1
|
Ravizza T, Volpedo G, Riva A, Striano P, Vezzani A. Intestinal microbiome alterations in pediatric epilepsy: Implications for seizures and therapeutic approaches. Epilepsia Open 2025. [PMID: 40232107 DOI: 10.1002/epi4.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
The intestinal microbiome plays a pivotal role in maintaining host health through its involvement in gastrointestinal, immune, and central nervous system (CNS) functions. Recent evidence underscores the bidirectional communication between the microbiota, the gut, and the brain and the impact of this axis on neurological diseases, including epilepsy. In pediatric patients, alterations in gut microbiota composition-called intestinal dysbiosis-have been linked to seizure susceptibility. Preclinical models revealed that gut dysbiosis may exacerbate seizures, while microbiome-targeted therapies, including fecal microbiota transplantation, pre/pro-biotics, and ketogenic diets, show promise in reducing seizures. Focusing on clinical and preclinical studies, this review examines the role of the gut microbiota in pediatric epilepsy with the aim of exploring its implications for seizure control and management of epilepsy. We also discuss mechanisms that may underlie mutual gut-brain communication and emerging therapeutic strategies targeting the gut microbiome as a novel approach to improve outcomes in pediatric epilepsy. PLAIN LANGUAGE SUMMARY: Reciprocal communication between the brain and the gut appears to be dysfunctional in pediatric epilepsy. The composition of bacteria in the intestine -known as microbiota- and the gastrointestinal functions are altered in children with drug-resistant epilepsy and animal models of pediatric epilepsies. Microbiota-targeted interventions, such as ketogenic diets, pre-/post-biotics administration, and fecal microbiota transplantation, improve both gastrointestinal dysfunctions and seizures in pediatric epilepsy. These findings suggest that the gut and its microbiota represent potential therapeutic targets for reducing drug-resistant seizures in pediatric epilepsy.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Greta Volpedo
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
Zhang Y, Liu J, Li M, Dong Y, Li Z, Yi D, Wu T, Wang L, Zhao D, Hou Y. Zinc Oxide Administration Relieves the Diarrhea of ETEC K88-Infected Piglets by Reducing Ileal Apoptosis and Maintaining Gut Microbial Balance. Vet Sci 2025; 12:115. [PMID: 40005874 PMCID: PMC11861302 DOI: 10.3390/vetsci12020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The impact of ZnO as a feed additive on growth-performance and intestinal function of Enterotoxigenic Escherichia coli (ETEC) K88-infected piglets remains unclear. Fecal scores of piglets in ETEC group were significantly increased compared to control group. ETEC K88 significantly damages the small intestine, including a reduction in villus height in the jejunum, duodenum, and ileum, and a decrease in total superoxide dismutase activity in the jejunum and catalase activity in the ileum and jejunum. Compared to control group, ETEC K88 infection significantly elevated the mRNA level of gene IL-1β and the level of ileal epithelial cell apoptosis. ZnO administration significantly alleviated these negative effects and improved the antioxidative capability of the ileum. Moreover, ZnO supplementation alleviated the imbalance of gut microbiota by restoring the reduced amount of Enterococcus and Lactobacillus in the jejunum, Clostridium in the ileum, and Lactobacillus in the cecum, as well as the increased amount of total eubacteria in the ileum and Enterococcus in the cecum induced by the ETEC K88 infection. In conclusion, ZnO administration can reduce the diarrhea of piglets infected with ETEC K88 by reducing the structural damage of the intestine, attenuating intestinal oxidative stress and epithelial cell apoptosis, and modulating the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430024, China
| |
Collapse
|
3
|
Li P, Zhou H, Yang Y, Wu M, Zhao D, Wang L, Yi D, Hou Y. Dietary supplementation with N-acetylcysteine confers a protective effect on muscle and liver in lipopolysaccharide-challenged piglets. Front Nutr 2024; 11:1458912. [PMID: 39351494 PMCID: PMC11439690 DOI: 10.3389/fnut.2024.1458912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
