1
|
Li Y, Wu S, Jin Z, Li J. Integrated physiological and anatomical analyses reveal the mycorrhizal symbiosis efficiency of Heptacodium miconioides under different nitrogen conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109725. [PMID: 40048941 DOI: 10.1016/j.plaphy.2025.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 05/07/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to play a role in protecting endangered plants from environmental stresses. However, the adaption mechanisms by which AMF symbiosis influences the physiological and anatomical traits of the endangered species Heptacodium miconioides under varying nitrogen (N) conditions remain unclear. Here, we examined the effects of three types of AMF inoculation treatments-Rhizophagus intraradices, Glomus versiforme, and a mixture of the two-on the growth, photosynthesis, antioxidant enzyme activity, and stem and leaf structure of H. miconioides seedlings under low nitrogen (LN) and normal nitrogen (NN) conditions. Findings indicated that LN conditions significantly restricted the growth, physiological and anatomical properties of non-inoculated seedlings. In contrast, AMF inoculation improved dry weight, net photosynthetic rate, chlorophyll content, catalase activity, and peroxidase activity in seedlings under LN. Under LN conditions, AMF colonization-particularly a combination of R. intraradices and G. versiforme-significantly increased stomatal size and aperture by 23.00%, 64.90%, respectively, while significantly reducing stomatal density by 25.00%. Furthermore, treatment with mixed AMFs resulted in substantially greater palisade tissue thickness, stem phloem, stem xylem, stem mean vessel diameter, and stem xylem/phloem ratio, which increased by 41.17%, 20.34%, 46.00%, 14.30%, and 21.62% respectively. These findings indicate that mixed AMF inoculation exhibits superior mycorrhizal efficiency for the host plant, enhancing photosynthetic efficiency, antioxidant enzyme activity, and improving stomatal traits, leaf assimilative tissues, and stem conductive tissues under LN conditions. The study also suggests the potential use of AMF in the cultivation and protection of H. miconioides under N-poor habitats.
Collapse
Affiliation(s)
- Yueling Li
- Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou, 318000, China; Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Shijie Wu
- Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou, 318000, China; Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Zexin Jin
- Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou, 318000, China; Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
| | - Junmin Li
- Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou, 318000, China; Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
2
|
Yang Z, Yang X, Wei S, Shen F, Ji W. Exogenous melatonin delays leaves senescence and enhances saline and alkaline stress tolerance in grape seedlings. PLANT SIGNALING & BEHAVIOR 2024; 19:2334511. [PMID: 38650457 PMCID: PMC11042054 DOI: 10.1080/15592324.2024.2334511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Saline and alkaline stress is one of the major abiotic stresses facing agricultural production, which severely inhibits the growth and yield of plant. The application of plant growth regulators can effectively prevent crop yield reduction caused by saline and alkaline stress. Exogenous melatonin (MT) can act as a signaling molecule involved in the regulation of a variety of physiological processes in plants, has been found to play a key role in enhancing the improvement of plant tolerance to abiotic stresses. However, the effects of exogenous MT on saline and alkaline tolerance of table grape seedlings and its mechanism have not been clarified. The aim of this study was to investigate the role of exogenous MT on morphological and physiological growth of table grape seedlings (Vitis vinifera L.) under saline and alkaline stress. The results showed that saline and alkaline stress resulted in yellowing and wilting of grape leaves and a decrease in chlorophyll content, whereas the application of exogenous MT alleviated the degradation of chlorophyll in grape seedling leaves caused by saline and alkaline stress and promoted the accumulation of soluble sugars and proline content. In addition, exogenous MT increased the activity of antioxidant enzymes, which resulted in the scavenging of reactive oxygen species (ROS) generated by saline and alkaline stress. In conclusion, exogenous MT was involved in the tolerance of grape seedlings to saline and alkaline stress, and enhanced the saline and alkaline resistance of grape seedlings to promote the growth and development of the grape industry in saline and alkaline areas.
Collapse
Affiliation(s)
- Zhongyi Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xixi Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shimei Wei
- Yuncheng Agriculture and Rural Bureau, Yuncheng, Shanxi, China
| | - Fengfeng Shen
- Yuncheng Agriculture and Rural Bureau, Yuncheng, Shanxi, China
| | - Wei Ji
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
- Yuncheng Agriculture and Rural Bureau, Yuncheng, Shanxi, China
| |
Collapse
|
3
|
Heydarzadeh S, Tobeh A, Jahanbakhsh S, Farzaneh S, Vitale E, Arena C. The Application of Stress Modifiers as an Eco-Friendly Approach to Alleviate the Water Scarcity in Ajwain ( Carum copticum L.) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3354. [PMID: 39683147 DOI: 10.3390/plants13233354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Stress modifiers are recognized as biostimulants providing beneficial effects on various plant species. However, the specific potential of modulators such as melatonin, chitosan, humic acid, and selenium in enhancing the resistance of ajwain (Carum copticum L.) plants to water scarcity remains an open question. To address this knowledge gap, we conducted a randomized, field block-designed factorial experiment over two years (2022-2023) to compare the effectiveness of these biostimulants in mitigating the impact of water shortage on ajwain plants. This study involved three irrigation regimes: 100% field water capacity (FC100%-unstressed), 75% irrigation deficit (FC75%-moderate) and 50% irrigation deficit (FC50%-severe), and four modifier treatments (melatonin, chitosan, humic acid, selenium), plus untreated controls. Plant growth, seed yields, essential oil production, as well as eco-physiological traits were studied to assess the efficacy of these compounds as stress modulators. Water regimes and stress modifier applications, as a single factor or in synergy, significantly affected plant physiology and seed yield, highlighting the importance of sustainability in agricultural practices. Compared to FC100%, biological and seed yield, chlorophyll, and nutrient content decreased under FC75% and FC50%, while essential oil production, proline, soluble sugars, flavonoids, phenols and antioxidant enzymatic activity increased. Notably, regardless of the type of modulator used, the application of these modifiers improved all physiological attributes under moderate and severe irrigation deficits. Among the involved compounds, melatonin induced the most pronounced effects, leading to higher biological and seed yield, essential and fixed oil production, relative leaf water content, chlorophyll and nutrient concentration, and antioxidant activity. Our results demonstrate that such compounds effectively function as stress modulators against water scarcity in ajwain plants by preserving specific eco-physiological traits and promoting water saving. These findings provide valuable insights into their use as a nature-based solution for addressing water stress in sustainable agriculture and climate change challenges.
Collapse
Affiliation(s)
- Saeid Heydarzadeh
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
| | - Ahmad Tobeh
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
| | - Sodabeh Jahanbakhsh
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
| | - Salim Farzaneh
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
4
|
Su W, Qiu J, Soufan W, El Sabagh A. Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14514. [PMID: 39256195 DOI: 10.1111/ppl.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
Salinity stress represents a major threat to crop production by inhibiting seed germination, growth of seedlings, and final yield and, therefore, to the social and economic prosperity of developing countries. Recently, plant growth-promoting substances have been widely used as a chemical strategy for improving plant resilience towards abiotic stresses. This study aimed to determine whether melatonin (MT) and glycine betaine (GB) alone or in combination could alleviate the salinity-induced impacts on seed germination and growth of maize seedlings. Increasing NaCl concentration from 100 to 200 mM declined seed germination rate (4.6-37.7%), germination potential (24.5-46.7%), radical length (7.7-40.0%), plumule length (2.2-35.6%), seedling fresh (1.7-41.3%) and dry weight (23.0-56.1%) compared to control (CN) plants. However, MT and GB treatments lessened the adverse effects of 100 and 150 mM NaCl and enhanced germination comparable to control plants. In addition, results from the pot experiments show that 200 mM NaCl stress disrupted the osmotic balance and persuaded oxidative stress, presented by higher electrolyte leakage, hydrogen peroxide, superoxide radicals, and malondialdehyde compared to control plants. However, compared to the NaCl treatment, NaCl+MT+GB treatment decreased the accumulation of malondialdehyde (24.2-42.1%), hydrogen peroxide (36.2-44.0%), and superoxide radicals (20.1-50.9%) by up-regulating the activity of superoxide dismutase (28.4-51.2%), catalase (82.2-111.5%), ascorbate peroxidase (40.3-59.2%), and peroxidase (62.2-117.9%), and by enhancing osmolytes accumulation, thereby reducing NaCl-induced oxidative damages. Based on these findings, the application of MT+GB is an efficient chemical strategy for improving seed germination and growth of seedlings by improving the physiological and biochemical attributes of maize under 200 mM NaCl stress.
