1
|
Gettings SM, Timbury W, Dmochowska A, Sharma R, McGonigle R, MacKenzie LE, Miquelard-Garnier G, Bourbia N. Polyethylene terephthalate (PET) micro- and nanoplastic particles affect the mitochondrial efficiency of human brain vascular pericytes without inducing oxidative stress. NANOIMPACT 2024; 34:100508. [PMID: 38663501 DOI: 10.1016/j.impact.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The objective of this investigation was to evaluate the influence of micro- and nanoplastic particles composed of polyethylene terephthalate (PET), a significant contributor to plastic pollution, on human brain vascular pericytes. Specifically, we delved into their impact on mitochondrial functionality, oxidative stress, and the expression of genes associated with oxidative stress, ferroptosis and mitochondrial functions. Our findings demonstrate that the exposure of a monoculture of human brain vascular pericytes to PET particles in vitro at a concentration of 50 μg/ml for a duration of 3, 6 and 10 days did not elicit oxidative stress. Notably, we observed a reduction in various aspects of mitochondrial respiration, including maximal respiration, spare respiratory capacity, and ATP production in pericytes subjected to PET particles for 3 days, with a mitochondrial function recovery at 6 and 10 days. Furthermore, there were no statistically significant alterations in mitochondrial DNA copy number, or in the expression of genes linked to oxidative stress and ferroptosis, but an increase of the expression of the gene mitochondrial transcription factor A (TFAM) was noted at 3 days exposure. These outcomes suggest that, at a concentration of 50 μg/ml, PET particles do not induce oxidative stress in human brain vascular pericytes. Instead, at 3 days exposure, PET exposure impairs mitochondrial functions, but this is recovered at 6-day exposure. This seems to indicate a potential mitochondrial hormesis response (mitohormesis) is incited, involving the gene TFAM. Further investigations are warranted to explore the stages of mitohormesis and the potential consequences of plastics on the integrity of the blood-brain barrier and intercellular interactions. This research contributes to our comprehension of the potential repercussions of nanoplastic pollution on human health and underscores the imperative need for ongoing examinations into the exposure to plastic particles.
Collapse
Affiliation(s)
- Sean M Gettings
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - William Timbury
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Anna Dmochowska
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Riddhi Sharma
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Rebecca McGonigle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Lewis E MacKenzie
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Nora Bourbia
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK.
| |
Collapse
|
2
|
Jîtcă G, Ősz BE, Vari CE, Rusz CM, Tero-Vescan A, Pușcaș A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants (Basel) 2023; 12:antiox12020485. [PMID: 36830042 PMCID: PMC9952814 DOI: 10.3390/antiox12020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox-Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)). At the same time, the antioxidant potential of CBD is due not only to the molecular structure but also to the fact that this compound increases the expression of the main endogenous antioxidant systems, superoxide dismutase (SOD), and glutathione peroxidase (GPx), through the nuclear complex erythroid 2-related factor (Nrf2)/Keep1. Regarding the role in the control of inflammation, this function is exercised by inhibiting (nuclear factor kappa B) NF-κB, and also the genes that encode the expression of molecules with a pro-inflammatory role (cytokines and metalloproteinases). The other effects of CBD on cognitive function and physical performance should not be excluded. In conclusion, the CBD market needs to be regulated more thoroughly, given the previously listed properties, with the mention that the safety profile is a very good one.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amalia Pușcaș
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
3
|
Biomolecular Modifications Linked to Oxidative Stress in Amyotrophic Lateral Sclerosis: Determining Promising Biomarkers Related to Oxidative Stress. Processes (Basel) 2021. [DOI: 10.3390/pr9091667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reduction–oxidation reactions are essential to cellular homeostasis. Oxidative stress transcends physiological antioxidative system damage to biomolecules, including nucleic acids and proteins, and modifies their structures. Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. The cells present in the central nervous system, including motor neurons, are vulnerable to oxidative stress. Neurodegeneration has been demonstrated to be caused by oxidative biomolecular modifications. Oxidative stress has been suggested to be involved in the pathogenesis of ALS. Recent progress in research on the underlying mechanisms of oxidative stress in ALS has led to the development of disease-modifying therapies, including edaravone. However, the clinical effects of edaravone remain limited, and ALS is a heretofore incurable disease. The reason for the lack of reliable biomarkers and the precise underlying mechanisms between oxidative stress and ALS remain unclear. As extracellular proteins and RNAs present in body fluids and represent intracellular pathological neurodegenerative processes, extracellular proteins and/or RNAs are predicted to promise diagnosis, prediction of disease course, and therapeutic biomarkers for ALS. Therefore, we aimed to elucidate the underlying mechanisms between oxidative stress and ALS, and promising biomarkers indicating the mechanism to determine whether therapy targeting oxidative stress can be fundamental for ALS.
