1
|
Abbas H, Derkaoui DK, Jeammet L, Adicéam E, Tiollier J, Sicard H, Braun T, Poyet JL. Apoptosis Inhibitor 5: A Multifaceted Regulator of Cell Fate. Biomolecules 2024; 14:136. [PMID: 38275765 PMCID: PMC10813780 DOI: 10.3390/biom14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Apoptosis, or programmed cell death, is a fundamental process that maintains tissue homeostasis, eliminates damaged or infected cells, and plays a crucial role in various biological phenomena. The deregulation of apoptosis is involved in many human diseases, including cancer. One of the emerging players in the intricate regulatory network of apoptosis is apoptosis inhibitor 5 (API5), also called AAC-11 (anti-apoptosis clone 11) or FIF (fibroblast growth factor-2 interacting factor). While it may not have yet the same level of notoriety as some other cancer-associated proteins, API5 has garnered increasing attention in the cancer field in recent years, as elevated API5 levels are often associated with aggressive tumor behavior, resistance to therapy, and poor patient prognosis. This review aims to shed light on the multifaceted functions and regulatory mechanisms of API5 in cell fate decisions as well as its interest as therapeutic target in cancer.
Collapse
Affiliation(s)
- Hafsia Abbas
- Université Oran 1, Ahmed Ben Bella, Oran 31000, Algeria; (H.A.); (D.K.D.)
| | | | - Louise Jeammet
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Emilie Adicéam
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Jérôme Tiollier
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Hélène Sicard
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, EA3518, Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, 75010 Paris, France;
- AP-HP, Service d’Hématologie Clinique, Hôpital Avicenne, Université Paris XIII, 93000 Bobigny, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75010 Paris, France
- Université Paris Cité, 75015 Paris, France
| |
Collapse
|
2
|
Cruz-Gregorio A, Aranda-Rivera AK, Sciutto E, Fragoso G, Pedraza-Chaverri J. Redox state associated with antitumor and immunomodulatory peptides in cancer. Arch Biochem Biophys 2022; 730:109414. [PMID: 36174750 DOI: 10.1016/j.abb.2022.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Cancer, a major public health problem, is the fourth cause of death in the world. While cancer mortality has decreased in recent decades due to more effective treatments, mostly based on improving antitumor immunity, some forms of cancer are resistant to these immunotherapies. A promising approach for cancer treatment involves the administration of antitumor and immunomodulatory peptides. Immunomodulatory peptides have been proved to exert antitumor and immunomodulatory effects by activating immune cells such as cytotoxic T cells, with fewer side-effects. A process closely related to the regulation of the immune system by immunomodulatory antitumor peptides is the modulation of the redox state, which has been poorly studied. This review focuses on the redox state regulated by antitumor and immunomodulatory peptides in cancer development, and on the potential of redox state as a therapy associated with these peptides in cancer treatment.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ana Karina Aranda-Rivera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Hu X, Li R, Chen J, Mu Q. Synthesis and anti‐hepatocellular carcinoma activity
in vitro
of cyclic peptide
GG
‐8‐6 analogues. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao‐Zhi Hu
- School of Pharmacy Fudan University Shanghai China
| | | | - Jie‐Tao Chen
- School of Pharmacy Fudan University Shanghai China
| | - Qing Mu
- School of Pharmacy Fudan University Shanghai China
| |
Collapse
|
4
|
Demin AM, Vakhrushev AV, Tumashov AA, Krasnov VP. Synthesis of glutaryl-containing derivatives of GRGD and KRGD peptides. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2705-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Komarnicka UK, Kozieł S, Zabierowski P, Kruszyński R, Lesiów MK, Tisato F, Porchia M, Kyzioł A. Copper(I) complexes with phosphines P(p-OCH3-Ph)2CH2OH and P(p-OCH3-Ph)2CH2SarGly. Synthesis, multimodal DNA interactions, and prooxidative and in vitro antiproliferative activity. J Inorg Biochem 2020; 203:110926. [DOI: 10.1016/j.jinorgbio.2019.110926] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
|
6
|
Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking. Bioorg Chem 2019; 87:252-264. [PMID: 30908968 DOI: 10.1016/j.bioorg.2019.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
Abstract
A novel series of amino acids conjugated quinazolinone-Schiff's bases were synthesized and screened for their in vitro anticancer activity and validated by molecular docking and DNA binding studies. In the present investigations, compounds 32, 33, 34, 41, 42 and 43 showed most potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to doxorubicin and ethidium bromide as a positive control respectively. The structure-activity relationship (SAR) revealed that the tryptophan and phenylalanine derived electron donating groups (OH and OCH3) favored DNA binding studies and anticancer activity whereas; electron withdrawing groups (Cl, NO2, and F) showed least anticancer activity. The molecular docking study, binding interactions of the most active compounds 33, 34, 42 and 43 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed.