N-acetylcysteine (NAC) is a well-established antioxidant that offers exciting opportunities for intestinal health in weaned piglets, while the effects of NAC on muscle and liver has not been fully characterized. Therefore, the present study was performed to investigate the effects of dietary supplementation with NAC on muscle and liver in weaned piglets challenged with lipopolysaccharide (LPS). Twenty-four piglets (24-day-old) were randomly assigned to three treatment groups, the piglets in the control (CTR) and LPS- challenged (LPS) groups were fed the basal diet and those in the LPS+ NAC group was fed the basal diet supplemented with 500 mg/kg NAC. The animal trial lasted for 21 days. At the end of the trial, piglets in the LPS and LPS+ NAC groups were injected intraperitoneally with LPS (100 μg/kg body weight) and piglets in the CTR group were administrated with an equal volume of normal saline. 3 h later, the blood was collected and tissue samples were obtained after 6 h of LPS or normal saline treatment. The results showed that the level of IL-1β, and the mRNA levels of C-X-C motif chemokine receptor 3 (CXCR3) and interferon-γ (IFN-γ) in the liver were up-regulated, and the mRNA levels of insulin-like growth factor 1 (IGF-1), total glutathione (T-GSH), and the ratio of total protein to DNA in the liver were decreased under LPS challenge (P < 0.05). At the same time, LPS increased the level of H2O2 and decreased the content of T-GSH and DNA in the longissimus dorsi and gastrocnemius muscles (P < 0.05). In addition, the percentage of monocytes and the level of epidermal growth factor (EGF) were down-regulated in the LPS treatment (P < 0.05). Interestingly, dietary NAC supplementation reversed the above changes induced by LPS (P < 0.05). Furthermore, NAC might alleviate the muscle and liver injury in LPS-challenged piglets by regulating the expression of genes related to the type I interferon signaling pathway, as well as hypoxia inducible factor 1 (HIF1) and nuclear factor erythroid-2 related factor 2 (Nrf-2). Our findings suggested that dietary supplementation with NAC could benefit the health of muscle and liver in LPS-challenged weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Gupta V, Goel A, Ncho CM, Jeong CM, Choi YH. Neonatal α-Ketoglutaric Acid Gavage May Potentially Alleviate Acute Heat Stress by Modulating Hepatic Heat Shock Protein 90 and Improving Blood Antioxidant Status of Broilers. Animals (Basel) 2024; 14:2243. [PMID: 39123769 PMCID: PMC11310969 DOI: 10.3390/ani14152243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the effect of neonatal α-ketoglutaric acid (AKG) gavage feeding on broilers. The first experiment was conducted to determine the effect of AKG on day-old broilers. A total of seventy-two-day-old Ross 308 broiler chicks were divided into four treatment groups: (i) Two groups of chicks with gavage feeding of 0.6 mL of distilled water (DDW) for four consecutive days (CON); (ii) chicks fed with 0.6 mL of 0.1% AKG dissolved in DDW on the day of hatch (AL) followed by 0.2%, 0.3%, and 0.4% for three consecutive days; and (iii) chicks fed with 0.6 mL of 0.2% AKG dissolved in DDW on the day of hatch (AH) followed by 0.4%, 0.6%, and 0.8% for three consecutive days. Twenty-four hours after the first gavage feeding, six birds per treatment were slaughtered to study the organ development. Chicks fed with AKG showed higher absolute (p = 0.015) and relative (p = 0.037) weights of the gizzard. The AH group had higher absolute (p = 0.012) and relative (p = 0.035) heart weights. The second experiment was carried out to determine the effect of AKG on 15-day-old broilers under acute heat stress (AHS) for 3.5 h at 33 ± 1 °C. Forty-eight birds (12 per treatment) were raised until 15 days of age, divided into four treatments with equal numbers (n = 12), and given one of the following four treatments: (i) CON group reared at standard temperature (25 ± 1 °C) (CON-NT); (ii) CON group subjected to AHS (33 ± 1 °C) for 3.5 h (CON-HT); (iii) AL group subjected to AHS (33 ± 1 °C) for 3.5 h (AL-HT); and (iv) AH group subjected to AHS (33 ± 1 °C) for 3.5 h (AH-HT). There was a significant reduction in the change in BW (ΔBW, p = 0.005), an increase in the final rectal temperature (RTf) (p = 0.001), and a decreased final body weight (BWf) for all the treatments under AHS. Further, AHS led to an increased expression of hepatic heat shock protein (HSP)70 (p = 0.009), nicotinamide adenine dinucleotide phosphate hydrogen oxidase (NOX)1 (p = 0.006), and NOX4 (p = 0.001), while nuclear factor erythroid 2-related factor (NRF2), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase 1 (GPX1) remained significantly unaffected. Hepatic expression of HSP90 decreased in the AL-HT treatment as compared to CON-HT (p = 0.008). Plasma antioxidant status measured by malondialdehyde (MDA) concentration and antioxidant balance (AB) improved linearly (p = 0.001) as the concentration of AKG increased. Neonatal gavage feeding of AKG could potentially alleviate heat stress in broilers by enhancing plasma antioxidant levels and modulating HSP90 expression in the liver.