Collapse
|
4
|
Zhang D, Xu ZC, Su W, Yang YH, Lv H, Yang H, Lin H. iCarPS: a computational tool for identifying protein carbonylation sites by novel encoded features. Bioinformatics 2021; 37:171-177. [PMID: 32766811 DOI: 10.1093/bioinformatics/btaa702] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Protein carbonylation is one of the most important oxidative stress-induced post-translational modifications, which is generally characterized as stability, irreversibility and relative early formation. It plays a significant role in orchestrating various biological processes and has been already demonstrated to be related to many diseases. However, the experimental technologies for carbonylation sites identification are not only costly and time consuming, but also unable of processing a large number of proteins at a time. Thus, rapidly and effectively identifying carbonylation sites by computational methods will provide key clues for the analysis of occurrence and development of diseases. RESULTS In this study, we developed a predictor called iCarPS to identify carbonylation sites based on sequence information. A novel feature encoding scheme called residues conical coordinates combined with their physicochemical properties was proposed to formulate carbonylated protein and non-carbonylated protein samples. To remove potential redundant features and improve the prediction performance, a feature selection technique was used. The accuracy and robustness of iCarPS were proved by experiments on training and independent datasets. Comparison with other published methods demonstrated that the proposed method is powerful and could provide powerful performance for carbonylation sites identification. AVAILABILITY AND IMPLEMENTATION Based on the proposed model, a user-friendly webserver and a software package were constructed, which can be freely accessed at http://lin-group.cn/server/iCarPS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dan Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Chun Xu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Wei Su
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu-He Yang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lv
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Yang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
5
|
Sunda F, Arowolo A. A molecular basis for the anti-inflammatory and anti-fibrosis properties of cannabidiol. FASEB J 2020; 34:14083-14092. [PMID: 32885502 DOI: 10.1096/fj.202000975r] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Cannabidiol (CBD) is considered a non-psychoactive, antioxidant, and anti-inflammatory compound derived from the Cannabis sativa plant. There are various reports on the versatile function of CBD, including ameliorating chronic inflammation and fibrosis formation in several tissue types. However, only a hand full of studies have proposed or provided a molecular justification for the beneficial properties of this Phyto-compound. This review focused on the anti-inflammation and anti-fibrotic effects of CBD based on modulating the associated chemokines/cytokines and receptor-mediated pathways. We also highlighted the regulatory impact of CBD on reactive oxygen species (ROS) producing-NADPH oxidase (Nox), and ROS scavenging-superoxide dismutase (SOD) enzymes. Although CBD has a low affinity to Cannabinoid receptors 1 and 2 (CB1 and CB2 ), we reported on the activation of these receptors by other CBD analogs, and CBD on non-CBD receptors. CBD downregulates pro-inflammatory and pro-fibrotic chemokines/cytokines by acting as direct or indirect agonists of Adenosine A2A /equilibrative nucleoside transporter receptors, Peroxisome proliferator-activated receptor gamma, and Transient receptor potential vanilloid receptors or channels, and as an antagonist of GPR55 receptors. CBD also caused the reduction and enhancement of the ROS producing, Nox and ROS-scavenging, SOD enzyme activities, respectively. This review thus recommends the continued study of CBD's molecular mechanism in treating established and emerging inflammatory and fibrosis-related diseases.
Collapse
Affiliation(s)
- Falone Sunda
- Hair and Skin Research Laboratory, Division of Medical Biochemistry and Dermatology, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Afolake Arowolo
- Hair and Skin Research Laboratory, Division of Medical Biochemistry and Dermatology, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Feng L, Peillex-Delphe C, Lü C, Wang D, Giannakis S, Pulgarin C. Employing bacterial mutations for the elucidation of photo-Fenton disinfection: Focus on the intracellular and extracellular inactivation mechanisms induced by UVA and H 2O 2. WATER RESEARCH 2020; 182:116049. [PMID: 32619683 DOI: 10.1016/j.watres.2020.116049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The bacterial inactivation mechanisms by solar light and the photo-Fenton process is still a matter of debate. In this study, we bring evidence towards the elucidation of the mechanisms that govern photo-Fenton disinfection at near-neutral pH. With the use of porin-deficient and catalase over-producing E. coli strains, in conjunction with measurements of cell wall oxidation and permeability, we are able to i) highlight the role of the aforementioned components in bacterial inactivation and ii) localize the damages in the intracellular domain, despite the addition of the Fenton reagents in the bulk. We report that H2O2 oxidizes cell walls but under light the process is of low significance; UVA initiated an intracellular oxidation process based on excess accumulated H2O2, while the UVA+H2O2 and UVA+H2O2+Fe2+ processes have the same effect with light, albeit enhanced, as shown by malondialdehyde (MDA) production and ONPG hydrolysis rates. Finally, compared to the UVA-assisted photo-Fenton process, its solar counterpart is enhanced by the direct UVB effects on bacterial DNA. In conclusion, we have sufficient evidence to postulate that the photo-Fenton process is intracellular and propose the pathways that form the integrated bacterial inactivation mechanism by photo-Fenton.