Collapse
|
7
|
Selective Cu(I) complex with phosphine-peptide (SarGly) conjugate contra breast cancer: Synthesis, spectroscopic characterization and insight into cytotoxic action. J Inorg Biochem 2018; 186:162-175. [PMID: 29945023 DOI: 10.1016/j.jinorgbio.2018.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022]
Abstract
The main disadvantage of conventional anticancer chemotherapy is the inability to deliver the correct amount of drug directly to cancer. Those molecular delivering systems are very important to destroy cancer cells selectively. Herein we report synthesis of phosphine-peptide conjugate (Ph2PCH2-Sar-Gly-OH, PSG) derived from SarGly (sarcosine-glycine), which can be easily exchanged to other peptide carriers, its oxide (OPh2PCH2-Sar-Gly-OH, OPSG) and the first copper(I) complex ([CuI(dmp)(P(Ph)2CH2-Sar-Gly-OH)], 1-PSG, where dmp stands for 2,9-dimethyl-1,10-phenanthroline). The compounds were characterized by elemental analysis, NMR (1D, 2D), UV-Vis spectroscopy and DFT (Density Functional Theory) methods. PSG and 1-PSG proved to be stable in biological medium in the presence of atmospheric oxygen for several days. The cytotoxicity of the compounds and cisplatin was tested against cancer cell lines: mouse colon carcinoma (CT26; 1-PSGIC50 = 3.12 ± 0.1), human lung adenocarcinoma (A549; 1-PSGIC50 = 2.01 ± 0.2) and human breast adenocarcinoma (MCF7; 1-PSGIC50 = 0.98 ± 0.2) as well as against primary line of human pulmonary fibroblasts (MRC-5; 1-PSGIC50 = 78.56 ± 1.1). Therapeutic index for 1-PSG (MCF7) equals 80. Intracellular accumulation of 1-PSG complex increased with time and was much higher (96%) inside MCF7 cancer cells than in normal MRC5 cells (20%). Attachment of SarGly to cytotoxic copper(I) complex via phosphine motif improved selectivity of copper(I) complex 1-PSG into the cancer cells. Precise mechanistic study revealed that the 1-PSG complex causes apoptotic cells MCF7 death with simultaneous decrease of mitochondrial membrane potential and increase of caspase-9 and -3 activities. Additionally, 1-PSG generated high level of reactive oxygen species that was the reason for oxidative damages to the sugar-phosphate backbone of plasmid DNA.
Collapse
|
8
|
Chen JT, Ma R, Sun SC, Zhu XF, Xu XL, Mu Q. Synthesis and biological evaluation of cyclopeptide GG-8-6 and its analogues as anti-hepatocellular carcinoma agents. Bioorg Med Chem 2017; 26:609-622. [PMID: 29310863 DOI: 10.1016/j.bmc.2017.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
GG-8-6, cyclo-(Val-Leu-Pro-Ile-Leu-Leu-Leu-Val-Leu, compound 1), and its twelve analogues (compound 2-13) were synthesized based on the lead compound Grifficyclocin B, a cyclic peptide with anti-tumor activity which was isolated from the plants of Goniothalamus species (Annonaceae). The bioassay results showed that these synthetic cyclopeptides exhibited different extent of cytotoxicity against human hepatocellular carcinoma cell lines. Among them, GG-8-6 (1) was the most active compound with IC50 values of 6.38 μM and 12.22 μM against SMMC-7721 and HepG2, respectively. Further studies on the mechanism demonstrated that GG-8-6 (1) could induce apoptosis and G2/M arrest of HCC cells, and the activation of caspase pathways was probably involved. In vivo anti-tumor experiments showed that GG-8-6 (1) could significantly inhibit the growth of tumor in the mouse xenograft tumor model. At the dose of 40 mg/kg, the inhibition ratio was 67.9% without weight loss. Our results suggested that GG-8-6 (1), a new cyclic peptide, might be a potential candidate for developing new anti-HCC drug in the coming future.
Collapse
Affiliation(s)
- Jie-Tao Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ru Ma
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shi-Chang Sun
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao-Feng Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao-Li Xu
- Hospital Fudan University, Shanghai 201203, China
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
9
|
Zhu M, Harshbarger WD, Robles O, Krysiak J, Hull KG, Cho SW, Richardson RD, Yang Y, Garcia A, Spiegelman L, Ramirez B, Wilson CT, Yau JA, Moore JT, Walker CB, Sacchettini JC, Liu WR, Sieber SA, Smith JW, Romo D. A strategy for dual inhibition of the proteasome and fatty acid synthase with belactosin C-orlistat hybrids. Bioorg Med Chem 2017; 25:2901-2916. [PMID: 28236510 PMCID: PMC5522751 DOI: 10.1016/j.bmc.2017.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/13/2017] [Indexed: 11/21/2022]
Abstract
The proteasome, a validated cellular target for cancer, is central for maintaining cellular homeostasis, while fatty acid synthase (FAS), a novel target for numerous cancers, is responsible for palmitic acid biosynthesis. Perturbation of either enzymatic machine results in decreased proliferation and ultimately cellular apoptosis. Based on structural similarities, we hypothesized that hybrid molecules of belactosin C, a known proteasome inhibitor, and orlistat, a known inhibitor of the thioesterase domain of FAS, could inhibit both enzymes. Herein, we describe proof-of-principle studies leading to the design, synthesis and enzymatic activity of several novel, β-lactone-based, dual inhibitors of these two enzymes. Validation of dual enzyme targeting through activity-based proteome profiling with an alkyne probe modeled after the most potent inhibitor, and preliminary serum stability studies of selected derivatives are also described. These results provide proof of concept for dual targeting of the proteasome and fatty acid synthase-thioesterase (FAS-TE) enabling a new approach for the development of drug-candidates with potential to overcome resistance.