Collapse
Affiliation(s)
- Wennan Su
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, Hebei Province, China
| | - Jiaoqi Qiu
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, Hebei Province, China
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
5
|
Yuan X, Li J, Zhang X, Ai X, Bi H. Auxin as a downstream signal positively participates in melatonin-mediated chilling tolerance of cucumber. PHYSIOLOGIA PLANTARUM 2024; 176:e14526. [PMID: 39318034 DOI: 10.1111/ppl.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Here, we elucidate the interaction between IAA and melatonin (MT) in response to chilling in cucumber. The results showed that chilling stress induced the increase of endogenous MT and IAA, and the application of MT promoted the synthesis of IAA, while IAA could not affect endogenous MT content under chilling stress. Moreover, MT and IAA application both remarkably increased the chilling tolerance of cucumber seedlings in terms of lower contents of MDA and ROS, higher mRNA abundance of cold response genes, net photosynthetic rate (Pn), maximum regeneration rate of ribulose-1,5-diphosphate (Jmax), Rubisco maximum carboxylation efficiency (Vcmax), the activities and gene expression of RCA and Rubisco, as well as the content of active P700 (I/I0) and photosynthetic electron transport, compared with the plants in H2O treatment. Further analysis revealed that the inhibition of IAA transportation significantly reduced the chilling tolerance induced by MT, whereas the inhibition of endogenous MT did not affect the chilling tolerance induced by IAA. Meanwhile, we found that overexpression of the MT biosynthesis gene CsASMT increased the chilling tolerance, which was blocked by inhibition of endogenous IAA, and the silence of IAA biosynthesis gene CsYUCCA10 decreased the chilling tolerance of cucumber, which could not be alleviated by MT. These data implied IAA acted as a downstream signal to participate in the MT-induced chilling tolerance of cucumber seedlings. The study has implications for the production of greenhouse cucumber in winter seasons.
Collapse
Affiliation(s)
- Xinru Yuan
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Junqi Li
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiaowei Zhang
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xizhen Ai
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Huangai Bi
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| |
Collapse
|
6
|
Kolupaev YE, Taraban DA, Karpets YV, Kokorev AI, Yastreb TO, Blume YB, Yemets AI. Involvement of ROS and calcium ions in developing heat resistance and inducing antioxidant system of wheat seedlings under melatonin's effects. PROTOPLASMA 2024; 261:975-989. [PMID: 38622466 DOI: 10.1007/s00709-024-01952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
The stress-protective effect of melatonin (N-acetyl-5-methoxytryptamine) on plant cells is mediated by key signaling mediators, in particular calcium ions and reactive oxygen species (ROS). However, the links between changes in calcium and redox homeostasis and the formation of adaptive responses of cultivated cereals (including wheat) to the action of high temperatures have not yet been studied. In the present study, we investigated the possible involvement of ROS and calcium ions as signaling mediators in developing heat resistance in wheat (Triticum aestivum L.) seedlings and activating their antioxidant system. Treatment of 3-day-old etiolated seedlings with melatonin solutions at concentrations 0.01-10 µM increased their survival after exposure to 45 °C for 10 min. The most significant stress-protective effect was exerted by melatonin treatment at 1 µM concentration. Under the influence of melatonin, a transient enhancement of superoxide anion radical (O2•-) generation and an increase in hydrogen peroxide content were observed in roots, with a maximum at 1 h. Four hours after treatment with melatonin, the activity of catalase and guaiacol peroxidase increased in roots, while the activity of superoxide dismutase did not change significantly. After exposure to 45 °C, the activity of catalase and guaiacol peroxidase was higher in the roots of melatonin-treated wheat seedlings, and the indices of ROS generation, content of the lipid peroxidation product malonic dialdehyde, and cell membrane damage were lower than in control seedlings. Melatonin-induced changes in root ROS generation and antioxidant enzyme activities were eliminated by pretreatment with the hydrogen peroxide scavenger dimethylthiourea (DMTU), NADPH oxidase inhibitor imidazole, and calcium antagonists (the extracellular calcium chelator EGTA and phospholipase C inhibitor neomycin). Treatment with DMTU, imidazole, EGTA, and neomycin also abolished the melatonin-induced increase in survival of wheat seedlings after heat stress. The role of calcium ions and ROS, generated with the participation of NADPH oxidase, as signaling mediators in the melatonin-induced antioxidant system and heat stress resistance of wheat seedlings have been demonstrated.
Collapse
Affiliation(s)
- Yuriy E Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
- State Biotechnological University, Kharkiv, Ukraine
- Poltava State Agrarian University, Poltava, Ukraine
| | | | | | - Alexander I Kokorev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Tetiana O Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine.
- Crop Research Institute, Prague, Czech Republic.
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
7
|
Khan M, Hussain A, Yun BW, Mun BG. Melatonin: The Multifaceted Molecule in Plant Growth and Defense. Int J Mol Sci 2024; 25:6799. [PMID: 38928504 PMCID: PMC11203645 DOI: 10.3390/ijms25126799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Melatonin (MEL), a hormone primarily known for its role in regulating sleep and circadian rhythms in animals, has emerged as a multifaceted molecule in plants. Recent research has shed light on its diverse functions in plant growth and defense mechanisms. This review explores the intricate roles of MEL in plant growth and defense responses. MEL is involved in plant growth owing to its influence on hormone regulation. MEL promotes root elongation and lateral root formation and enhances photosynthesis, thereby promoting overall plant growth and productivity. Additionally, MEL is implicated in regulating the circadian rhythm of plants, affecting key physiological processes that influence plant growth patterns. MEL also exhibits antioxidant properties and scavenges reactive oxygen species, thereby mitigating oxidative stress. Furthermore, it activates defense pathways against various biotic stressors. MEL also enhances the production of secondary metabolites that contribute to plant resistance against environmental changes. MEL's ability to modulate plant response to abiotic stresses has also been extensively studied. It regulates stomatal closure, conserves water, and enhances stress tolerance by activating stress-responsive genes and modulating signaling pathways. Moreover, MEL and nitric oxide cooperate in stress responses, antioxidant defense, and plant growth. Understanding the mechanisms underlying MEL's actions in plants will provide new insights into the development of innovative strategies for enhancing crop productivity, improving stress tolerance, and combating plant diseases. Further research in this area will deepen our knowledge of MEL's intricate functions and its potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
8
|
Wang M, Xu J, Li L, Shen H, Ding Z, Xie J. Development of packaging films based on UiO-66 MOF loaded melatonin with antioxidation functions for spinach preservation. Food Chem 2024; 440:138211. [PMID: 38104446 DOI: 10.1016/j.foodchem.2023.138211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Spinach tends to deteriorate after harvest due to physiological metabolic activities. As a natural, pollution-free, and environmentally friendly preservative, melatonin (MT) can effectively maintain the quality of fruits and vegetables after harvest and delay senescence. To enhance the preservation effect of MT, this study developed antioxidant films using MT-loaded UiO-66 metal-organic framework (MOF) nanoparticles. This approach effectively extends the shelf life of spinach while preserving its quality. The underlying mechanism involves leveraging the microporous structure and stability of UiO-66 MOF. Experimental results obtained from the packaging films demonstrated significant improvements in both mechanical strength and antioxidant properties when UiO-66 was loaded with MT at a concentration of 0.20 mg/mL and combined with sodium alginate. Freshness preservation experiments also indicated the effective preservation effect of these films on spinach. In conclusion, the results of this study suggest that MT-loaded UiO-66 MOF is a promising active packaging material for spinach preservation.