Collapse
Affiliation(s)
- Ling Feng
- School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021, Huhhot, Inner Mongolia, PR China
| | - Céline Peillex-Delphe
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021, Huhhot, Inner Mongolia, PR China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Changes in the Expression of SNAP-25 Protein in the Brain of Juvenile Rats in Two Models of Autism. J Mol Neurosci 2020; 70:1313-1320. [PMID: 32367505 PMCID: PMC7399687 DOI: 10.1007/s12031-020-01543-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
The results of genetic studies suggest a possible role for SNAP-25 polymorphism in the development of autism spectrum disorders (ASDs); however, there are no data available on whether changes in SNAP-25 expression also affect animals in rodent models of ASD. The aim of the present study was to explore this issue. The studies included 1-month-old rats representing valproic acid (VPA)- and thalidomide (THAL)-induced models of autism. Their mothers received single doses of VPA (800 mg/kg) or THAL (500 mg/kg) per os on the 11th day of gestation. SNAP-25 protein content in the cerebellum, hippocampus, and frontal lobe was determined using Western blotting, while changes of mRNA levels of Snap25 gene were determined using real-time polymerase chain reaction. Compared to controls, SNAP-25 content was decreased by approximately 35% in all brain structures tested, in both males and females, exclusively in the VPA group. In contrast to this, Snap25 expression, studied in males, was increased in the hippocampus and cerebellum in both, VPA- and THAL-treated rats. We discuss the compliance of these results with the hypothesized role of SNAP-25 in the pathophysiology of ASD and the adequacy of the experimental models used.
Collapse
|
8
|
Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants (Basel) 2019; 9:antiox9010021. [PMID: 31881765 PMCID: PMC7023045 DOI: 10.3390/antiox9010021] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cannabidiol (CBD) is one of the main pharmacologically active phytocannabinoids of Cannabis sativa L. CBD is non-psychoactive but exerts a number of beneficial pharmacological effects, including anti-inflammatory and antioxidant properties. The chemistry and pharmacology of CBD, as well as various molecular targets, including cannabinoid receptors and other components of the endocannabinoid system with which it interacts, have been extensively studied. In addition, preclinical and clinical studies have contributed to our understanding of the therapeutic potential of CBD for many diseases, including diseases associated with oxidative stress. Here, we review the main biological effects of CBD, and its synthetic derivatives, focusing on the cellular, antioxidant, and anti-inflammatory properties of CBD.
Collapse
|
9
|
Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 2019; 294:19683-19708. [PMID: 31672919 PMCID: PMC6926449 DOI: 10.1074/jbc.rev119.006217] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely (e.g. during pathogen killing or enzymatic reactions) or accidentally (e.g. exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
10
|
Spiers JG, Chen HJC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease. Free Radic Biol Med 2019; 134:468-483. [PMID: 30716433 DOI: 10.1016/j.freeradbiomed.2019.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Joern R Steinert
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
11
|
A novel chlorination-induced ribonuclease YabJ from Staphylococcus aureus. Biosci Rep 2018; 38:BSR20180768. [PMID: 30201692 PMCID: PMC6435465 DOI: 10.1042/bsr20180768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 01/09/2023] Open
Abstract
The characteristic fold of a protein is the decisive factor for its biological function. However, small structural changes to amino acids can also affect their function, for example in the case of post-translational modification (PTM). Many different types of PTMs are known, but for some, including chlorination, studies elucidating their importance are limited. A recent study revealed that the YjgF/YER057c/UK114 family (YjgF family) member RidA from Escherichia coli shows chaperone activity after chlorination. Thus, to identify the functional and structural differences of RidA upon chlorination, we studied an RidA homolog from Staphylococcus aureus: YabJ. The overall structure of S. aureus YabJ was similar to other members of the YjgF family, showing deep pockets on its surface, and the residues composing the pockets were well conserved. S. aureus YabJ was highly stable after chlorination, and the chlorinated state is reversible by treatment with DTT. However, it shows no chaperone activity after chlorination. Instead, YabJ from S. aureus shows chlorination-induced ribonuclease activity, and the activity is diminished after subsequent reduction. Even though the yabJ genes from Staphylococcus and Bacillus are clustered with regulators that are expected to code nucleic acid-interacting proteins, the nucleic acid-related activity of bacterial RidA has not been identified before. From our study, we revealed the structure and function of S. aureus YabJ as a novel chlorination-activated ribonuclease. The present study will contribute to an in-depth understanding of chlorination as a PTM.