Collapse
Affiliation(s)
- Mingzhao Zhu
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Wayne D Harshbarger
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Omar Robles
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Joanna Krysiak
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Kenneth G Hull
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Sung Wook Cho
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | | | - Yanyan Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Andres Garcia
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Lindsey Spiegelman
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Bianca Ramirez
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | | | - Ju Anne Yau
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - James T Moore
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Caitlen B Walker
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - James C Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Stephan A Sieber
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Jeffrey W Smith
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Daniel Romo
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
10
|
Rabaça AN, Arruda DC, Figueiredo CR, Massaoka MH, Farias CF, Tada DB, Maia VC, Silva Junior PI, Girola N, Real F, Mortara RA, Polonelli L, Travassos LR. AC-1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model. FEBS Open Bio 2016; 6:885-901. [PMID: 27642552 PMCID: PMC5011487 DOI: 10.1002/2211-5463.12080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022] Open
Abstract
Antibody‐derived peptides modulate functions of the immune system and are a source of anti‐infective and antitumor substances. Recent studies have shown that they comprise amino acid sequences of immunoglobulin complementarity‐determining regions, but also fragments of constant regions. VH CDR3 of murine mAb AC‐1001 displays antimetastatic activities using B16F10‐Nex2 murine melanoma cells in a syngeneic model. The peptide was cytotoxic in vitro in murine and human melanoma cells inducing reactive oxygen species (ROS) and apoptosis by the intrinsic pathway. Signs of autophagy were also suggested by the increased expression of LC3/LC3II and Beclin 1 and by ultrastructural evidence. AC‐1001 H3 bound to both G‐ and F‐actin and inhibited tumor cell migration. These results are important evidence of the antitumor activity of Ig CDR‐derived peptides.
Collapse
Affiliation(s)
- Aline N Rabaça
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Denise C Arruda
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil; Núcleo Integrado de Biotecnologia Universidade de Mogi das Cruzes Brazil
| | - Carlos R Figueiredo
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Mariana H Massaoka
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Camyla F Farias
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Dayane B Tada
- Departamento de Ciência e Tecnologia Universidade Federal de São Paulo (UNIFESP) São José dos Campos Brazil
| | | | - Pedro I Silva Junior
- Laboratório Especial de Toxinologia Aplicada Instituto Butantan São Paulo Brazil
| | - Natalia Girola
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Fernando Real
- Departamento de Parasitologia Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Renato A Mortara
- Departamento de Parasitologia Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Luciano Polonelli
- Microbiology and Virology Unit Department of Biomedical Biotechnological and Translational Sciences Universitá degli Studi di Parma Italy
| | - Luiz R Travassos
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| |
Collapse
|
11
|
Wei Y, Huang D, Hu Y, Wang K, Hu C. The Influences of a Targeting Peptide on the Ovarian Cancer Cell Motility. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
|
13
|
He XQ, Guan J, Liu F, Li J, He MR. Identification of the sAPRIL binding peptide and its growth inhibition effects in the colorectal cancer cells. PLoS One 2015; 10:e0120564. [PMID: 25826583 PMCID: PMC4380366 DOI: 10.1371/journal.pone.0120564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/05/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) super family. It binds to its specific receptors and is involved in multiple processes during tumorigenesis and tumor cells proliferation. High levels of APRIL expression are closely correlated to the growth, metastasis, and 5-FU drug resistance of colorectal cancer. The aim of this study was to identify a specific APRIL binding peptide (BP) able to block APRIL activity that could be used as a potential treatment for colorectal cancer. METHODS A phage display library was used to identify peptides that bound selectively to soluble recombinant human APRIL (sAPRIL). The peptides with the highest binding affinity for sAPRIL were identified using ELISA. The effects of sAPRIL-BP on cell proliferation and cell cycle/apoptosis in vitro were evaluated using the CCK-8 assay and flow cytometry, respectively. An in vivo mouse model of colorectal cancer was used to determine the anti-tumor efficacy of the sAPRIL-BP. RESULTS Three candidate peptides were characterized from eight phage clones with high binding affinity for sAPRIL. The peptide with the highest affinity was selected for further characterization. The identified sAPRIL-BP suppressed tumor cell proliferation and cell cycle progression in LOVO cells in a dose-dependent manner. In vivo in a mouse colorectal challenge model, the sAPRIL-BP reduced the growth of tumor xenografts in nude mice by inhibiting proliferation and inducing apoptosis intratumorally. Moreover, in an in vivo metastasis model, sAPRIL-BP reduced liver metastasis of colorectal cancer cells. CONCLUSIONS sAPRIL-BP significantly suppressed tumor growth in vitro and in vivo and might be a candidate for treating colorectal cancers that express high levels of APRIL.
Collapse
Affiliation(s)
- Xiao-qing He
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Oncology Department, Wuzhou Red Cross Hospital, Wuzhou 543002, Guangxi Province, China
| | - Jing Guan
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Army Reserve Anti-aircraft Artillery Hospital, Zhengzhou 450002, Henan Province, China
| | - Fang Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Mei-rong He
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- * E-mail:
| |
Collapse
|
14
|
Kudryavtsev KV, Yu CC, Ivantcova PM, Polshakov VI, Churakov AV, Bräse S, Zefirov NS, Guh JH. Structural Studies and Anticancer Activity of a Novel Class of β-Peptides. Chem Asian J 2014; 10:383-9. [DOI: 10.1002/asia.201403171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Indexed: 11/10/2022]
|
15
|
Li Z, Lebedyeva I, Zhao D, Myers L, Pillai GG, Hall CD, Katritzky AR. Synthesis of L-Lys-Aminoxy-Goralatide. J Pept Sci 2014; 20:923-7. [PMID: 25331328 DOI: 10.1002/psc.2702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/15/2014] [Accepted: 08/27/2014] [Indexed: 11/09/2022]
Abstract
Natural tetrapeptide Goralatide inhibits primitive hematopoietic cell proliferation but reported to be rather unstable in solution (half-life 4.5 min). In this work, we report the synthesis of an aminoxy analog of Goralatide. Aminoxy moiety is expected to provide increased stability and bioavailability of the Goralatide analog.
