/s41598-021-04082-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.
Collapse
Affiliation(s)
- Julia Lachner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Sachslehner AP, Surbek M, Lachner J, Paudel S, Eckhart L. Identification of Chicken Transglutaminase 1 and In Situ Localization of Transglutaminase Activity in Avian Skin and Esophagus. Genes (Basel) 2021; 12:1565. [PMID: 34680960 PMCID: PMC8535770 DOI: 10.3390/genes12101565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Transglutaminase 1 (TGM1) is a membrane-anchored enzyme that cross-links proteins during terminal differentiation of epidermal and esophageal keratinocytes in mammals. The current genome assembly of the chicken, which is a major model for avian skin biology, does not include an annotated region corresponding to TGM1. To close this gap of knowledge about the genetic control of avian cornification, we analyzed RNA-sequencing reads from organotypic chicken skin and identified TGM1 mRNA. By RT-PCR, we demonstrated that TGM1 is expressed in the skin and esophagus of chickens. The cysteine-rich sequence motif required for palmitoylation and membrane anchorage is conserved in the chicken TGM1 protein, and differentiated chicken keratinocytes display membrane-associated transglutaminase activity. Expression of TGM1 and prominent transglutaminase activity in the esophageal epithelium was also demonstrated in the zebra finch. Altogether, the results of this study indicate that TGM1 is conserved among birds and suggest that chicken keratinocytes may be a useful model for the study of TGM1 in non-mammalian cornification.
Collapse
Affiliation(s)
- Attila Placido Sachslehner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.S.); (M.S.); (J.L.)
| | - Marta Surbek
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.S.); (M.S.); (J.L.)
| | - Julia Lachner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.S.); (M.S.); (J.L.)
| | - Surya Paudel
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.S.); (M.S.); (J.L.)
| |
Collapse
|
11
|
Lin GW, Lai YC, Liang YC, Widelitz RB, Wu P, Chuong CM. Regional Specific Differentiation of Integumentary Organs: Regulation of Gene Clusters within the Avian Epidermal Differentiation Complex and Impacts of SATB2 Overexpression. Genes (Basel) 2021; 12:genes12081291. [PMID: 34440465 PMCID: PMC8394334 DOI: 10.3390/genes12081291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The epidermal differentiation complex (EDC) encodes a group of unique proteins expressed in late epidermal differentiation. The EDC gave integuments new physicochemical properties and is critical in evolution. Recently, we showed β-keratins, members of the EDC, undergo gene cluster switching with overexpression of SATB2 (Special AT-rich binding protein-2), considered a chromatin regulator. We wondered whether this unique regulatory mechanism is specific to β-keratins or may be derived from and common to EDC members. Here we explore (1) the systematic expression patterns of non-β-keratin EDC genes and their preferential expression in different skin appendages during development, (2) whether the expression of non-β-keratin EDC sub-clusters are also regulated in clusters by SATB2. We analyzed bulk RNA-seq and ChIP-seq data and also evaluated the disrupted expression patterns caused by overexpressing SATB2. The results show that the expression of whole EDDA and EDQM sub-clusters are possibly mediated by enhancers in E14-feathers. Overexpressing SATB2 down-regulates the enriched EDCRP sub-cluster in feathers and the EDCH sub-cluster in beaks. These results reveal the potential of complex epigenetic regulation activities within the avian EDC, implying transcriptional regulation of EDC members acting at the gene and/or gene cluster level in a temporal and skin regional-specific fashion, which may contribute to the evolution of diverse avian integuments.