Collapse
|
12
|
Yang Y, Mah A, Yuk IH, Grewal PS, Pynn A, Cole W, Gao D, Zhang F, Chen J, Gennaro L, Schöneich C. Investigation of Metal-Catalyzed Antibody Carbonylation With an Improved Protein Carbonylation Assay. J Pharm Sci 2018; 107:2570-2580. [DOI: 10.1016/j.xphs.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
|
13
|
Nagarkoti S, Dubey M, Awasthi D, Kumar V, Chandra T, Kumar S, Dikshit M. S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:444-454. [DOI: 10.1016/j.bbamcr.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/08/2017] [Accepted: 11/26/2017] [Indexed: 12/23/2022]
|
14
|
Jia J, Liu Z, Xiao X, Liu B, Chou KC. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget 2018; 7:34558-70. [PMID: 27153555 PMCID: PMC5085176 DOI: 10.18632/oncotarget.9148] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/09/2016] [Indexed: 01/22/2023] Open
Abstract
Carbonylation is a posttranslational modification (PTM or PTLM), where a carbonyl group is added to lysine (K), proline (P), arginine (R), and threonine (T) residue of a protein molecule. Carbonylation plays an important role in orchestrating various biological processes but it is also associated with many diseases such as diabetes, chronic lung disease, Parkinson's disease, Alzheimer's disease, chronic renal failure, and sepsis. Therefore, from the angles of both basic research and drug development, we are facing a challenging problem: for an uncharacterized protein sequence containing many residues of K, P, R, or T, which ones can be carbonylated, and which ones cannot? To address this problem, we have developed a predictor called iCar-PseCp by incorporating the sequence-coupled information into the general pseudo amino acid composition, and balancing out skewed training dataset by Monte Carlo sampling to expand positive subset. Rigorous target cross-validations on a same set of carbonylation-known proteins indicated that the new predictor remarkably outperformed its existing counterparts. For the convenience of most experimental scientists, a user-friendly web-server for iCar-PseCp has been established at http://www.jci-bioinfo.cn/iCar-PseCp, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. It has not escaped our notice that the formulation and approach presented here can also be used to analyze many other problems in computational proteomics.
Collapse
Affiliation(s)
- Jianhua Jia
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen 333403 China.,Gordon Life Science Institute, Boston, MA 02478, USA
| | - Zi Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuan Xiao
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen 333403 China.,Gordon Life Science Institute, Boston, MA 02478, USA
| | - Bingxiang Liu
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen 333403 China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Kao HJ, Weng SL, Huang KY, Kaunang FJ, Hsu JBK, Huang CH, Lee TY. MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs. BMC SYSTEMS BIOLOGY 2017; 11:137. [PMID: 29322938 PMCID: PMC5763492 DOI: 10.1186/s12918-017-0511-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Carbonylation, which takes place through oxidation of reactive oxygen species (ROS) on specific residues, is an irreversibly oxidative modification of proteins. It has been reported that the carbonylation is related to a number of metabolic or aging diseases including diabetes, chronic lung disease, Parkinson’s disease, and Alzheimer’s disease. Due to the lack of computational methods dedicated to exploring motif signatures of protein carbonylation sites, we were motivated to exploit an iterative statistical method to characterize and identify carbonylated sites with motif signatures. Results By manually curating experimental data from research articles, we obtained 332, 144, 135, and 140 verified substrate sites for K (lysine), R (arginine), T (threonine), and P (proline) residues, respectively, from 241 carbonylated proteins. In order to examine the informative attributes for classifying between carbonylated and non-carbonylated sites, multifarious features including composition of twenty amino acids (AAC), composition of amino acid pairs (AAPC), position-specific scoring matrix (PSSM), and positional weighted matrix (PWM) were investigated in this study. Additionally, in an attempt to explore the motif signatures of carbonylation sites, an iterative statistical method was adopted to detect statistically significant dependencies of amino acid compositions between specific positions around substrate sites. Profile hidden Markov model (HMM) was then utilized to train a predictive model from each motif signature. Moreover, based on the method of support vector machine (SVM), we adopted it to construct an integrative model by combining the values of bit scores obtained from profile HMMs. The combinatorial model could provide an enhanced performance with evenly predictive sensitivity and specificity in the evaluation of cross-validation and independent testing. Conclusion This study provides a new scheme for exploring potential motif signatures at substrate sites of protein carbonylation. The usefulness of the revealed motifs in the identification of carbonylated sites is demonstrated by their effective performance in cross-validation and independent testing. Finally, these substrate motifs were adopted to build an available online resource (MDD-Carb, http://csb.cse.yzu.edu.tw/MDDCarb/) and are also anticipated to facilitate the study of large-scale carbonylated proteomes. Electronic supplementary material The online version of this article (10.1186/s12918-017-0511-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Ju Kao
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, city, 320, Taiwan
| | - Shun-Long Weng
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, city, 300, Taiwan.,Mackay Junior College of Medicine, Nursing and Management, Taipei, city, 112, Taiwan
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, city, 320, Taiwan.,Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu, city, 300, Taiwan
| | - Fergie Joanda Kaunang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, city, 320, Taiwan
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, city, 110, Taiwan
| | - Chien-Hsun Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, city, 320, Taiwan. .,Tao-Yuan Hospital, Ministry of Health & Welfare, Taoyuan, 320, Taiwan.