Collapse
Affiliation(s)
- Zhiliang Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, PO Box: 117200, Gainesville, FL, 32611-7200, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
|
18
|
Wang JH, Liu YL, Ning JH, Yu J, Li XH, Wang FX. Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities? J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Villalonga P, Fernández de Mattos S, Ramis G, Obrador-Hevia A, Sampedro A, Rotger C, Costa A. Cyclosquaramides as Kinase Inhibitors with Anticancer Activity. ChemMedChem 2012; 7:1472-80. [DOI: 10.1002/cmdc.201200157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/15/2012] [Indexed: 11/11/2022]
|
20
|
Efficacy of continuously administered PEDF-derived synthetic peptides against osteosarcoma growth and metastasis. J Biomed Biotechnol 2012; 2012:230298. [PMID: 22701300 PMCID: PMC3369529 DOI: 10.1155/2012/230298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/18/2012] [Accepted: 02/19/2012] [Indexed: 12/20/2022] Open
Abstract
The potent antiangiogenic pigment epithelium-derived factor (PEDF) has shown promise against osteosarcoma, a tumour that originates in the bone and metastasises to the lungs. Neurotrophic, antiangiogenic, antiproliferative, and antimetastatic properties of PEDF have been attributed to a number of functional epitopes on the PEDF glycoprotein. StVOrth-2 (residues 78–102) and StVOrth-3 (residues 90–114) are two PEDF-derived peptides based on these functional epitopes. StVOrth-2 has previously been shown to inhibit osteosarcoma cell proliferation, while StVOrth-3 increased osteosarcoma cell adhesion to collagen I in vitro. In this paper, we have evaluated systemically and continuously delivered StVOrth-2 and StVOrth-3 using a clinically relevant murine model of osteosarcoma with spontaneous metastasis. Treatment with StVOrth-2 or StVOrth-3 with microosmotic pumps was initiated after primary osteosarcoma was established in the tibia. While treatment with StVOrth-2 and StVOrth-3 did not appear to affect local tumour invasion, tumour necrosis or apoptosis, StVOrth-2 predominantly restricted the growth of primary tumours, while StVOrth-3 restricted the burden of pulmonary metastatic disease. No peptide caused gross toxicity in mouse tissues as assessed by measuring weight of animals, serum biochemistry, and gross tissue observation. The differential effects exhibited by StVOrth-2 and StVOrth-3 in this orthotopic model of osteosarcoma may be related to the functional epitopes on the PEDF glycoprotein that they represent.
Collapse
|
21
|
Parallel synthesis of peptide-like macrocycles containing imidazole-4,5-dicarboxylic acid. Molecules 2012; 17:5346-62. [PMID: 22569415 PMCID: PMC6268944 DOI: 10.3390/molecules17055346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/26/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
We prepared a series of peptide-like 14-membered macrocycles containing an imidazole-4,5-dicarboxylic acid scaffold by using known coupling reagents and protecting group strategies. Yields of the purified macrocycles were poor on average, yet seemingly independent of amino acid substitution or stereochemistry. The macrocycles retain some level of conformational variability as observed by both molecular modeling and X-ray crystallography. These macrocycles represent a new class of structures for further development and for future application in high-throughput screening against a variety of biological targets.
Collapse
|
22
|
Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob Agents Chemother 2012; 56:3004-10. [PMID: 22391524 DOI: 10.1128/aac.06262-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well known that cationic antimicrobial peptides (cAMPs) are potential microbicidal agents for the increasing problem of antimicrobial resistance. However, the physicochemical properties of each peptide need to be optimized for clinical use. To evaluate the effects of dimerization on the structure and biological activity of the antimicrobial peptide Ctx-Ha, we have synthesized the monomeric and three dimeric (Lys-branched) forms of the Ctx-Ha peptide by solid-phase peptide synthesis using a combination of 9-fluorenylmethyloxycarbonyl (Fmoc) and t-butoxycarbonyl (Boc) chemical approaches. The antimicrobial activity assay showed that dimerization decreases the ability of the peptide to inhibit growth of bacteria or fungi; however, the dimeric analogs displayed a higher level of bactericidal activity. In addition, a dramatic increase (50 times) in hemolytic activity was achieved with these analogs. Permeabilization studies showed that the rate of carboxyfluorescein release was higher for the dimeric peptides than for the monomeric peptide, especially in vesicles that contained sphingomyelin. Despite different biological activities, the secondary structure and pore diameter were not significantly altered by dimerization. In contrast to the case for other dimeric cAMPs, we have shown that dimerization selectively decreases the antimicrobial activity of this peptide and increases the hemolytic activity. The results also show that the interaction between dimeric peptides and the cell wall could be responsible for the decrease of the antimicrobial activity of these peptides.