Collapse
Affiliation(s)
- Gee-Way Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
- Correspondence:
| |
Collapse
|
12
|
Charton C, Youm DJ, Ko BJ, Seol D, Kim B, Chai HH, Lim D, Kim H. The transcriptomic blueprint of molt in rooster using various tissues from Ginkkoridak (Korean long-tailed chicken). BMC Genomics 2021; 22:594. [PMID: 34348642 PMCID: PMC8340483 DOI: 10.1186/s12864-021-07903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Annual molt is a critical stage in the life cycle of birds. Although the most extensively documented aspects of molt are the renewing of plumage and the remodeling of the reproductive tract in laying hens, in chicken, molt deeply affects various tissues and physiological functions. However, with exception of the reproductive tract, the effect of molt on gene expression across the tissues known to be affected by molt has to date never been investigated. The present study aimed to decipher the transcriptomic effects of molt in Ginkkoridak, a Korean long-tailed chicken. Messenger RNA data available across 24 types of tissue samples (9 males) and a combination of mRNA and miRNA data on 10 males and 10 females blood were used. RESULTS The impact of molt on gene expression and gene transcript usage appeared to vary substantially across tissues types in terms of histological entities or physiological functions particularly related to nervous system. Blood was the tissue most affected by molt in terms of differentially expressed genes in both sexes, closely followed by meninges, bone marrow and heart. The effect of molt in blood appeared to differ between males and females, with a more than fivefold difference in the number of down-regulated genes between both sexes. The blueprint of molt in roosters appeared to be specific to tissues or group of tissues, with relatively few genes replicating extensively across tissues, excepted for the spliceosome genes (U1, U4) and the ribosomal proteins (RPL21, RPL23). By integrating miRNA and mRNA data, when chickens molt, potential roles of miRNA were discovered such as regulation of neurogenesis, regulation of immunity and development of various organs. Furthermore, reliable candidate biomarkers of molt were found, which are related to cell dynamics, nervous system or immunity, processes or functions that have been shown to be extensively modulated in response to molt. CONCLUSIONS Our results provide a comprehensive description at the scale of the whole organism deciphering the effects of molt on the transcriptome in chicken. Also, the conclusion of this study can be used as a valuable resource in transcriptome analyses of chicken in the future and provide new insights related to molt.
Collapse
Affiliation(s)
- Clémentine Charton
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong-Jae Youm
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc, Seoul, Republic of Korea
| | - Bongsang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc, Seoul, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 1500, Wanju, Republic of Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 1500, Wanju, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Lachner J, Derdak S, Mlitz V, Wagner T, Holthaus KB, Ehrlich F, Mildner M, Tschachler E, Eckhart L. An In Vitro Model of Avian Skin Reveals Evolutionarily Conserved Transcriptional Regulation of Epidermal Barrier Formation. J Invest Dermatol 2021; 141:2829-2837. [PMID: 34116064 DOI: 10.1016/j.jid.2021.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
The function of the skin as a barrier against a dry environment evolved in a common ancestor of terrestrial vertebrates such as mammals and birds. However, it is unknown which elements of the genetic program of skin barrier formation are evolutionarily ancient and conserved. In this study, we determined the transcriptomes of chicken keratinocytes (KCs) grown in monolayer culture and in an organotypic model of avian skin. The differentiation-associated changes in global gene expression were compared with previously published transcriptome changes of human KCs cultured under equivalent conditions. We found that specific keratins and genes of the epidermal differentiation complex were upregulated during the differentiation of both chicken and human KCs. Likewise, the transcriptional upregulation of genes that control the synthesis and transport of lipids, anti-inflammatory cytokines of the IL-1 family, protease inhibitors, and other regulators of tissue homeostasis was conserved in the KCs of both species. However, some avian KC differentiation-associated transcripts lack homologs in mammals and vice versa, indicating a genetic basis for taxon-specific skin features. The results of this study reveal an evolutionarily ancient program in which dynamic gene transcription controls the metabolism and transport of lipids as well as other core processes during terrestrial skin barrier formation.