Collapse
Affiliation(s)
- Vaishali Gupta
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Akshat Goel
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chris Major Ncho
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Mi Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Lu J, Liu G, Sun W, Jia G, Zhao H, Chen X, Wang J. Dietary α-Ketoglutarate Alleviates Escherichia coli LPS-Induced Intestinal Barrier Injury by Modulating the Endoplasmic Reticulum-Mitochondrial System Pathway in Piglets. J Nutr 2024; 154:2087-2096. [PMID: 38453028 DOI: 10.1016/j.tjnut.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND α-Ketoglutarate (AKG) plays a pivotal role in mitigating inflammation and enhancing intestinal health. OBJECTIVES This study aimed to investigate whether AKG could protect against lipopolysaccharide (LPS)-induced intestinal injury by alleviating disorders in mitochondria-associated endoplasmic reticulum (MAM) membranes, dysfunctional mitochondrial dynamics, and endoplasmic reticulum (ER) stress in a piglet model. METHODS Twenty-four piglets were subjected to a 2 × 2 factorial design with dietary factors (basal diet or 1% AKG diet) and LPS treatment (LPS or saline). After 21 d of consuming either the basal diet or AKG diet, piglets received injections of LPS or saline. The experiment was divided into 4 treatment groups [control (CON) group: basal diet + saline; LPS group: basal diet +LPS; AKG group: AKG diet + saline; and AKG_LPS group: AKG + LPS], each consisting of 6 piglets. RESULTS The results demonstrated that compared with the CON group, AKG enhanced jejunal morphology, antioxidant capacity, and the messenger RNA and protein expression of tight junction proteins. Moreover, it has shown a reduction in serum diamine oxidase activity and D-lactic acid content in piglets. In addition, fewer disorders in the ER-mitochondrial system were reflected by AKG, as evidenced by AKG regulating the expression of key molecules of mitochondrial dynamics (mitochondrial calcium uniporter, optic atrophy 1, fission 1, and dynamin-related protein 1), ER stress [activating transcription factor (ATF) 4, ATF 6, CCAAT/enhancer binding protein homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, and protein kinase R-like ER kinase], and MAM membranes [mitofusin (Mfn)-1, Mfn-2, GRP 75, and voltage-dependent anion channel-1]. CONCLUSIONS Dietary AKG can prevent mitochondrial dynamic dysfunction, ER stress, and MAM membrane disorder, ultimately alleviating LPS-induced intestinal damage in piglets.
Collapse
Affiliation(s)
- Jiajia Lu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China.
| | - Weixiao Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Gupta V, Ncho CM, Goel A, Jeong CM, Choi YH. In ovo feeding of α-ketoglutaric acid improves hepatic antioxidant-gene expression, plasma antioxidant activities and decreases body temperature without affecting broiler body weight under cyclic heat stress. Poult Sci 2024; 103:103749. [PMID: 38670054 PMCID: PMC11066556 DOI: 10.1016/j.psj.2024.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The broiler industry is adversely affected by the rise in global temperature. This study investigated the effects of in ovo feeding of α-ketoglutaric acid (AKG) on growth performance, organ weight, plasma metabolite, plasma oxidative stress, rectal temperature (RT), and hepatic mRNA expression of antioxidant-related genes in Arbor Acres broilers subjected to cyclic heat stress (HS). Three hundred fifty fertile eggs during incubation were divided into 5 groups according to AKG concentrations and temperature conditions. After dissolving AKG in distilled water at 0, 0.5, 1.0, and 1.5, 0% AKG was in ovo administered to 2 of the 5 groups whereas the remaining 3 groups received 0.5, 1.0, and 1.5%, respectively. From d 29 to 34 of age, 4 groups of birds received heat stress (HS) at 31°C ± 1°C for 6 h per day while the other group was kept at room temperature (21°C ± 1°C; NT). So, the 5 treatment groups were: 1) 0AKG-NT, where chicks hatched from eggs receiving 0% AKG were reared under thermoneutral conditions. 