Collapse
|
23
|
Arruda DC, Santos LCP, Melo FM, Pereira FV, Figueiredo CR, Matsuo AL, Mortara RA, Juliano MA, Rodrigues EG, Dobroff AS, Polonelli L, Travassos LR. β-Actin-binding complementarity-determining region 2 of variable heavy chain from monoclonal antibody C7 induces apoptosis in several human tumor cells and is protective against metastatic melanoma. J Biol Chem 2012; 287:14912-22. [PMID: 22334655 DOI: 10.1074/jbc.m111.322362] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Complementarity-determining regions (CDRs) from monoclonal antibodies tested as synthetic peptides display anti-infective and antitumor activities, independent of the specificity of the native antibody. Previously, we have shown that the synthetic peptide C7H2, based on the heavy chain CDR 2 from monoclonal antibody C7, a mAb directed to a mannoprotein of Candida albicans, significantly reduced B16F10 melanoma growth and lung colony formation by triggering tumor apoptosis. The mechanism, however, by which C7H2 induced apoptosis in tumor cells remained unknown. Here, we demonstrate that C7H2 interacts with components of the tumor cells cytoskeleton, being rapidly internalized after binding to the tumor cell surface. Mass spectrometry analysis and in vitro validation revealed that β-actin is the receptor of C7H2 in the tumor cells. C7H2 induces β-actin polymerization and F-actin stabilization, linked with abundant generation of superoxide anions and apoptosis. Major phenotypes following peptide binding were chromatin condensation, DNA fragmentation, annexin V binding, lamin disruption, caspase 8 and 3 activation, and organelle alterations. Finally, we evaluated the cytotoxic efficacy of C7H2 in a panel of human tumor cell lines. All tumor cell lines studied were equally susceptible to C7H2 in vitro. The C7H2 amide without further derivatization significantly reduced lung metastasis of mice endovenously challenged with B16F10-Nex2 melanoma cells. No significant cytotoxicity was observed toward nontumorigenic cell lines on short incubation in vitro or in naïve mice injected with a high dose of the peptide. We believe that C7H2 is a promising peptide to be developed as an anticancer drug.
Collapse
Affiliation(s)
- Denise C Arruda
- Experimental Oncology Unit (UNONEX), Universidade Federal de São Paulo (UNIFESP), São Paulo SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jia L, Guo C, Xiang J, Wang N, Yang L, Tang Y, Liu H. Interaction between PEO-PPO-PEO copolymers and a hexapeptide in aqueous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1725-1732. [PMID: 22185212 DOI: 10.1021/la203693c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Interaction between PEO-PPO-PEO copolymers and a hexapeptide, growth hormone releasing peptide-6 (GHRP-6), was investigated by NMR to study the potential use of the copolymers in peptide drug delivery. (1)H NMR and nuclear Overhauser effect spectroscopy (NOESY) measurements determined that PO methyl protons interacted with methyl protons of the Ala moiety, aromatic protons of the Trp moiety, and some of the Phe aromatic protons. The Lys moiety and part of the Phe moiety entered the hydrophilic EO environment via hydrogen bonding. PEO-PPO-PEO copolymers and the peptide formed a complex in 1:1 stoichiometry. Binding constants between copolymers and GHRP-6 were determined, and it was indicated that the copolymers containing more EO and PO units will lead to greater affinity with the peptide. Isothermal titration calorimetry (ITC) measurements confirmed the results of NMR experiments. This study indicates that PEO-PPO-PEO copolymers have great potential in delivering peptide drugs.
Collapse
Affiliation(s)
- Lianwei Jia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
A new cytotoxic indole-3-ethenamide from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J Antibiot (Tokyo) 2011; 64:679-681. [DOI: 10.1038/ja.2011.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Pérez Y, Mann E, Herradón B. Preparation and characterization of gold nanoparticles capped by peptide–biphenyl hybrids. J Colloid Interface Sci 2011; 359:443-53. [DOI: 10.1016/j.jcis.2011.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/30/2011] [Accepted: 04/09/2011] [Indexed: 01/15/2023]
|
27
|
Pieraccini S, Saladino G, Cappelletti G, Cartelli D, Francescato P, Speranza G, Manitto P, Sironi M. In silico design of tubulin-targeted antimitotic peptides. Nat Chem 2009; 1:642-8. [DOI: 10.1038/nchem.401] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/08/2009] [Indexed: 11/09/2022]
|
28
|
Synthesis of chemically modified bioactive peptides: recent advances, challenges and developments for medicinal chemistry. Future Med Chem 2009; 1:1289-310. [DOI: 10.4155/fmc.09.97] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although not complying with Lipinski’s rule, peptides are to an increasing extent being developed into new active pharmaceutical ingredients. This is mainly due to novel application routes, formulations and chemical modifications, which confer on the peptides improved uptake and increased metabolic stability. A brief survey of currently approved peptide drugs and the present scope of the application of peptides as drugs is provided. Cyclic peptides are emerging as an interesting class of peptides with conformational rigidity and homogeneity, high receptor affinity and selectivity, increased metabolic stability and – in special cases – even oral availability. Challenges and new methodology for the synthesis of cyclic peptides are outlined and an overview of approaches toward the design of peptide conformation and peptide modification by nonproteinogenic building blocks is given.