Collapse
Affiliation(s)
- Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- Shanghai Tramy Green Food (Group) Co. Ltd, Shanghai Tramy Academy of Modern Agricultural Industry, Shanghai 201399, China
| | - Huming Shen
- Shanghai Tramy Green Food (Group) Co. Ltd, Shanghai Tramy Academy of Modern Agricultural Industry, Shanghai 201399, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
9
|
Kołodziejczyk I, Kaźmierczak A. Melatonin - This is important to know. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170871. [PMID: 38340815 DOI: 10.1016/j.scitotenv.2024.170871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
MEL (N-acetyl-5-methoxytryptamine) is a well-known natural compound that controls cellular processes in both plants and animals and is primarily found in plants as a neurohormone. Its roles have been described very broadly, from its antioxidant function related to the photoperiod and determination of seasonal rhythms to its role as a signalling molecule, imitating the action of plant hormones (or even being classified as a prohormone). MEL positively affects the yield and survival of plants by increasing their tolerance to unfavourable biotic and abiotic conditions, which makes MEL widely applicable in ecological farming as a stimulant of growth and development. Thus, it is called a phytobiostimulator. In this review, we discuss the genesis of MEL functions, the presence of MEL at the cellular level and its effects on gene expression and plant development, which can ensure the survival of plants under the conditions they encounter. Moreover, we consider the future application possibilities of MEL in agriculture.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Institute of Ecology and Environmental Protection, University of Lodz, Lodz 90-236, Banacha 12/16, 90-237, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
10
|
Wang M, Xu J, Ding Z, Xie J. Prolong the postharvest shelf life of spinach through the antioxidative ability of melatonin. Food Chem X 2023; 19:100769. [PMID: 37780277 PMCID: PMC10534088 DOI: 10.1016/j.fochx.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Spinach is also known as Persian cuisine, it is rich in nutrients such as protein, vitamin C and minerals, and has high nutritional value. In this study, Spinach was treated with melatonin in order to prolong its shelf life. Melatonin has strong antioxidant effects as an endogenous free radical scavenger. The spinach was sprayed with 0.10, 0.20 and 0.30 mg/mL melatonin solution after harvesting, and distilled water was used as control for low temperature storage at 4 °C. The results showed that melatonin spraying Spinach delayed the degradation of chlorophyll, especially the treatment of 0.20 mg/mL melatonin was the most effective. The content of soluble sugar and soluble protein in spinach tissue was kept high, the accumulation of malondialdehyde (MDA) was reduced, and the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were increased. These findings suggested that melatonin treatment may be a useful technique to prolong the postharvest life of spinach and improve its quality.
Collapse
Affiliation(s)
- Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
11
|
Cao L, Zou J, Qin B, Bei S, Ma W, Yan B, Jin X, Zhang Y. Response of exogenous melatonin on transcription and metabolism of soybean under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14038. [PMID: 37882298 DOI: 10.1111/ppl.14038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Amino acid metabolism is an important factor in regulating nitrogen source assimilation and source/sink transport in soybean. Melatonin can improve plant stress resistance, but whether it affects amino acid metabolism is not known. Therefore, this study investigated whether exogenous melatonin had an effect on amino acid metabolism of soybean under drought conditions and explored its relationship with yield. The treatments were normal water supply treatment (WW), drought stress treatment (D), drought stress and melatonin treatment group (D + M), sprayed with 100 μmol/L melatonin. The effects of melatonin on amino acid metabolism and grain filling were studied by physiological and omics experiments using Kangxian 9 (drought-sensitive variety) and Suinong 26 (drought-resistant variety) soybean cultivars. The results showed that drought stress decreased the activity of carbon and nitrogen metabolizing enzymes, which inhibited the accumulation of dry matter and protein, and decreased the yield. In the drought-sensitive soybean variety, glycoenzymes and amino acid synthetases synthetic genes were upregulated in melatonin-treated soybeans, hence carbon and nitrogen metabolism enzyme activity increased, increasing the carbohydrate and amino acid contents simultaneously. This resulted in higher dry matter and yield than drought-stressed soybean not treated with melatonin. In the drought-resistant variety, the grain weight per plant increased by 7.98% and 6.57% in 2020 and 2021, respectively, while it increased by 23.20% and 14.07% in the drought-sensitive variety during the respective years. In conclusion, melatonin treatment can enhance the activity of nitrogen and carbon metabolism and amino acid content by upregulating the expression of soybean metabolic pathway and related genes, thus increasing the yield of soybean under drought stress.
Collapse
Affiliation(s)
- Liang Cao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Jingnan Zou
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Bin Qin
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shijun Bei
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Weiran Ma
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Bowei Yan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xijun Jin
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Technology Research Center, Daqing, China
| |
Collapse
|
12
|
Kuppusamy A, Alagarswamy S, Karuppusami KM, Maduraimuthu D, Natesan S, Ramalingam K, Muniyappan U, Subramanian M, Kanagarajan S. Melatonin Enhances the Photosynthesis and Antioxidant Enzyme Activities of Mung Bean under Drought and High-Temperature Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2535. [PMID: 37447095 DOI: 10.3390/plants12132535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Mung bean, a legume, is sensitive to abiotic stresses at different growth stages, and its yield potential is affected by drought and high-temperature stress at the sensitive stage. Melatonin is a multifunctional hormone that plays a vital role in plant stress defense mechanisms. This study aimed to evaluate the efficiency of melatonin under individual and combined drought and high-temperature stress in mung bean. An experiment was laid out with five treatments, including an exogenous application of 100 µM melatonin as a seed treatment, foliar spray, and a combination of both seed treatment and foliar spray, as well as absolute control (ambient condition) and control (stress without melatonin treatment). Stresses were imposed during the mung bean's reproductive stage (31-40 DAS) for ten days. Results revealed that drought and high-temperature stress significantly decreased chlorophyll index, Fv/Fm ratio, photosynthetic rate, stomatal conductance, and transpiration rate through increased reactive oxygen species (ROS) production. Foliar application of melatonin at 100 µM concentration enhanced the activity of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbate peroxidase and the concentration of metabolites involved in osmoregulation and ion homeostasis; thereby, it improves physiological and yield-related traits in mung bean under individual and combined stress at the reproductive stage.