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, city, 320, Taiwan. .,Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, 320, Taiwan.
| |
Collapse
|
16
|
Hasan MAM, Li J, Ahmad S, Molla MKI. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue. Anal Biochem 2017; 525:107-113. [DOI: 10.1016/j.ab.2017.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/26/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
17
|
Weng SL, Huang KY, Kaunang FJ, Huang CH, Kao HJ, Chang TH, Wang HY, Lu JJ, Lee TY. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. BMC Bioinformatics 2017; 18:66. [PMID: 28361707 PMCID: PMC5374553 DOI: 10.1186/s12859-017-1472-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Protein carbonylation, an irreversible and non-enzymatic post-translational modification (PTM), is often used as a marker of oxidative stress. When reactive oxygen species (ROS) oxidized the amino acid side chains, carbonyl (CO) groups are produced especially on Lysine (K), Arginine (R), Threonine (T), and Proline (P). Nevertheless, due to the lack of information about the carbonylated substrate specificity, we were encouraged to develop a systematic method for a comprehensive investigation of protein carbonylation sites. RESULTS After the removal of redundant data from multipe carbonylation-related articles, totally 226 carbonylated proteins in human are regarded as training dataset, which consisted of 307, 126, 128, and 129 carbonylation sites for K, R, T and P residues, respectively. To identify the useful features in predicting carbonylation sites, the linear amino acid sequence was adopted not only to build up the predictive model from training dataset, but also to compare the effectiveness of prediction with other types of features including amino acid composition (AAC), amino acid pair composition (AAPC), position-specific scoring matrix (PSSM), positional weighted matrix (PWM), solvent-accessible surface area (ASA), and physicochemical properties. The investigation of position-specific amino acid composition revealed that the positively charged amino acids (K and R) are remarkably enriched surrounding the carbonylated sites, which may play a functional role in discriminating between carbonylation and non-carbonylation sites. A variety of predictive models were built using various features and three different machine learning methods. Based on the evaluation by five-fold cross-validation, the models trained with PWM feature could provide better sensitivity in the positive training dataset, while the models trained with AAindex feature achieved higher specificity in the negative training dataset. Additionally, the model trained using hybrid features, including PWM, AAC and AAindex, obtained best MCC values of 0.432, 0.472, 0.443 and 0.467 on K, R, T and P residues, respectively. CONCLUSION When comparing to an existing prediction tool, the selected models trained with hybrid features provided a promising accuracy on an independent testing dataset. In short, this work not only characterized the carbonylated substrate preference, but also demonstrated that the proposed method could provide a feasible means for accelerating preliminary discovery of protein carbonylation.
Collapse
Affiliation(s)
- Shun-Long Weng
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsin-Chu, 300, Taiwan.,Mackay Medicine, Nursing and Management College, Taipei, 112, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsin-Chu, 300, Taiwan.,Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan
| | - Fergie Joanda Kaunang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan
| | - Chien-Hsun Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan.,Tao-Yuan Hospital, Ministry of Health & Welfare, Taoyuan, 320, Taiwan
| | - Hui-Ju Kao
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, 110, Taiwan
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan. .,Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, 320, Taiwan.
| |
Collapse
|
18
|
Xu H, Chen X, Xu X, Shi R, Suo S, Cheng K, Zheng Z, Wang M, Wang L, Zhao Y, Tian B, Hua Y. Lysine Acetylation and Succinylation in HeLa Cells and their Essential Roles in Response to UV-induced Stress. Sci Rep 2016; 6:30212. [PMID: 27452117 PMCID: PMC4959001 DOI: 10.1038/srep30212] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hong Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Xuanyi Chen
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Rongyi Shi
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Shasha Suo
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Kaiying Cheng
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Zhiguo Zheng
- Institute of Zhejiang Cancer Research, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Meixia Wang
- Zhejiang Institute of Microbiology, Hangzhou, 310000, China
| | - Liangyan Wang
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Ye Zhao
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Bing Tian
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Yuejin Hua
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| |
Collapse
|
19
|
Viviano J, Krishnan A, Wu H, Venkataraman V. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins. Anal Biochem 2015; 494:93-100. [PMID: 26617128 DOI: 10.1016/j.ab.2015.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/21/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins.
Collapse
Affiliation(s)
- Jeffrey Viviano
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Anuradha Krishnan
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Hao Wu
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Venkat Venkataraman
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA; School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
20
|
Liu J, Han J, Lv H. ADPRtool: A novel predicting model for identification of ASP-ADP-Ribosylation sites of human proteins. J Bioinform Comput Biol 2015; 13:1550015. [PMID: 26017462 DOI: 10.1142/s0219720015500158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Post-translational modifications (PTMs) occur in the vast majority of proteins, and they are essential for many protein functions. Computational prediction of the residue location of PTMs enhances the functional characterization of proteins. ADP-Ribosylation is an important type of PTM, because it is implicated in apoptosis, DNA repair, regulation of cell proliferation, and protein synthesis. However, mass spectrometric approaches have difficulties in identifying a vast number of protein ADP-Ribosylation sites. Therefore, a computational method for predicting ADP-Ribosylation sites of human proteins seems useful and necessary. Four types of sequence features and an incremental feature selection technique are utilized to predict protein ADP-Ribosylation sites. The final feature set for ADPR prediction modeling is optimized, based on a minimum redundancy maximum relevance criterion, so as to make more accurate predictions on aspartic acid ADPR modified residues. Our prediction model, ADPRtool, is capable to predict Asp-ADP-Ribosylation sites with a total accuracy of 85.45%, which is as good as most computational PTM site predictors. By using a sequence-based computational method, a new ADP-Ribosylation site prediction model - ADPRtool, is developed, and it has shown great accuracies with total accuracy, Matthew's correlation coefficient and area under receiver operating characteristic curve.