2) 0AKG-HS, where chicks hatched from eggs receiving 0% AKG were reared under cyclic HS conditions. 3) 0.5AKG-HS, where chicks hatched from eggs receiving 0.5% AKG were reared under cyclic HS conditions. 4) 1.0AKG-HS, where chicks hatched from eggs receiving 1.0% AKG were reared under cyclic HS conditions. 5) 1.5AKG-HS, where chicks hatched from eggs receiving 1.5% AKG were reared under cyclic HS conditions. HS significantly reduced body weight change (ΔBW %) and average daily gain (ADG) without affecting average daily feed intake (ADFI). Feed conversion ratio (FCR) was significantly increased (P = 0.003) in all HS-treated groups. A significant linear decrease in the final RT (P = 0.005) and a change in RT (P = 0.003) were detected with increasing AKG concentration. Total antioxidant capacity (P = 0.029) and antioxidant balance (P = 0.001) in plasma increased linearly with increasing AKG concentration whereas malondialdehyde concentrations were linearly decreased (P = 0.001). Hepatic gene expression of CAT (P = 0.026) and GPX1 (P = 0.001) were dose-dependently upregulated while nicotinamide adenine dinucleotide phosphate oxidase (NOX)1, NOX4, and heat shock protein (HSP)70 were linearly downregulated (P < 0.05). Hence, in ovo injection of AKG was effective in mitigating HS-induced oxidative stress without attenuating the adverse effects on broiler growth.
Collapse
Affiliation(s)
- Vaishali Gupta
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
7
|
Yu C, Wu M, Sun L, Li H, Xu Z, Zhang Q, Yi D, Wang L, Zhao D, Hou Y, Wu T. Effect of Supplementation with Black Soldier Fly Extract on Intestinal Function in Piglets Infected with Porcine Epidemic Diarrhea Virus. Animals (Basel) 2024; 14:1512. [PMID: 38791729 PMCID: PMC11117209 DOI: 10.3390/ani14101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has developed as a global problem for the pig business, resulting in significant financial losses. Black soldier fly extract (BFE) has been proven to improve intestinal growth in pigs after weaning. Consequently, the goal of the present investigation was to explore the effects of BFE supplementation on intestinal function in PEDV-infected piglets. Eighteen piglets were randomly allocated to three groups: control, PEDV, and BFE + PEDV. The piglets in the BFE + PEDV group received 500 mg/kg BW of BFE orally for seven days from day 4 to 10 of the study. On day 9 of the study, six pigs from each group received either clean saline or PEDV solution at a dosage of 106 TCID50 (50% tissue culture infectious dose) per pig. On day 11, samples of blood and intestine were taken for additional investigation. The results indicated a significant decrease in the average daily gain (ADG) of piglets infected with PEDV (p < 0.05). Additionally, PEDV infection led to an alteration of blood indexes and a reduction in plasma D-xylose concentration and villi height in the small intestine, while it increased plasma diamine oxidase activity and small intestinal crypt depth in piglets (p < 0.05). The PEDV infection significantly reduced antioxidant enzyme activity in plasma and the gut, including total superoxide dismutase and catalase, while increasing contents of oxidation-relevant products such as malondialdehyde and hydrogen peroxide in piglets. Moreover, PEDV infection increased the mRNA expression level of antiviral-related genes (p < 0.05). Nutritional supplementation with BFE improved intestinal histomorphological indicators and reduced oxidative stress produced by PEDV infection in piglets. Interestingly, BFE could significantly promote the mRNA expression level of antiviral-related genes in the ileum (p < 0.05). Overall, the preliminary results suggest that dietary BFE could improve intestinal function in piglets after PEDV infection. Currently, the findings put a spotlight on the role of BFE in the prevention and treatment of PED in piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (C.Y.); (M.W.); (L.S.); (H.L.); (Z.X.); (Q.Z.); (D.Y.); (L.W.); (D.Z.); (Y.H.)