Collapse
Affiliation(s)
- Anitha Kuppusamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Kalarani M Karuppusami
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | | | - Senthil Natesan
- Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Kuttimani Ramalingam
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Umapathi Muniyappan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Marimuthu Subramanian
- Department of Agronomy, Agricultural College & Research Institute, Eachangkottai, Thanjavur 614904, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422 Lomma, Sweden
| |
Collapse
|
13
|
Yang K, Sun H, Liu M, Zhu L, Zhang K, Zhang Y, Li A, Zhang H, Zhu J, Liu X, Bai Z, Liu L, Li C. Morphological and Physiological Mechanisms of Melatonin on Delaying Drought-Induced Leaf Senescence in Cotton. Int J Mol Sci 2023; 24:ijms24087269. [PMID: 37108431 PMCID: PMC10138977 DOI: 10.3390/ijms24087269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Leaf senescence reduces the photosynthetic capacity of leaves, thus significantly affecting the growth, development, and yield formation of cotton. Melatonin (MT) is a multipotent substance proven to delay leaf senescence. However, its potential mechanism in delaying leaf senescence induced by abiotic stress remains unclear. This study aimed to explore the effect of MT on delaying drought-induced leaf senescence in cotton seedlings and to clarify its morphological and physiological mechanisms. Drought stress upregulated the leaf senescence marker genes, destroyed the photosystem, and led to excessive accumulation of reactive oxygen species (ROS, e.g., H2O2 and O2-), thus accelerating leaf senescence. However, leaf senescence was significantly delayed when 100 μM MT was sprayed on the leaves of the cotton seedlings. The delay was embodied by the increased chlorophyll content, photosynthetic capacity, and antioxidant enzyme activities, as well as decreased H2O2, O2-, and abscisic acid (ABA) contents by 34.44%, 37.68%, and 29.32%, respectively. MT significantly down-regulated chlorophyll degradation-related genes and senescence marker genes (GhNAC12 and GhWRKY27/71). In addition, MT reduced the chloroplast damage caused by drought-induced leaf senescence and maintained the integrity of the chloroplast lamellae structure under drought stress. The findings of this study collectively suggest that MT can effectively enhance the antioxidant enzyme system, improve photosynthetic efficiency, reduce chlorophyll degradation and ROS accumulation, and inhibit ABA synthesis, thereby delaying drought-induced leaf senescence in cotton.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Mengxing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Lingxiao Zhu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anchang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Haina Zhang
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jijie Zhu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xiaoqing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
14
|
The roles of Salvia miltiorrhiza-derived carbon dots involving in maintaining quality by delaying senescence of postharvest flowering Chinese cabbage. Food Chem 2023; 404:134704. [DOI: 10.1016/j.foodchem.2022.134704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
15
|
Li J, Huang T, Xia M, Lu J, Xu X, Liu H, Zhang W. Exogenous melatonin mediates radish ( Raphanus sativus) and Alternaria brassicae interaction in a dose-dependent manner. FRONTIERS IN PLANT SCIENCE 2023; 14:1126669. [PMID: 36923135 PMCID: PMC10009256 DOI: 10.3389/fpls.2023.1126669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Radish (Raphanus sativus L.) is an economically important vegetable worldwide, but its sustainable production and breeding are highly threatened by blight disease caused by Alternaria brassicae. Melatonin is an important growth regulator that can influence physiological activities in both plants and microbes and stimulate biotic stress resistance in plants. In this study, 0-1500 μM melatonin was exogenously applied to healthy radish seedlings, in vitro incubated A. brassicae, and diseased radish seedlings to determine the effects of melatonin on host, pathogen, and host-pathogen interaction. At sufficient concentrations (0-500 μM), melatonin enhanced growth and immunity of healthy radish seedlings by improving the function of organelles and promoting the biosynthesis of antioxidant enzymes, chitin, organic acid, and defense proteins. Interestingly, melatonin also improved colony growth, development, and virulence of A. brassicae. A strong dosage-dependent effect of melatonin was observed: 50-500 μM promoted host and pathogen vitality and resistance (500 μM was optimal) and 1500 μM inhibited these processes. Significantly less blight was observed on diseased seedlings treated with 500 μM melatonin, indicating that melatonin more strongly enhanced the growth and immunity of radish than it promoted the development and virulence of A. brassicae at this treatment concentration. These effects of MT were mediated by transcriptional changes of key genes as identified by RNA-seq, Dual RNA-seq, and qRT-PCR. The results from this work provide a theoretical basis for the application of melatonin to protect vegetable crops against pathogens.
Collapse
Affiliation(s)
- Jingwei Li
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tingmin Huang
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ming Xia
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
- School of Computing, Chongqing College of Humanities, Science and Technology, Hechuan, China
| | - Jinbiao Lu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiuhong Xu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Haiyi Liu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Wanping Zhang
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Chmur M, Bajguz A. Melatonin Involved in Protective Effects against Cadmium Stress in Wolffia arrhiza. Int J Mol Sci 2023; 24:ijms24021178. [PMID: 36674694 PMCID: PMC9867261 DOI: 10.3390/ijms24021178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Melatonin (MT) is a new plant hormone that protects against adverse environmental conditions. In the present study, the responses of Wolffia arrhiza exposed to cadmium (Cd) and MT were analyzed. Quantitative analysis of MT and precursors of its biosynthesis was performed using LC-MS-MS. The photosynthetic pigments and phytochelatins (PCs) contents were determined using HPLC, while protein and monosaccharides, stress markers, and antioxidant levels were determined using spectrophotometric methods. Interestingly, the endogenous level of MT and its substrates in W. arrhiza exposed to 1-100 µM Cd was significantly higher compared to the control. Additionally, the application of 25 µM MT and Cd intensified the biosynthesis of these compounds. The most stimulatory effect on the growth and content of pigments, protein, and sugars was observed in plants treated with 25 µM MT. In contrast, Cd treatment caused a decrease in plant weight and level of these compounds, while the application of 25 µM MT mitigated the inhibitory effect of Cd. Additionally, Cd enhanced the level of stress markers; simultaneously, MT reduced their content in duckweed exposed to Cd. In plants treated with Cd, PC levels were increased by Cd treatment and by 25 µM MT. These results confirmed that MT mitigated the adverse effect of Cd. Furthermore, MT presence was reported for the first time in W. arrhiza. In summary, MT is an essential phytohormone for plant growth and development, especially during heavy metal stress.
Collapse
|
17
|
Du P, Cao Y, Yin B, Zhou S, Li Z, Zhang X, Xu J, Liang B. Improved tolerance of apple plants to drought stress and nitrogen utilization by modulating the rhizosphere microbiome via melatonin and dopamine. Front Microbiol 2022; 13:980327. [PMID: 36439851 PMCID: PMC9687389 DOI: 10.3389/fmicb.2022.980327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 08/29/2024] Open
Abstract
This study explored the contributions of melatonin and dopamine to the uptake and utilization of nitrogen and the formation of rhizosphere microbial communities in 'Tianhong 2'/M. hupehensis, with the goal improving plant resistance to drought stress. Drought stress was formed by artificially controlling soil moisture content. And melatonin or dopamine solutions were applied to the soil at regular intervals for experimental treatment. After 60 days of treatment, plant indices were determined and the structure of the rhizosphere microbial community was evaluated using high-throughput sequencing technology. The findings revealed two ways through which melatonin and dopamine alleviate the inhibition of growth and development caused by drought stress by promoting nitrogen uptake and utilization in plants. First, melatonin and dopamine promote the absorption and utilization of nitrogen under drought stress by directly activating nitrogen transporters and nitrogen metabolism-related enzymes in the plant. Second, they promote the absorption of nitrogen by regulating the abundances of specific microbial populations, thereby accelerating the transformation of the soil nitrogen pool to available nitrogen that can be absorbed directly by plant roots and utilized by plants. These findings provide a new framework for understanding how melatonin and dopamine regulate the uptake and utilization of nitrogen in plants and improve their ability to cope with environmental disturbances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Arnao MB, Cano A, Hernández-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5779-5800. [PMID: 35029657 DOI: 10.1093/jxb/erac009] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
19
|
Huang Y, Li X, Duan Z, Li J, Jiang Y, Cheng S, Xue T, Zhao F, Sheng W, Duan Y. Ultra-low concentration of chlorine dioxide regulates stress-caused premature leaf senescence in tobacco by modulating auxin, ethylene, and chlorophyll biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:31-39. [PMID: 35803089 DOI: 10.1016/j.plaphy.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Exploring novel growth regulators for premature senescence regulation is important for tobacco production. In the present study, chlorine dioxide (ClO2) was explored as a novel plant growth regulator for tobacco growth, particularly its effect on leaf senescence and root development. The results showed that 0.15 μM ClO2 maintained the lushness of detached leaves and whole plants. Also, the leaves of ClO2-treated plants exhibited a chlorophyll content of 58% higher than in CK (control) plants (P < 0.05). Besides, ClO2 treatment increased the biomass of roots and aboveground parts by 54 and 16%, respectively. The ClO2-treated plants also showed enhanced activities of antioxidant enzymes and significantly reduced malondialdehyde contents (P < 0.05). Moreover, ClO2 treatment remarkably alleviated drought-caused premature senescence in the tobacco plants and partly rescued the exogenous ethylene-caused plant dwarfism. The indole-3-acetic acid content in ClO2-treated plants was higher than in non-treated plants (P < 0.05), but ethylene content was significantly lower (P < 0.05). Gene expression analysis showed that ClO2 treatment remarkably suppressed ethylene synthase genes. However, the auxin biosynthesis and transport genes were up-regulated, with NtIAA17 increasing by five folds (P < 0.05). Further, ClO2 remarkably up-regulated the expression of chlorophyll biosynthesis genes, with a >20-fold increase in NtHEMA1 and NtCHLH expressions. These results designate ClO2 as a potential regulator for improving tobacco productivity by retaining higher chlorophyll content and promoting root growth.