Collapse
|
29
|
Bhutia SK, Maiti TK. Targeting tumors with peptides from natural sources. Trends Biotechnol 2008; 26:210-7. [PMID: 18295917 DOI: 10.1016/j.tibtech.2008.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 12/12/2007] [Accepted: 01/16/2008] [Indexed: 01/10/2023]
Abstract
Peptide-based therapies offer the potential for non-genotoxic, genotype-specific alternatives, or adjuvants, to the current range of traditional cancer treatments. Such a patient-tailored cancer-cell-directed therapeutic approach should have fewer side effects and could well be more effective than the current drug- or combination-based regimens. Here, we review the potential of novel natural anticancer peptides such as necrotic peptides, apoptotic peptides, function-blocking peptides, antiangiogenic peptides and immunostimulatory peptides in the context of their ability to induce tumor regression. We focus on the therapeutic prospects of anticancer peptides and their possible application in tumor therapy.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | |
Collapse
|
30
|
Jaggi M, Prasad S, Singh AT, Praveen R, Dutt S, Mathur A, Sharma R, Gupta N, Ahuja R, Mukherjee R, Burman AC. Anticancer activity of a peptide combination in gastrointestinal cancers targeting multiple neuropeptide receptors. Invest New Drugs 2008; 26:489-504. [PMID: 18217205 DOI: 10.1007/s10637-008-9117-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/10/2008] [Indexed: 01/31/2023]
Abstract
A novel peptide combination consisting of four synthetic neuropeptide analogs of Vasoactive Intestinal Peptide (VIP), Bombesin, Substance P and Somatostatin has been found to have potent anticancer activity in vitro and in vivo. The receptors of these four neuropeptides are known to be over expressed in various cancers. We have found the presence of native neuropeptides in the culture supernatant of the primary tumor cells of human colon adenocarcinomas. It was further demonstrated by receptor-ligand assays that not only do these tumor cells synthesize and secrete four peptide hormones but also possess specific high affinity receptors on their surface. Screening a large panel of analogs to the four peptide hormones on tumor cell proliferation led to the identification of four cytotoxic analogs, the combination of which was code-named DRF7295. The design and synthesis of the peptide analogs have been described in this paper. In vitro anticancer activity of DRF7295 was studied in a large panel of human tumor cells. Gastrointestinal tumor cells of the colon, pancreas and duodenum were found to be most sensitive to DRF7295 with moderate activity seen in glioblastoma, prostate, leukemia and those of oral cancer cells. Efficacy studies in xenograft models of colon and duodenum resulted in T/C% of less than 40%, which is indicative of strong tumor regressing potential of DRF7295 in gastrointestinal cancers. Acute and long-term toxicity studies as well as safety pharmacology studies conducted indicate the safety of the drug upon systemic administration with no significant adverse pharmacological effects.
Collapse
Affiliation(s)
- Manu Jaggi
- Dabur Research Foundation, 22 Site IV, Sahibabad, Ghaziabad, 201010, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hernández-Ledesma B, Recio I, Amigo L. β-Lactoglobulin as source of bioactive peptides. Amino Acids 2007; 35:257-65. [PMID: 17726638 DOI: 10.1007/s00726-007-0585-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 07/02/2007] [Indexed: 12/24/2022]
Abstract
Beta-lactoglobulin (beta-Lg) is currently an important source of biologically active peptides. These peptides are inactive within the sequence of the precursor protein, but they can be released by in vivo or in vitro enzymatic proteolysis. Once released, these peptides play important roles in the human health, including antihypertensive, antioxidant and antimicrobial activities as well as opioid-like features and ability to decrease the body-cholesterol levels. Bioactive peptides derived from beta-Lg are currently a point of intensive research. Their structure, biological significance and mechanism of action are briefly presented and discussed in this review.
Collapse
|
32
|
Gredicak M, Jerić I. Enediyne compounds - new promises in anticancer therapy. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2007; 57:133-50. [PMID: 17507311 DOI: 10.2478/v10007-007-0011-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scientists of all kinds have long been intrigued by the nature, action and potential of natural toxins that possess exceptional antibacterial and anticancer activities. These compounds, named enediynes, are among the most effective chemotherapeutic agents known. Often compared with intelligent weapons, due to the unique structure and sophisticated mechanism by which they destroy double-helical DNA, enediyne antibiotics are nowadays the most promising leaders in the anticancer therapy. Apart from their diversity, enediyne compounds share some structural and functional similarities. One fragment of a structure is responsible for the recognition and transport, another part acts as molecular trigger while the third, reactive enediyne unit, undergoes Bergman cycloaromatization and causes DNA breakage. Members of the enediyne family are already in clinical use to treat various cancers, but more general use is limited by their complex structure, which makes them formidable targets for synthetic chemists. There are three main approaches in the design of new enediyne-related compounds: improvement of enediyne >>warheads<<, increasing the selectivity and control of chemical or photo-induced activation. This paper gives an overview of naturally occurring enediynes, their mode of action and efforts undertaken to design artificial enediyne-related DNA cleaving agents.