Collapse
Affiliation(s)
- Jun Liu
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jiuqiang Han
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Hongqiang Lv
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
21
|
Barodia SK, Park SK, Ishizuka K, Sawa A, Kamiya A. Half-life of DISC1 protein and its pathological significance under hypoxia stress. Neurosci Res 2015; 97:1-6. [PMID: 25738396 DOI: 10.1016/j.neures.2015.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
DISC1 (disrupted in schizophrenia 1) is an intracellular scaffolding molecule which regulates multiple signaling pathways for neural cell differentiation and function. Many biological studies utilizing animal models of DISC1 have indicated that loss of DISC1 functions are associated with pathological psychiatric conditions. Thus, DISC1 protein stability is a prerequisite to its goal in governing neural function, and modulating the protein stability of DISC1 may be a key target for understanding underlying pathology, as well promising drug discovery strategies. Nonetheless, a half-life of DISC1 protein has remained unexplored. Here, we determine for the first time the half-life of DISC1, which are regulated by ubiquitin-proteasome cascade. Overexpression of PDE4B2, a binding partner of DISC1, prolonged the half-life of DISC1, whereas NDEL1 does not alter DISC1 protein stability. Notably, the half-life of DISC1 is diminished under hypoxia stress by increasing protein degradation of DISC1, suggesting that alteration of DISC1 stability may be involved in hypoxia stress-mediated pathological conditions, such as ischemic stroke.
Collapse
Affiliation(s)
- Sandeep Kumar Barodia
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Sang Ki Park
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Koko Ishizuka
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Akira Sawa
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Atsushi Kamiya
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
22
|
Lv H, Han J, Liu J, Zheng J, Liu R, Zhong D. CarSPred: a computational tool for predicting carbonylation sites of human proteins. PLoS One 2014; 9:e111478. [PMID: 25347395 PMCID: PMC4210226 DOI: 10.1371/journal.pone.0111478] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/26/2014] [Indexed: 12/15/2022] Open
Abstract
Protein carbonylation is one of the most pervasive oxidative stress-induced post-translational modifications (PTMs), which plays a significant role in the etiology and progression of several human diseases. It has been regarded as a biomarker of oxidative stress due to its relatively early formation and stability compared with other oxidative PTMs. Only a subset of proteins is prone to carbonylation and most carbonyl groups are formed from lysine (K), arginine (R), threonine (T) and proline (P) residues. Recent advancements in analysis of the PTM by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites. However, the experimental approaches to identifying carbonylation sites are costly, time-consuming and capable of processing a limited number of proteins, and there is no bioinformatics method or tool devoted to predicting carbonylation sites of human proteins so far. In the paper, a computational method is proposed to identify carbonylation sites of human proteins. The method extracted four kinds of features and combined the minimum Redundancy Maximum Relevance (mRMR) feature selection criterion with weighted support vector machine (WSVM) to achieve total accuracies of 85.72%, 85.95%, 83.92% and 85.72% for K, R, T and P carbonylation site predictions respectively using 10-fold cross-validation. The final optimal feature sets were analysed, the position-specific composition and hydrophobicity environment of flanking residues of modification sites were discussed. In addition, a software tool named CarSPred has been developed to facilitate the application of the method. Datasets and the software involved in the paper are available at https://sourceforge.net/projects/hqlstudio/files/CarSPred-1.0/.