Collapse
Affiliation(s)
- Julia Lachner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tanja Wagner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Karin Brigit Holthaus
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Davis A, Greenwold MJ. Evolution of an Epidermal Differentiation Complex (EDC) Gene Family in Birds. Genes (Basel) 2021; 12:genes12050767. [PMID: 34069986 PMCID: PMC8157837 DOI: 10.3390/genes12050767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/01/2023] Open
Abstract
The transition of amniotes to a fully terrestrial lifestyle involved the adaptation of major molecular innovations to the epidermis, often in the form of epidermal appendages such as hair, scales and feathers. Feathers are diverse epidermal structures of birds, and their evolution has played a key role in the expansion of avian species to a wide range of lifestyles and habitats. As with other epidermal appendages, feather development is a complex process which involves many different genetic and protein elements. In mammals, many of the genetic elements involved in epidermal development are located at a specific genetic locus known as the epidermal differentiation complex (EDC). Studies have identified a homologous EDC locus in birds, which contains several genes expressed throughout epidermal and feather development. A family of avian EDC genes rich in aromatic amino acids that also contain MTF amino acid motifs (EDAAs/EDMTFs), that includes the previously reported histidine-rich or fast-protein (HRP/fp), an important marker in feather development, has expanded significantly in birds. Here, we characterize the EDAA gene family in birds and investigate the evolutionary history and possible functions of EDAA genes using phylogenetic and sequence analyses. We provide evidence that the EDAA gene family originated in an early archosaur ancestor, and has since expanded in birds, crocodiles and turtles, respectively. Furthermore, this study shows that the respective amino acid compositions of avian EDAAs are characteristic of structural functions associated with EDC genes and feather development. Finally, these results support the hypothesis that the genes of the EDC have evolved through tandem duplication and diversification, which has contributed to the evolution of the intricate avian epidermis and epidermal appendages.
Collapse
Affiliation(s)
- Anthony Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Matthew J. Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
- Correspondence:
| |
Collapse
|
15
|
Alibardi L, Eckhart L. Immunolocalization of epidermal differentiation complex proteins reveals distinct molecular compositions of cells that control structure and mechanical properties of avian skin appendages. J Morphol 2021; 282:917-933. [PMID: 33830534 DOI: 10.1002/jmor.21357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022]
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode structural proteins of skin derivatives with variable mechanical performances, from the scales of reptiles and birds to the hard claws and beaks, and to the flexible but resistant corneous material of feathers. Corneous proteins with or without extended beta-regions are produced from avian genomes, and include the largely prevalent corneous beta proteins (CβPs, formerly indicated as beta-keratins), and minor contribution from histidine-rich proteins, trichohyalin-like proteins (scaffoldin), loricrin, and other proteins rich in cysteine or other types of amino acids. The light-microscopic and ultrastructural immunolocalization of major and minor EDC-proteins in avian skin (feather CβPs, EDKM, EDWM, EDMTFH, EDDM, and scaffoldin) suggests that each specific appendage consists of a particular mix of these proteins in addition to the main proteins containing a peculiar beta-region of 34 amino acids, indicated as feather/scale/claw/beak CβPs (fCβPs, sCβPs, cCβPs, bCβPs). This indicates that numerous proteins of the EDC are added to the variable meshwork of intermediate filament keratins to produce avian epidermis with different mechanical and functional properties. Although the specific roles for these proteins are not known they likely make an important contribution to the final material properties of the different skin appendages of birds. The highest number of sauropsid CβPs is found in birds, suggesting a relation to the evolution of feathers, and additional epidermal differentiation proteins have contributed to the evolutionary adaptations of avian skin.