Collapse
Affiliation(s)
- Matija Gredicak
- Ruder Bosković Institute, Division of Organic Chemistry and Biochemistry,10002 Zagreb, Croatia
| | | |
Collapse
|
33
|
Fu Z, Lu R, Jia J, Zhao L, Ma R, Lv JQ, Li XL, Chen LJ, Zhang HL, Wang L, Yao Z. Inhibition of five xenografted human cancers and two murine cancers by the tripeptide tyroservatide. Anticancer Drugs 2007; 18:467-70. [PMID: 17351399 DOI: 10.1097/cad.0b013e328017766a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tripeptide tyroservatide (tyrosyl-seryl-valine, pTyr-Ser-Val-NH2) has been shown to have antitumor effects on experimental hepatocarcinoma. This study aimed to observe the effects of tyroservatide on other five human carcinomas: A549 (nonsmall cell lung carcinoma), BGC-823 (gastric cancer), MCF-7 (breast cancer), K562 (leukemia), A375 (melanoma) and two murine cancers: Lewis lung cancer and B16 (melanoma) in vivo. In vivo nude mice bearing xenografts of five different human tumors or C57BL/6 mice bearing xenografts of two different murine tumors were given daily intraperitoneal injections of tyroservatide or saline as controls, after tumor implantation. The inhibition of xenografts was determined by calculating the tumor volume and measuring tumor weight. Tyroservatide could significantly inhibit the growth of human lung carcinoma A549, human leukemia K562 and human melanoma A375 in nude mice (P<0.05). In addition, tyroservatide significantly inhibited the subcutaneous tumor growth of Lewis lung carcinoma and B16 melanoma (P<0.05). Tyroservatide, however, could not significantly suppress xenografts of BGC-823 and MCF-7 in nude mice (P>0.05). The results obtained indicate that tyroservatide exhibits different effects on different tumors, which will provide clinical applications guidance of tyroservatide as an anticancer drug.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Immunology, Tianjin Medical University bPharmaped Research & Development (Shenzhen) Limited, Guangdong, PRC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Yuanfang Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | |
Collapse
|
35
|
Zubovych I, Doundoulakis T, Harran PG, Roth MG. A missense mutation in Caenorhabditis elegans prohibitin 2 confers an atypical multidrug resistance. Proc Natl Acad Sci U S A 2006; 103:15523-8. [PMID: 17032754 PMCID: PMC1622856 DOI: 10.1073/pnas.0607338103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Indexed: 11/18/2022] Open
Abstract
Hemiasterlin is a potent antimitotic peptide that interferes with microtubule dynamics at picomolar concentrations in cell culture. The molecule largely eludes P glycoprotein-mediated drug efflux, and an analog is currently being evaluated in clinical trials as cancer chemotherapy. From a nonclonal genetic screen in Caenorhabditis elegans we isolated eight independent mutants resistant to a synthetic hemiasterlin analog. In one recessive mutant, phb-2(ad2154), a point mutation in prohibitin 2 (E130K) protects worms from drug-induced injury. Data indicate that direct binding of hemiasterlin to prohibitin 2 is unlikely. In fact, C. elegans phb-2(ad2154) was also found to be resistant to numerous other drugs that bind tubulin and to camptothecin, yet this mutant was sensitive to nocodazole and phalloidin. Thus, prohibitin 2 is implicated in a previously uncharacterized pathway of multidrug resistance.
Collapse
Affiliation(s)
- Iryna Zubovych
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038
| | - Thomas Doundoulakis
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038
| | - Patrick G. Harran
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038
| | - Michael G. Roth
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038
| |
Collapse
|
36
|
Jia J, Lu R, Zhou C, Zhao L, Fu Z, Zhu Z, Wang L, Zheng M, Yang J, Zhang Y, Yao Z. Gene-chip analysis of the effect of tripeptide tyroservatide (YSV) on gene-expression in human hepatocarcinoma BEL-7402 tumors transplanted to nude mice. Mol Carcinog 2006; 45:197-203. [PMID: 16353255 DOI: 10.1002/mc.20172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tyroservatide (YSV) is a bioactive tripeptide of tyrosyl-seryl-valine. In this study, we studied the effects of YSV on human hepatocarcinoma BEL-7402 tumors transplanted in BALB/c (nu/nu) nude mice, and gene expression in the tumor cells with gene-chip analysis. Results show that YSV significantly inhibits the growth of transplanted human hepatocarcinoma BEL-7402 in nude mice (n = 12) compared with the control group (P < 0.05); with an inhibition rate of 55% at 320 microg/kg/d. Seven hundred eighty-one genes were different between the YSV group and the control group. Fifty-two genes changed in expression level by onefold or more including 37 downregulated genes and 15 upregulated genes. Probably, YSV exhibits a significant antitumor activity by inhibiting the expression of tumor cells histone genes, then damaging tumor cell chromosome and killing tumor cells.
Collapse
Affiliation(s)
- Jing Jia
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Horvat S, Mlinarić-Majerski K, Glavas-Obrovac L, Jakas A, Veljković J, Marczi S, Kragol G, Roscić M, Matković M, Milostić-Srb A. Tumor-Cell-Targeted Methionine-enkephalin Analogues Containing Unnatural Amino Acids: Design, Synthesis, and in Vitro Antitumor Activity. J Med Chem 2006; 49:3136-42. [PMID: 16722632 DOI: 10.1021/jm051026+] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of new peptides (8-25) containing different unnatural amino acids of the adamantane type (1-6), was synthesized. Possible cytotoxic activity on human cervical adenocarcinoma (HeLa), larynx carcinoma (HEp-2), colon carcinomas (HT-29, Caco-2), poorly differentiated cells from lymph node metastasis of colon carcinoma (SW-620), mammary gland adenocarcinoma (MCF-7), and melanoma (HBL) cells were tested by the MTT assay. The results were compared with the effect of methionine-enkephalin (Tyr-Gly-Gly-Phe-Met, or opioid growth factor, OGF), and its shorter N-terminal fragments. Peptide analogues containing C(alpha alpha)-dialkylated glycine (Aaa1, 1) or C(alpha)-alkylated glycine (Aaa2, 2) amino acid residues showed antitumor activity against melanoma, larynx carcinoma, colon carcinomas, and colon metastasis cell lines in vitro. The pentapeptide Tyr-(R,S)-Aaa2-Gly-Phe-Met (18) was the most effective analogue especially against the most antitumor drug-resistant cell lines HEp-2 and SW-620. Apoptosis as a mode of cell death was confirmed in these tumor cells after exposure to pentapeptide 18.