Collapse
Affiliation(s)
- Yue Huang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Xinyu Li
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Ziwei Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Jinjing Li
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Yuchen Jiang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Siming Cheng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Fenglan Zhao
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Wei Sheng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
20
|
Yu JC, Lu JZ, Cui XY, Guo L, Wang ZJ, Liu YD, Wang F, Qi MF, Liu YF, Li TL. Melatonin mediates reactive oxygen species homeostasis via SlCV to regulate leaf senescence in tomato plants. J Pineal Res 2022; 73:e12810. [PMID: 35620796 DOI: 10.1111/jpi.12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
Melatonin (MT) functions in removing reactive oxygen species (ROS) and delaying plant senescence, thereby acting as an antioxidant; however, the molecular mechanism underlying the specific action of MT is unclear. Herein, we used the mutant plants carrying the MT decomposition gene melatonin 3-hydroxylase (M3H) in tomato to elucidate the specific mechanism of action of MT. SlM3H-OE accelerated senescence by decreasing the content of endogenous MT in plants. SlM3H is a senescence-related gene that positively regulates aging. MT inhibited the expression of the senescence-related gene SlCV to scavenge ROS, induced stable chloroplast structure, and delayed leaf senescence. Simultaneously, MT weakened the interaction between SlCV and SlPsbO/SlCAT3, reduced ROS production in photosystem II, and promoted ROS elimination. In conclusion, MT regulates ROS homeostasis and delays leaf aging in tomato plants through SlCV expression modulation.
Collapse
Affiliation(s)
- Jun-Chi Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Jia-Zhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Xiao-Yu Cui
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Lei Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Zhi-Jun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Yu-Dong Liu
- Agricultural Department, Shihezi University, Shihezi, People's Republic of China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Ming-Fang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Yu-Feng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Tian-Lai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| |
Collapse
|
21
|
Xu L, Feng NJ, Liang XL, Zhao HH, Wang SY, Jiang Y, Zhao Y, Zheng DF. Both uniconazole and 5-aminolevulinic acid increase maize ( Zea mays L.) yield by changing its ear morphology and increasing photosynthetic efficiency and antioxidants in saline-alkali land. PHOTOSYNTHETICA 2022; 60:408-419. [PMID: 39650109 PMCID: PMC11558603 DOI: 10.32615/ps.2022.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2024]
Abstract
Saline-alkaline stress is one of the most detrimental abiotic stresses that restrict the yield and physiological activity of maize (Zea mays L.). In the present study, maize was planted on saline-alkali land, while 25 mg L-1 uniconazole (S3307) and 40 mg L-1 5-aminolevulinic acid (ALA) were sprayed at the stage of nine expanded leaves. Our results showed that both S3307 and ALA applications significantly increased all ear width, volume, and mass in the maturity stage. Both applications also upregulated photosynthetic efficiency via increasing the chlorophyll content, net photosynthetic rate, transpiration rate, and stomatal conductance, as well as reduced the intercellular CO2 concentration after the silking stage. In addition, both applications upregulated further the antioxidant system via enhancing the activity of antioxidants and contents of soluble protein and sugar, as well as reducing the malondialdehyde content after the silking stage. Thus, both S3307 and ALA applications can improve maize yield in saline-alkali land via enhancing ear morphology and increasing photosynthetic efficiency and antioxidants.
Collapse
Affiliation(s)
- L Xu
- Heilongjiang Bayi Agricultural University, Daqing, 163000 Heilongjiang, China
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163000 Heilongjiang, China
| | - N J Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088 Guangdong, China
| | - X L Liang
- Heilongjiang Bayi Agricultural University, Daqing, 163000 Heilongjiang, China
| | - H H Zhao
- Heilongjiang Bayi Agricultural University, Daqing, 163000 Heilongjiang, China
| | - S Y Wang
- Heilongjiang Bayi Agricultural University, Daqing, 163000 Heilongjiang, China
| | - Y Jiang
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319 Heilongjiang, China
| | - Y Zhao
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319 Heilongjiang, China
| | - D F Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088 Guangdong, China
| |
Collapse
|
22
|
Huangfu L, Chen R, Lu Y, Zhang E, Miao J, Zuo Z, Zhao Y, Zhu M, Zhang Z, Li P, Xu Y, Yao Y, Liang G, Xu C, Zhou Y, Yang Z. OsCOMT, encoding a caffeic acid O-methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1122-1139. [PMID: 35189026 PMCID: PMC9129082 DOI: 10.1111/pbi.13794] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/15/2022] [Indexed: 05/15/2023]
Abstract
Melatonin, a natural phytohormone in plants, plays multiple critical roles in plant growth and stress responses. Although melatonin biosynthesis-related genes have been suggested to possess diverse biological functions, their roles and functional mechanisms in regulating rice grain yield remain largely unexplored. Here, we uncovered the roles of a caffeic acid O-methyltransferase (OsCOMT) gene in mediating rice grain yield through dual regulation of leaf senescence and vascular development. In vitro and in vivo evidence revealed that OsCOMT is involved in melatonin biosynthesis. Transgenic assays suggested that OsCOMT significantly delays leaf senescence at the grain filling stage by inhibiting degradation of chlorophyll and chloroplast, which, in turn, improves photosynthesis efficiency. In addition, the number and size of vascular bundles in the culms and leaves were significantly increased in the OsCOMT-overexpressing plants, while decreased in the knockout plants, suggesting that OsCOMT plays a positive role in vascular development of rice. Further evidence indicated that OsCOMT-mediated vascular development might owe to the crosstalk between melatonin and cytokinin. More importantly, we found that OsCOMT is a positive regulator of grain yield, and overexpression of OsCOMT increase grain yield per plant even in a high-yield variety background, suggesting that OsCOMT can be used as an important target for enhancing rice yield. Our findings shed novel insights into melatonin-mediated leaf senescence and vascular development and provide a possible strategy for genetic improvement of rice grain yield.
Collapse
Affiliation(s)
- Liexiang Huangfu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Enying Zhang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Agricultural CollegeQingdao Agricultural UniversityQingdaoChina
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Zhihao Zuo
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yu Zhao
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Minyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Zihui Zhang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| |
Collapse
|
23
|
Exogenous Melatonin Protects Lime Plants from Drought Stress-Induced Damage by Maintaining Cell Membrane Structure, Detoxifying ROS and Regulating Antioxidant Systems. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lime is an important commercial product in tropical and subtropical regions, where drought stress is becoming one of the most severe environmental challenges in the agricultural sector. Melatonin is an antioxidant molecule that helps plants regulate their development and respond to a variety of stresses. In this research, the effects of exogenous melatonin treatments were evaluated at different concentrations (0, 50, 100, and 150 μM) on biochemical aspects and gene expression in two species of lime plants (“Mexican lime” and “Persian lime”) under normal (100% field capacity (FC)) and drought stress conditions (75% and 40% FC). The experiments were factorial and based on a completely randomized design (CRD) with four replicates. Drought stress caused electrolyte leakage (EL) as well as accumulations of hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicating the occurrence of damage to cellular membranes. In contrast, the melatonin pretreatment at various concentrations reduced the levels of EL, H2O2 and MDA while mitigating the negative effects of drought stress on the two lime species. The application of melatonin (100-μM) significantly increased the level of proline content and activity of antioxidant enzymes in plants under drought stress compared to control plants. According to real-time PCR analysis, drought stress and melatonin treatment enhanced the expression of genes involved in ROS scavenging, proline biosynthesis, and cell redox regulation in both species, as compared to their respective controls. According to these findings, melatonin is able to detoxify ROS and regulate antioxidant systems, thereby protecting lime plants from drought stress-induced damages.