Collapse
Affiliation(s)
- Hongqiang Lv
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Jiuqiang Han
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- * E-mail: (JQH); (JL)
| | - Jun Liu
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- * E-mail: (JQH); (JL)
| | - Jiguang Zheng
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Ruiling Liu
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dexing Zhong
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
23
|
Panis C. Unraveling Oxidation-Induced Modifications in Proteins by Proteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 94:19-38. [DOI: 10.1016/b978-0-12-800168-4.00002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Rubenwolf S, Sané S, Hussein L, Kestel J, von Stetten F, Urban G, Krueger M, Zengerle R, Kerzenmacher S. Prolongation of electrode lifetime in biofuel cells by periodic enzyme renewal. Appl Microbiol Biotechnol 2012; 96:841-9. [DOI: 10.1007/s00253-012-4374-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 11/29/2022]
|
25
|
Petrache SN, Stanca L, Serban AI, Sima C, Staicu AC, Munteanu MC, Costache M, Burlacu R, Zarnescu O, Dinischiotu A. Structural and oxidative changes in the kidney of crucian carp induced by silicon-based quantum dots. Int J Mol Sci 2012; 13:10193-10211. [PMID: 22949855 PMCID: PMC3431853 DOI: 10.3390/ijms130810193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/28/2012] [Accepted: 08/09/2012] [Indexed: 11/16/2022] Open
Abstract
Silicon-based quantum dots were intraperitoneally injected in Carassius auratus gibelio specimens and, over one week, the effects on renal tissue were investigated by following their distribution and histological effects, as well as antioxidative system modifications. After three and seven days, detached epithelial cells from the basal lamina, dilated tubules and debris in the lumen of tubules were observed. At day 7, nephrogenesis was noticed. The reduced glutathione (GSH) concentration decreased in the first three days and started to rise later on. The superoxide dismutase (SOD) activity increased only after one week, whereas catalase (CAT) was up-regulated in a time-dependent manner. The activities of glutathione reductase (GR) and glutathione peroxidise (GPX) decreased dramatically by approximately 50% compared to control, whereas the glutathione-S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH) increased significantly after 3 and 7 days of treatment. Oxidative modifications of proteins and the time-dependent increase of Hsp70 expression were also registered. Our data suggest that silicon-based quantum dots induced oxidative stress followed by structural damages. However, renal tissue is capable of restoring its integrity by nephron development.
Collapse
Affiliation(s)
- Sorina Nicoleta Petrache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Loredana Stanca
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Andreea Iren Serban
- Department of Preclinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 105 Splaiul Independentei, Bucharest 050097, Romania; E-Mail:
| | - Cornelia Sima
- Laser Department, National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor, Bucharest-Magurele 077125, Romania; E-Mail:
| | - Andreia Cristina Staicu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Maria Cristina Munteanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Radu Burlacu
- Department of Mathematics, University of Agricultural Sciences and Veterinary Medicine, 59 Marasti Bd., Bucharest 011464, Romania; E-Mail:
| | - Otilia Zarnescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel./Fax: +40-21-318-1575 (ext. 103)
| |
Collapse
|
26
|
Delfino RJ, Staimer N, Vaziri ND. Air pollution and circulating biomarkers of oxidative stress. AIR QUALITY, ATMOSPHERE, & HEALTH 2011; 4:37-52. [PMID: 23626660 PMCID: PMC3634798 DOI: 10.1007/s11869-010-0095-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations.
Collapse
Affiliation(s)
- Ralph J. Delfino
- Department of Epidemiology, School of Medicine, University of California, Irvine, 100 Theory, Suite 100, Irvine, CA 92617-7555, USA
| | - Norbert Staimer
- Department of Epidemiology, School of Medicine, University of California, Irvine, 100 Theory, Suite 100, Irvine, CA 92617-7555, USA
| | - Nosratola D. Vaziri
- Nephrology and Hypertension Division, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
27
|
Gianazza E, Eberini I, Sensi C, Barile M, Vergani L, Vanoni MA. Energy matters: mitochondrial proteomics for biomedicine. Proteomics 2011; 11:657-74. [PMID: 21241019 DOI: 10.1002/pmic.201000412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/22/2010] [Accepted: 11/03/2010] [Indexed: 12/16/2022]
Abstract
This review compiles results of medical relevance from mitochondrial proteomics, grouped either according to the type of disease - genetic or degenerative - or to the involved mechanism - oxidative stress or apoptosis. The findings are commented in the light of our current understanding of uniformity/variability in cell responses to different stimuli. Specificities in the conceptual and technical approaches to human mitochondrial proteomics are also outlined.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Bosshard F, Riedel K, Schneider T, Geiser C, Bucheli M, Egli T. Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. Environ Microbiol 2010; 12:2931-45. [DOI: 10.1111/j.1462-2920.2010.02268.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Braconi D, Bernardini G, Santucci A. Post-genomics and skin inflammation. Mediators Inflamm 2010; 2010:364823. [PMID: 20886018 PMCID: PMC2945662 DOI: 10.1155/2010/364823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/22/2010] [Indexed: 01/26/2023] Open
Abstract
Atopic dermatitis and psoriasis are two chronic skin inflammatory diseases that have so far received a greater attention within the scientific community through different post-genomic approaches; on the contrary, acne, which is undoubtedly one of the most common skin disorders involving inflammatory processes, seems to be still quite neglected under the post-genomic point of view. In this paper, we will review how post-genomic technologies have provided new fundamental tools for the analysis of these three conditions and we will cast light on their potential in addressing future research challenges.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, via Fiorentina 1, 53100 Siena, Italy
| | - Giulia Bernardini
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, via Fiorentina 1, 53100 Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
30
|
Bosshard F, Bucheli M, Meur Y, Egli T. The respiratory chain is the cell's Achilles' heel during UVA inactivation in Escherichia coli. Microbiology (Reading) 2010; 156:2006-2015. [DOI: 10.1099/mic.0.038471-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Solar disinfection (SODIS) is used as an effective and inexpensive tool to improve the microbiological quality of drinking water in developing countries where no other means are available. Solar UVA light is the agent that inactivates bacteria during the treatment. Damage to bacterial membranes plays a crucial role in the inactivation process. This study showed that even slightly irradiated cells (after less than 1 h of simulated sunlight) were strongly affected in their ability to maintain essential parts of their energy metabolism, in particular of the respiratory chain (activities of NADH oxidase, succinate oxidase and lactate oxidase were measured). The cells' potential to generate ATP was also strongly inhibited. Many essential enzymes of carbon metabolism (glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase) and defence against oxidative stress (catalases and glutathione-disulfide reductase) were reduced in their activity during SODIS. The work suggests that damage to membrane enzymes is a likely cause of membrane dysfunction (loss of membrane potential and increased membrane permeability) during UVA irradiation. In this study, the first targets on the way to cell death were found to be the respiratory chain and F1F0 ATPase.