Collapse
Affiliation(s)
- Stefica Horvat
- Division of Organic Chemistry and Biochemistry, Ruder Bosković Institute, POB 180, 10002 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shukla GS, Krag DN. Selective delivery of therapeutic agents for the diagnosis and treatment of cancer. Expert Opin Biol Ther 2006; 6:39-54. [PMID: 16370913 DOI: 10.1517/14712598.6.1.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Research activity aimed towards achieving specific and targeted delivery of cancer therapeutics has expanded tremendously in the last decade, resulting in new ways of directing drugs to tumours, as well as new types of drugs. The available strategies exploit differences in the nature of normal and cancer cells and their microenvironment. The discovery and validation of cancer-associated markers, as well as corresponding ligands, is pivotal for developing selective delivery technology for cancer. Although most current clinical trials are either monoclonal antibody- or gene-based, methodological advances in combinatorial libraries of peptides, single chain variable fragments and small organic molecules are expected to change this scenario in the near future. Nanotechnology platforms today allow systematic and modular combinations of therapeutic agents and tumour-binding moieties that may generate novel, personalised agents for selective delivery in cancer. This paper discusses recent developments and future prospects of targeted delivery technologies in the management of cancer.
Collapse
Affiliation(s)
- Girja S Shukla
- Vermont Comprehensive Cancer Center, Department of Surgery, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | |
Collapse
|
39
|
Janin YL. Heat Shock Protein 90 Inhibitors. A Text Book Example of Medicinal Chemistry? J Med Chem 2005; 48:7503-12. [PMID: 16302791 DOI: 10.1021/jm050759r] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yves L Janin
- URA 2128 CNRS-Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
40
|
Glavas-Obrovac L, Jakas A, Marczi S, Horvat S. The influence of cell growth media on the stability and antitumour activity of methionine enkephalin. J Pept Sci 2005; 11:506-11. [PMID: 15685713 DOI: 10.1002/psc.643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies with cultured tumour cell lines are widely used in vitro to evaluate peptide-induced cytotoxicity as well as molecular and biochemical interactions. The objectives of this study were to investigate the influence of the cell culture medium on peptide metabolic stability and in vitro antitumour activity. The degradation kinetics of the model peptide methionine enkephalin (Met-E, Tyr-Gly-Gly-Phe-Met), demonstrated recently to play an important role in the rate of proliferation of tumour cells in vitro and in vivo, were investigated in cell culture systems containing different amounts of fetal bovine serum (FBS). The influence of enzyme inhibitors (bestatin, captopril, thiorphan) on the Met-E degradation was also investigated. The results obtained in the Dulbecco's modified Eagle medium containing 10% FBS indicated a rapid degradation of Met-E (t(1/2) = 2.8 h). Preincubation of the medium with a mixture of peptidase inhibitors reduced the hydrolysis of Met-E, as shown by the increased half-life to 10 h. The in vitro activity of Met-E against poorly differentiated cells from lymph node metastasis of colon carcinoma (SW620) and human larynx carcinoma (HEp-2) cells was determined. Tumour cells were grown for 3 weeks prior to the experiment in a medium supplemented with 10%, 5% or 2% FBS. Statistically significant to mild or no suppression of cell proliferation was observed in all cultures. In both cell lines, a significant suppression of cell growth by a combination of peptidase inhibitors and Met-E, compared with cells exposed to the peptide alone and cells grown in the absence of Met-E, was observed. This study indicated that caution must be exercised in interpreting the antiproliferative effects of peptide compounds in conventional drug-response assays.
Collapse
Affiliation(s)
- Ljubica Glavas-Obrovac
- Department of Nuclear Medicine, Radiation Protection and Pathophysiology, Clinical Hospital Osijek, School of Medicine Osijek, Croatia.
| | | | | | | |
Collapse
|
41
|
Siemion IZ, Kluczyk A, Cebrat M. The peptide molecular links between the central nervous and the immune systems. Amino Acids 2005; 29:161-76. [PMID: 16059661 DOI: 10.1007/s00726-005-0231-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 06/17/2005] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) and the immune system were for many years considered as two autonomous systems. Now, the reciprocal connections between them are generally recognized and very well documented. The links are realized mainly by various immuno- and neuropeptides. In the review the influence of the following immunopeptides on CNS is presented: tuftsin, thymulin, thymopoietin and thymopentin, thymosins, and thymic humoral factor. On the other side, the activity in the immune system of such neuropeptides as substance P, neurotensin, some neurokinins, enkephalins, and endorphins is discussed.
Collapse
Affiliation(s)
- I Z Siemion
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland.
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo CP 780, CEP 13560-970, São Carlos, Brazil.
| | | |
Collapse
|
43
|
Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. JOURNAL OF NATURAL PRODUCTS 2004; 67:1216-1238. [PMID: 15332835 DOI: 10.1021/np040031y] [Citation(s) in RCA: 453] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The marine environment has proven to be a very rich source of extremely potent compounds that have demonstrated significant activities in antitumor, antiinflammatory, analgesia, immunomodulation, allergy, and anti-viral assays. Although the case can and has been made that the nucleosides such as Ara-A and Ara-C are derived from knowledge gained from investigations of bioactive marine nucleosides, no drug directly from marine sources (whether isolated or by total synthesis) has yet made it to the commercial sector in any disease. However, as shown in this review, there are now significant numbers of very interesting molecules that have come from marine sources, or have been synthesized as a result of knowledge gained from a prototypical compound, that are either in or approaching Phase II/III clinical trials in cancer, analgesia, allergy, and cognitive diseases. A substantial number of other potential agents are following in their wake in preclinical trials in these and in other diseases.
Collapse
Affiliation(s)
- David J Newman
- Natural Products Branch, Developmental Therapeutics Program, NCI-Frederick, P.O. Box B, Frederick, Maryland 21702, USA.
| | | |
Collapse
|