Collapse
|
24
|
Ahmad S, Wang GY, Muhammad I, Chi YX, Zeeshan M, Nasar J, Zhou XB. Interactive Effects of Melatonin and Nitrogen Improve Drought Tolerance of Maize Seedlings by Regulating Growth and Physiochemical Attributes. Antioxidants (Basel) 2022; 11:antiox11020359. [PMID: 35204247 PMCID: PMC8869313 DOI: 10.3390/antiox11020359] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Melatonin plays an important role in numerous vital life processes of animals and has recently captured the interests of plant biologists because of its potent role in plants. As well as its possible contribution to photoperiodic processes, melatonin is believed to act as a growth regulator and/or as a direct free radical scavenger/indirect antioxidant. However, identifying a precise concentration of melatonin with an optimum nitrogen level for a particular application method to improve plant growth requires identification and clarification. This work establishes inimitable findings by optimizing the application of melatonin with an optimum level of nitrogen, alleviating the detrimental effects of drought stress in maize seedlings. Maize seedlings were subjected to drought stress of 40–45% field capacity (FC) at the five-leaf stage, followed by a soil drenching of melatonin 100 µM and three nitrogen levels (200, 250, and 300 kg ha−1) to consider the changes in maize seedling growth. Our results showed that drought stress significantly inhibited the physiological and biochemical parameters of maize seedlings. However, the application of melatonin with nitrogen remarkably improved the plant growth attributes, chlorophyll pigments, fluorescence, and gas exchange parameters. Moreover, melatonin and nitrogen application profoundly reduced the reactive oxygen species (ROS) accumulation by increasing maize antioxidant and nitrogen metabolism enzyme activities under drought-stress conditions. It was concluded that the mitigating potential of 100 µM melatonin with an optimum level of nitrogen (250 kg N ha−1) improves the plant growth, photosynthetic efficiency, and enzymatic activity of maize seedling under drought-stress conditions.
Collapse
|
25
|
Zahedi SM, Hosseini MS, Fahadi Hoveizeh N, Gholami R, Abdelrahman M, Tran LSP. Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. PHYSIOLOGIA PLANTARUM 2021; 173:1682-1694. [PMID: 34716914 DOI: 10.1111/ppl.13589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 05/22/2023]
Abstract
Melatonin (MEL) is a ubiquitous molecule with pleiotropic roles in plant adaption to stress. In this study, we investigated the effects of foliar spray of 100 and 200 μM MEL on the biochemical and physiological traits linked with the growth performance of olive seedlings exposed to moderate (45 mM NaCl) and severe (90 mM NaCl) salinity. Both salt stress conditions caused a considerable reduction in leaf relative water content and the contents of photosynthetic pigments (carotenoids, chlorophylls a and b, and total chlorophylls), K+ and Ca+2 , while the contents of Na+ and the activities of antioxidant enzymes increased. In addition, salt-stressed olive seedlings showed high accumulations of hydrogen peroxide (H2 O2 ), malondialdehyde (MDA), and electrolyte leakage (EL), indicating that olive seedlings suffered from salinity-induced oxidative damage. In contrast, MEL application revived the growth of olive seedlings, including shoot height, root length and biomass under salt stress conditions. MEL protected the photosynthetic pigments and decreased the Na+ /K+ ratio under both moderate and severe salt stresses. Furthermore, MEL induced the accumulations of proline, total soluble sugars, glycine betaine, abscisic acid, and indole acetic acid in salt-stressed olive seedlings, which showed a positive correlation with improved leaf water status and biomass. MEL application also increased the activities of catalase, superoxide dismutase, ascorbate peroxidase, and peroxidase in salt-stressed seedlings, resulting in lower levels of H2 O2 , MDA, and EL in these plants. Taken together, MEL mitigates salinity through its roles in various biochemical and physiological processes, thereby representing a promising agent for application in crop protection.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
- Faculty of Science, Galala University, Suze, Galala, Egypt
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
26
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms 2021; 9:2451. [PMID: 34946053 PMCID: PMC8704983 DOI: 10.3390/microorganisms9122451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Abiotic stresses, including low-temperature environments, adversely affect the structure, composition, and physiological activities of soil microbiomes. Also, low temperatures disturb physiological and metabolic processes, leading to major crop losses worldwide. Extreme cold temperature habitats are, however, an interesting source of psychrophilic and psychrotolerant phosphate solubilizing bacteria (PSB) that can ameliorate the low-temperature conditions while maintaining their physiological activities. The production of antifreeze proteins and expression of stress-induced genes at low temperatures favors the survival of such organisms during cold stress. The ability to facilitate plant growth by supplying a major plant nutrient, phosphorus, in P-deficient soil is one of the novel functional properties of cold-tolerant PSB. By contrast, plants growing under stress conditions require cold-tolerant rhizosphere bacteria to enhance their performance. To this end, the use of psychrophilic PSB formulations has been found effective in yield optimization under temperature-stressed conditions. Most of the research has been done on microbial P biofertilizers impacting plant growth under normal cultivation practices but little attention has been paid to the plant growth-promoting activities of cold-tolerant PSB on crops growing in low-temperature environments. This scientific gap formed the basis of the present manuscript and explains the rationale for the introduction of cold-tolerant PSB in competitive agronomic practices, including the mechanism of solubilization/mineralization, release of biosensor active biomolecules, molecular engineering of PSB for increasing both P solubilizing/mineralizing efficiency, and host range. The impact of extreme cold on the physiological activities of plants and how plants overcome such stresses is discussed briefly. It is time to enlarge the prospects of psychrophilic/psychrotolerant phosphate biofertilizers and take advantage of their precious, fundamental, and economical but enormous plant growth augmenting potential to ameliorate stress and facilitate crop production to satisfy the food demands of frighteningly growing human populations. The production and application of cold-tolerant P-biofertilizers will recuperate sustainable agriculture in cold adaptive agrosystems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
27
|
Arnao MB, Hernández-Ruiz J, Cano A, Reiter RJ. Melatonin and Carbohydrate Metabolism in Plant Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:1917. [PMID: 34579448 PMCID: PMC8472256 DOI: 10.3390/plants10091917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
Melatonin, a multifunctional molecule that is present in all living organisms studied, is synthesized in plant cells in several intercellular organelles including in the chloroplasts and in mitochondria. In plants, melatonin has a relevant role as a modulatory agent which improves their tolerance response to biotic and abiotic stress. The role of melatonin in stress conditions on the primary metabolism of plant carbohydrates is reviewed in the present work. Thus, the modulatory actions of melatonin on the various biosynthetic and degradation pathways involving simple carbohydrates (mono- and disaccharides), polymers (starch), and derivatives (polyalcohols) in plants are evaluated. The possible applications of the use of melatonin in crop improvement and postharvest products are examined.
Collapse
Affiliation(s)
- Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
28
|
Jafari M, Shahsavar A. The Effect of Foliar Application of Melatonin on Changes in Secondary Metabolite Contents in Two Citrus Species Under Drought Stress Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:692735. [PMID: 34567024 PMCID: PMC8455919 DOI: 10.3389/fpls.2021.692735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
Plant secondary metabolites are compounds that play an important role in plant interactions and defense. Persian lime and Mexican lime as the two most important sour lime varieties with high levels of secondary metabolites, are widely cultivated in tropical and subtropical areas. Melatonin is a pleiotropic molecule that plays a key role in protecting plants against drought stress through regulating the secondary metabolite biosynthesis pathway. This study was performed as a factorial experiment consisting of three factors in a completely randomized design (CRD), including four concentrations of melatonin (0, 50, 100, and 150 μM), three levels of drought stress [100% (control), 75% (moderate stress), and 40% (severe stress) field capacity (FC)], and two Citrus cultivars. The experiment was conducted for 60 days in a greenhouse condition. Based on the results of this study under severe drought stress, melatonin-treated crops had higher total flavonoid and total phenolic contents than the untreated crops. The highest level of essential oils components was observed on 100 μM foliar application of melatonin under severe drought stress in both varieties. The main component of the essential oil was limonene in both Citrus species. Moreover, based on the analysis of the results, hesperidin was the main polyphenol in both varieties. Since the use of melatonin often increases the production of secondary metabolites, this study can be considered as a very effective method for controlling the adverse effects of drought stress in citrus for both industrial and horticultural aims.