Collapse
Affiliation(s)
- Franziska Bosshard
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, CH-8600 Dübendorf, Switzerland
| | - Margarete Bucheli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, CH-8600 Dübendorf, Switzerland
| | - Yves Meur
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, CH-8600 Dübendorf, Switzerland
| | - Thomas Egli
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
31
|
|
32
|
Boisvert MR, Koski KG, Skinner CD. Increased Oxidative Modifications of Amniotic Fluid Albumin in Pregnancies Associated with Gestational Diabetes Mellitus. Anal Chem 2010; 82:1133-7. [DOI: 10.1021/ac902322w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michel R. Boisvert
- School of Dietetics and Human Nutrition, McGill University (Macdonald Campus), Montreal, Canada H9X 3V9, and Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Kristine G. Koski
- School of Dietetics and Human Nutrition, McGill University (Macdonald Campus), Montreal, Canada H9X 3V9, and Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Cameron D. Skinner
- School of Dietetics and Human Nutrition, McGill University (Macdonald Campus), Montreal, Canada H9X 3V9, and Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
33
|
Jalan R, Schnurr K, Mookerjee RP, Sen S, Cheshire L, Hodges S, Muravsky V, Williams R, Matthes G, Davies NA. Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology 2009; 50:555-64. [PMID: 19642174 DOI: 10.1002/hep.22913] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Albumin concentration is diminished in patients with liver failure. Albumin infusion improves survival of cirrhotic patients with spontaneous bacterial peritonitis, and it is hypothesized that this may be due in part to its detoxifying capabilities. The aim of this study was to perform detailed quantitative and qualitative assessment of albumin function in patients with cirrhosis. Healthy controls and patients with acute deterioration of cirrhosis requiring hospital admission (n = 34) were included. Albumin function was assessed using affinity of the fatty acid binding sites using a spin label (16 doxyl-stearate) titration and electron paramagnetic resonance spectroscopy and ischemia-modified albumin (IMA) was measured. Twenty-two patients developed acute-on-chronic liver failure. Twelve were treated with the Molecular Adsorbents Recirculating System (MARS) and 10 with standard medical therapy. For each parameter measured, the patients' albumin had reduced functional ability, which worsened with disease severity. Fifteen patients died, and IMA, expressed as an albumin ratio (IMAR), was significantly higher in nonsurvivors compared with survivors (P < 0.001; area under the receiver operating curve = 0.8). No change in the patients' albumin function was observed following MARS therapy. A significant negative correlation between IMAR and the fatty acid binding coefficients for sites 1 and 2 (P < 0.001 for both) was observed, indicating possible sites of association on the protein. CONCLUSION The results of this study suggests marked dysfunction of albumin function in advanced cirrhosis and provide further evidence for damage to the circulating albumin, which is not reversed by MARS therapy. IMAR correlates with disease severity and may have prognostic use in acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Rajiv Jalan
- Liver Failure Group, Institute of Hepatology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang W, Steen H, Freeman MR. Proteomic approaches to the analysis of multiprotein signaling complexes. Proteomics 2008; 8:832-51. [PMID: 18297654 DOI: 10.1002/pmic.200700650] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signal transduction is one of the most active fields in modern biomedical research. Increasing evidence has shown that signaling proteins associate with each other in characteristic ways to form large signaling complexes. These diverse structures operate to boost signaling efficiency, ensure specificity and increase sensitivity of the biochemical circuitry. Traditional methods of protein analysis are inadequate to fully characterize and understand these structures, which are intricate, contain many components and are highly dynamic. Instead, proteomics technologies are currently being applied to investigate the nature and composition of multimeric signaling complexes. This review presents commonly used and potential proteomic methods of analyzing diverse protein complexes along with a discussion and a brief evaluation of alternative approaches. Challenges associated with proteomic analysis of signaling complexes are also discussed.
Collapse
Affiliation(s)
- Wei Yang
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|