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Ehrlich F, Lachner J, Hermann M, Tschachler E, Eckhart L. Convergent Evolution of Cysteine-Rich Keratins in Hard Skin Appendages of Terrestrial Vertebrates. Mol Biol Evol 2021; 37:982-993. [PMID: 31822906 PMCID: PMC7086170 DOI: 10.1093/molbev/msz279] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Terrestrial vertebrates have evolved hard skin appendages, such as scales, claws, feathers, and hair that play crucial roles in defense, predation, locomotion, and thermal insulation. The mechanical properties of these skin appendages are largely determined by cornified epithelial components. So-called "hair keratins," cysteine-rich intermediate filament proteins that undergo covalent cross-linking via disulfide bonds, are the crucial structural proteins of hair and claws in mammals and hair keratin orthologs are also present in lizard claws, indicating an evolutionary origin in a hairless common ancestor of amniotes. Here, we show that reptiles and birds have also other cysteine-rich keratins which lack cysteine-rich orthologs in mammals. In addition to hard acidic (type I) sauropsid-specific (HAS) keratins, we identified hard basic (type II) sauropsid-specific (HBS) keratins which are conserved in lepidosaurs, turtles, crocodilians, and birds. Immunohistochemical analysis with a newly made antibody revealed expression of chicken HBS1 keratin in the cornifying epithelial cells of feathers. Molecular phylogenetics suggested that the high cysteine contents of HAS and HBS keratins evolved independently from the cysteine-rich sequences of hair keratin orthologs, thus representing products of convergent evolution. In conclusion, we propose an evolutionary model in which HAS and HBS keratins evolved as structural proteins in epithelial cornification of reptiles and at least one HBS keratin was co-opted as a component of feathers after the evolutionary divergence of birds from reptiles. Thus, cytoskeletal proteins of hair and feathers are products of convergent evolution and evolutionary co-option to similar biomechanical functions in clade-specific hard skin appendages.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Mlitz V, Hermann M, Buchberger M, Tschachler E, Eckhart L. The Trichohyalin-Like Protein Scaffoldin Is Expressed in the Multilayered Periderm during Development of Avian Beak and Egg Tooth. Genes (Basel) 2021; 12:248. [PMID: 33578693 PMCID: PMC7916365 DOI: 10.3390/genes12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 01/19/2023] Open
Abstract
Scaffoldin, an S100 fused-type protein (SFTP) with high amino acid sequence similarity to the mammalian hair follicle protein trichohyalin, has been identified in reptiles and birds, but its functions are not yet fully understood. Here, we investigated the expression pattern of scaffoldin and cornulin, a related SFTP, in the developing beaks of birds. We determined the mRNA levels of both SFTPs by reverse transcription polymerase chain reaction (RT-PCR) in the beak and other ectodermal tissues of chicken (Gallus gallus) and quail (Coturnix japonica) embryos. Immunohistochemical staining was performed to localize scaffoldin in tissues. Scaffoldin and cornulin were expressed in the beak and, at lower levels, in other embryonic tissues of both chickens and quails. Immunohistochemistry revealed scaffoldin in the peridermal compartment of the egg tooth, a transitory cornified protuberance (caruncle) on the upper beak which breaks the eggshell during hatching. Furthermore, scaffoldin marked a multilayered peridermal structure on the lower beak. The results of this study suggest that scaffoldin plays an evolutionarily conserved role in the development of the avian beak with a particular function in the morphogenesis of the egg tooth.
Collapse
Affiliation(s)
- Veronika Mlitz
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Buchberger
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| |
Collapse
|
18
|
Immunohistochemical detection of sulfhydryl oxidase in chick skin appendages and feathers suggests that the enzyme contributes to maturation of the corneous material. ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00498-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Holthaus KB, Alibardi L, Tschachler E, Eckhart L. Identification of epidermal differentiation genes of the tuatara provides insights into the early evolution of lepidosaurian skin. Sci Rep 2020; 10:12844. [PMID: 32732894 PMCID: PMC7393497 DOI: 10.1038/s41598-020-69885-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022] Open
Abstract
The tuatara (Sphenodon punctatus) is the phylogenetically closest relative of squamates (including lizards and snakes) from which it diverged around 250 million years ago. Together, they constitute the clade Lepidosauria. Fully terrestrial vertebrates (amniotes) form their skin barrier to the environment under the control of a gene cluster, termed the epidermal differentiation complex (EDC). Here we identified EDC genes in the genome of the tuatara and compared them to those of other amniotes. The organization of the EDC and proteins encoded by EDC genes are most similar in the tuatara and squamates. A subcluster of lepidosaurian EDC genes encodes corneous beta-proteins (CBPs) of which three different types are conserved in the tuatara. Small proline-rich proteins have undergone independent expansions in the tuatara and some, but not all subgroups of squamates. Two genes encoding S100 filaggrin-type proteins (SFTPs) are expressed during embryonic skin development of the tuatara whereas SFTP numbers vary between 1 and 3 in squamates. Our comparative analysis of the EDC in the tuatara genome suggests that many molecular features of the skin that were previously identified in squamates have evolved prior to their divergence from the lineage leading to the tuatara.
Collapse
Affiliation(s)
| | | | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|