Collapse
Affiliation(s)
| | - Alireza Shahsavar
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
29
|
Ahmad S, Muhammad I, Wang GY, Zeeshan M, Yang L, Ali I, Zhou XB. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC PLANT BIOLOGY 2021; 21:368. [PMID: 34384391 PMCID: PMC8359050 DOI: 10.1186/s12870-021-03160-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/03/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 μM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. RESULTS The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. CONCLUSIONS Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 μM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Ihsan Muhammad
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Guo Yun Wang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Muhammad Zeeshan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Li Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Izhar Ali
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Xun Bo Zhou
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China.
| |
Collapse
|
30
|
Yang L, You J, Li J, Wang Y, Chan Z. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5599-5611. [PMID: 34009365 DOI: 10.1093/jxb/erab196] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 05/06/2023]
Abstract
Melatonin has been characterized as a growth regulator in plants. Melatonin shares tryptophan as the precursor with the auxin indole-3-acetic acid (IAA), but the interplay between melatonin and IAA remains controversial. In this study, we aimed to dissect the relationship between melatonin and IAA in regulating Arabidopsis primary root growth. We observed that melatonin concentrations ranging from 10-9 to 10-6 M functioned as IAA mimics to promote primary root growth in Arabidopsis wild type, as well as in pin-formed (pin) single and double mutants. Transcriptome analysis showed that changes in gene expression after melatonin and IAA treatment were moderately correlated. Most of the IAA-regulated genes were co-regulated by melatonin, indicating that melatonin and IAA regulated a similar subset of genes. Melatonin partially rescued primary root growth defects in pin single and double mutant plants. However, melatonin treatment had little effect on primary root growth in the presence of high concentrations of auxin biosynthesis inhibitors, or polar transport inhibitor, and could not rescue the root length defect of the IAA biosynthesis quintuple mutant yucQ. Therefore, we propose that melatonin promotes primary root growth in an IAA-dependent manner.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, The Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430071, China
| | - Jinzhu Li
- College of Life Sciences, Northwest A& F University, Yangling Shaanxi, 712100, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
31
|
Ahmad S, Kamran M, Zhou X, Ahmad I, Meng X, Javed T, Iqbal A, Wang G, Su W, Wu X, Ahmad P, Han Q. Melatonin improves the seed filling rate and endogenous hormonal mechanism in grains of summer maize. PHYSIOLOGIA PLANTARUM 2021; 172:1059-1072. [PMID: 33206390 DOI: 10.1111/ppl.13282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
The unpredictable precipitation and water deficit conditions in semiarid regions significantly reduce the yield of summer maize. The exogenous application of plant growth regulators can be used as a strategy to enhance plant stress tolerance and improve the growth and yield of maize under semiarid conditions. Here, we studied the protective role of melatonin application on maize yield using grain filling rate and hormonal crosstalk in maize grains. In the first field experiment, seeds were soaked with melatonin at a concentration of 0 (SM0 ), 25 (SM1 ), 50 (SM2 ), and 75 μM (SM3 ) μM. In contrast, in the second experiment, melatonin was applied on the foliage at the ninth leaf stage at a concentration of 0 (FM0 ), 25 (FM1 ), 50 (FM2 ), and 75 (FM3 ) μM. Our findings showed that melatonin treatments as seed soaking significantly increased single seed weight, seed filling rate in superior, medium and inferior seeds by regulating the hormone levels compared to foliar application. Application of melatonin significantly increased the zeatin+zeatin riboside (Z+ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA) contents. However, it significantly inhibited the contents of abscisic acid (ABA) during the seed filling period. The content of Z+ZR, IAA, and GA was positively correlated with the maximum seed filling rate, seed weight, and mean filling rate in middle, superior and lower seeds, while the ABA was negatively correlated. The ABA content in inferior seeds was positively correlated with the maximum and mean seed filling rate. In semiarid regions, melatonin treatment of SM2 and FM2 significantly increased the dry matter per plant, 100-grain weight, seed filling rate, IAA, Z+ZR, GA contents, ear characteristics, and maize yield.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Key Laboratory of Crop Physio-ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
- National Demonstration Centre for Experimental Plant Science Education, Agricultural College of Guangxi University, Nanning, China
| | - Muhammad Kamran
- Key Laboratory of Crop Physio-ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xunbo Zhou
- National Demonstration Centre for Experimental Plant Science Education, Agricultural College of Guangxi University, Nanning, China
| | - Irshad Ahmad
- Key Laboratory of Crop Physio-ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
| | - Xiangping Meng
- Key Laboratory of Crop Physio-ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
| | - Tehseen Javed
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
- College of Water Resources and Architectural Engineering, Northwest Agriculture and Forestry University, Yangling, China
| | - Anas Iqbal
- National Demonstration Centre for Experimental Plant Science Education, Agricultural College of Guangxi University, Nanning, China
| | - Guoyun Wang
- National Demonstration Centre for Experimental Plant Science Education, Agricultural College of Guangxi University, Nanning, China
| | - Wennan Su
- Key Laboratory of Crop Physio-ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
| | - Xiaorong Wu
- Key Laboratory of Crop Physio-ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College, Pune, India
| | - Qingfang Han
- Key Laboratory of Crop Physio-ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Xin Chi Y, Yang L, Jiang Zhao C, Muhammad I, Bo Zhou X, De Zhu H. Effects of soaking seeds in exogenous vitamins on active oxygen metabolism and seedling growth under low-temperature stress. Saudi J Biol Sci 2021; 28:3254-3261. [PMID: 34121863 PMCID: PMC8176085 DOI: 10.1016/j.sjbs.2021.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 01/24/2023] Open
Abstract
This study investigated the influence of the exogenous application of vitamin B2 (VB2), B12 (VB12), biotin (VH), and nicotinic acid (VPP) on oxygen production in maize (Zea mays L.) seedlings at 5 °C for day 1, 3, 5 and 7. The seeds were soaked in VB2, VB12, VH, and VPP solutions for 24 h at the concentration of 100 mg/L, and control was soaked in distilled water. A total of 50 seeds were used for each treatment in germination boxes was repeated three times. The germination box was placed in a hypothermic incubator for 1, 3, 5, and 7 days in the dark at 5 °C, then moved to a plant growth room and kept for seven days. Compared with the VH and VPP treatments, the VB2 and VB12 treatments had higher thiobarbituric acid reactive substances, proline, and soluble sugars. The VB2 and VB12 treatments also increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) than other treatments. The VB2 and VB12 treatments reduced the contents of hydrogen peroxide (H2O2 -), superoxide anion (O2 -), and the damage of reactive oxygen species (ROS) to cells, increased the stability of the cell membrane and the content of cell osmoregulation substances. Moreover, VB2 and VB12 had higher seedling growth, germination rate, and index. Treatments VB2 and VB12 could promote maize seed germination and growth under low-temperature stress. Exogenous vitamins in crop production can be a valuable tool for protecting plants against low-temperature stress.
Collapse
Affiliation(s)
- Yu Xin Chi
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Agricultural College of Guangxi University, Nanning 530004, China
| | - Li Yang
- Agricultural College of Guangxi University, Nanning 530004, China
| | - Chang Jiang Zhao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Corresponding author at: College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China (C. Jiang Zhao); Agricultural College of Guangxi University, Nanning 530004, China (X. Bo Zhou).
| | - Ihsan Muhammad
- Agricultural College of Guangxi University, Nanning 530004, China
| | - Xun Bo Zhou
- Agricultural College of Guangxi University, Nanning 530004, China
- Corresponding author at: College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China (C. Jiang Zhao); Agricultural College of Guangxi University, Nanning 530004, China (X. Bo Zhou).
| | - Hong De Zhu
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
33
|
Yan H, Mao P. Comparative Time-Course Physiological Responses and Proteomic Analysis of Melatonin Priming on Promoting Germination in Aged Oat ( Avena sativa L.) Seeds. Int J Mol Sci 2021; 22:ijms22020811. [PMID: 33467472 PMCID: PMC7830126 DOI: 10.3390/ijms22020811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
Melatonin priming is an effective strategy to improve the germination of aged oat (Avena sativa L.) seeds, but the mechanism involved in its time-course responses has remained largely unknown. In the present study, the phenotypic differences, ultrastructural changes, physiological characteristics, and proteomic profiles were examined in aged and melatonin-primed seed (with 10 μM melatonin treatment for 12, 24, and 36 h). Thus, 36 h priming (T36) had a better remediation effect on aged seeds, reflecting in the improved germinability and seedlings, relatively intact cell ultrastructures, and enhanced antioxidant capacity. Proteomic analysis revealed 201 differentially abundant proteins between aged and T36 seeds, of which 96 were up-accumulated. In melatonin-primed seeds, the restoration of membrane integrity by improved antioxidant capacity, which was affected by the stimulation of jasmonic acid synthesis via up-accumulation of 12-oxo-phytodienoic acid reductase, might be a candidate mechanism. Moreover, the relatively intact ultrastructures enabled amino acid metabolism and phenylpropanoid biosynthesis, which were closely associated with energy generation through intermediates of pyruvate, phosphoenolpyruvate, fumarate, and α-ketoglutarate, thus providing energy, active amino acids, and secondary metabolites necessary for germination improvement of aged seeds. These findings clarify the time-course related pathways associated with melatonin priming on promoting the germination of aged oat seeds.
Collapse
Affiliation(s)
- Huifang Yan
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China;
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Peisheng Mao
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China;
- Correspondence: ; Tel.: +86-010-62733311
| |
Collapse
|
34
|
Zhao C, Guo H, Wang J, Wang Y, Zhang R. Melatonin Enhances Drought Tolerance by Regulating Leaf Stomatal Behavior, Carbon and Nitrogen Metabolism, and Related Gene Expression in Maize Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:779382. [PMID: 34966404 PMCID: PMC8710518 DOI: 10.3389/fpls.2021.779382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 05/07/2023]
Abstract
It is commonly known that exogenously applied melatonin can alleviate the impact of drought stress, but the mechanism used by melatonin to regulate stomatal behavior and carbon (C) and nitrogen (N) metabolism to increase drought resistance remains elusive. Herein, our aim was to investigate the influence of exogenous melatonin on the regulation of C and N metabolism in maize plants under water deficit. In this study, we analyzed stomatal behavior, the key components of C and N metabolism, and the gene expression and activity of enzymes involved in the C and N metabolism in maize plants. The results showed that the application of melatonin (100 μM) significantly increased maize growth and sustained the opening of stomata, and secondarily increased the photosynthetic capacity in maize. Under drought stress, foliar application of melatonin induced the gene transcription and activities of sucrose phosphate synthetase, ADP-glucose pyrophosphorylase, phosphoenolpyruvate carboxylase, and citrate synthase, resulting in the enhancement of sucrose and starch synthesis and the tricarboxylic acid (TCA) cycle. This enhancement in sugar biosynthesis and the TCA cycle might lead to stronger N assimilation. As anticipated, NO3 - reduction and NH4 + assimilation were also strengthened after melatonin treatment under drought stress. An increase was observed in some key enzymatic activities and transcription involved in nitrogen metabolism, such as that of nitrate reductase, nitrite reductase, glutamate synthase, and glutamine synthetase, in melatonin-treated, drought-stressed maize. Moreover, melatonin attenuated the drought-induced damage by reducing protein degradation and increasing the level of proline. Conclusively, our results indicate that exogenous melatonin enhances drought tolerance in maize via promoting stomatal opening and regulating C and N metabolism and related gene expression.
Collapse
|
35
|
Tan XL, Zhao YT, Shan W, Kuang JF, Lu WJ, Su XG, Tao NG, Lakshmanan P, Chen JY. Melatonin delays leaf senescence of postharvest Chinese flowering cabbage through ROS homeostasis. Food Res Int 2020; 138:109790. [PMID: 33288176 DOI: 10.1016/j.foodres.2020.109790] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) trigger and accelerate leaf senescence. Melatonin, a low molecular compound with several biological functions in plants, is known to delay leaf senescence in different species, including Chinese flowering cabbage. However, the mechanism(s) underpinning melatonin-delayed leaf senescence remains unclear. Here, we found that melatonin lowered the expression of chlorophyll catabolic genes (BrPAO and BrSGR1) and senescence-associated genes (BrSAG12 and BrSEN4), decreased chlorophyll loss, minimized the alteration in Fv/Fm ratio and remarkably delayed senescence of Chinese flowering cabbage after harvest. Moreover, the over-accumulation of O2•-, hydrogen peroxide (H2O2) and malondialdehyde contents and the expression of respiratory burst oxidase homologues (RBOH) genes (BrRbohB, BrRbohC, BrRbohD, BrRbohD2 and BrRbohE) were significantly inhibited by melatonin treatment. Melatonin-treated cabbages also showed higher O2•-, OH• and DPPH radical scavenging capacity and enhanced activities of peroxidase (POD), superoxide dismutase (SOD) and their gene expressions. Up-regulation of key components of ascorbate-glutathione (AsA-GSH) cycle, the metabolic pathway that detoxify H2O2, was also observed in melatonin-treated cabbages. These findings suggest that melatonin-delayed postharvest leaf senescence of postharvest Chinese flowering cabbage may be mediated, at least in part, by maintaining ROS homeostasis through restraining RBOHs-catalyzed ROS production and enhancing the activity of ROS-scavenging system including major antioxidant enzymes and AsA-GSH cycle.
Collapse
Affiliation(s)
- Xiao-Li Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China; School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Ya-Ting Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Xin-Guo Su
- Guangdong AIB Polytechnic, Guangzhou, 510507, China.
| | - Neng-Guo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin (CAGD), College of Resources and Environment, Southwest University, Chongqing 400715, China; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, St Lucia 4072, Australia
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
36
|
Yang L, Sun Q, Wang Y, Chan Z. Global transcriptomic network of melatonin regulated root growth in Arabidopsis. Gene 2020; 764:145082. [PMID: 32858176 DOI: 10.1016/j.gene.2020.145082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Melatonin functions as a plant growth regulator in a concentration-dependent manner. In this study, we investigated the effects of melatonin on root growth and dissected underlined mechanisms. The results showed that melatonin up to 1000 μM inhibited primary root growth, but promoted lateral root development. Through RNA sequencing analysis, functions of differentially expressed genes were mainly involved in stress response, signaling transduction, transport, hormone metabolism and amino acid metabolism. Genes involving in jasmonate (JA), brassinosteroid (BR) and cytokinin (CK) biosynthesis were inhibited, but these in ethylene (ET), strigolactone (SL) and gibberellins (GA) biosynthetic pathways were activated after melatonin treatment. The majority of zinc finger proteins (ZFPs), Calmodulin-like (CMLs), NAM, ATAF1/2, and CUC2 (NACs) and ubiquitination related genes (RING/U-box and F-box) were upregulated, which possibly acted downstream of integrated hormone signals to mediate root growth. This study characterized melatonin modulated networks in regulating root growth.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qi Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|