| |
Collapse
|
8
|
Riva A, Sahin E, Volpedo G, Petretto A, Lavarello C, Di Sapia R, Barbarossa D, Zaniani NR, Craparotta I, Barbera MC, Sezerman U, Vezzani A, Striano P, Ravizza T. Identification of an epilepsy-linked gut microbiota signature in a pediatric rat model of acquired epilepsy. Neurobiol Dis 2024; 194:106469. [PMID: 38485093 DOI: 10.1016/j.nbd.2024.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
A dysfunctional gut microbiota-brain axis is emerging as a potential pathogenic mechanism in epilepsy, particularly in pediatric forms of epilepsy. To add new insights into gut-related changes in acquired epilepsy that develops early in life, we used a multi-omics approach in a rat model with a 56% incidence of epilepsy. The presence of spontaneous seizures was assessed in adult rats (n = 46) 5 months after status epilepticus induced by intra-amygdala kainate at postnatal day 13, by 2 weeks (24/7) ECoG monitoring. Twenty-six rats developed epilepsy (Epi) while the remaining 20 rats (No-Epi) did not show spontaneous seizures. At the end of ECoG monitoring, all rats and their sham controls (n = 20) were sacrificed for quantitative histopathological and immunohistochemical analyses of the gut structure, glia and macrophages, as well as RTqPCR analysis of inflammation/oxidative stress markers. By comparing Epi, No-Epi rats, and sham controls, we found structural, cellular, and molecular alterations reflecting a dysfunctional gut, which were specifically associated with epilepsy. In particular, the villus height-to-crypt depth ratio and number of Goblet cells were reduced in the duodenum of Epi rats vs both No-Epi rats and sham controls (p < 0.01). Villus height and crypt depth in the duodenum and jejunum (p < 0.01) were increased in No-Epi vs both Epi and sham controls. We also detected enhanced Iba1-positive macrophages, together with increased IL1b and NFE2L2 transcripts and TNF protein, in the small intestine of Epi vs both No-Epi and sham control rats (p < 0.01), denoting the presence of inflammation and oxidative stress. Astroglial GFAP-immunostaining was similar in all experimental groups. Metagenomic analysis in the feces collected 5 months after status epilepticus showed that the ratio of two dominant phyla (Bacteroidota-to-Firmicutes) was similarly increased in Epi and No-Epi rats vs sham control rats. Notably, the relative abundance of families, genera, and species associated with SCFA production differed in Epi vs No-Epi rats, describing a bacterial imprint associated with epilepsy. Furthermore, Epi rats showed a blood metabolic signature characterized by changes in lipid metabolism compared to both No-Epi and sham control rats. Our study provides new evidence of long-term gut alterations, along with microbiota-related metabolic changes, occurring specifically in rats that develop epilepsy after brain injury early in life.
Collapse
Affiliation(s)
- Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Eray Sahin
- Acıbadem University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Greta Volpedo
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | | | | | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Davide Barbarossa
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Nasibeh Riahi Zaniani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maria Chiara Barbera
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Uğur Sezerman
- Acıbadem University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
9
|
Wang C, Zhang Q, Ji C, Hu Y, Yi D, Wu T, Wang L, Zhao D, Hou Y. Effects of monolaurin on intestinal barrier, blood biochemical profile, immunity and antioxidant function in porcine epidemic diarrhoea virus-infected piglets. Br J Nutr 2024; 131:185-192. [PMID: 37589127 DOI: 10.1017/s0007114523001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The effects of monolaurin (ML) on the health of piglets infected with porcine epidemic diarrhoea virus (PEDV) have not been fully understood. This study aimed to investigate its role in blood biochemical profile, intestinal barrier function, antioxidant function and the expression of antiviral genes in piglets infected with PEDV. Thirty-two piglets were randomly divided into four groups: control group, ML group, PEDV group and ML + PEDV group. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 d before PEDV infection. Results showed that PEDV infection significantly decreased D-xylose content and increased intestinal fatty acid-binding protein content, indicating that PEDV infection destroyed intestinal barrier and absorption function. While it could be repaired by ML administration. Moreover, ML administration significantly decreased plasma blood urea nitrogen and total protein content upon PEDV infection. These results suggested ML may increase protein utilisation efficiency. ML administration significantly decreased the number of large unstained cells and Hb and increased the number of leucocytes and eosinophils in the blood of PEDV-infected piglets, indicating ML could improve the immune defense function of the body. In the presence of PEDV infection, ML administration significantly increased superoxide dismutase and catalase activities in blood and colon, respectively, indicating ML could improve antioxidant capacity. Besides, ML administration reversed the expression of ISG15, IFIT3 and IL-29 throughout the small intestine and Mx1 in jejunum and ileum, indicating the body was in recovery from PEDV infection. This study suggests that ML could be used as a kind of feed additive to promote swine health upon PEDV infection.
Collapse
Affiliation(s)
- Chao Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Changzheng Ji
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yuyan Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
10
|
Lopes ALF, Araújo AKDS, Chaves LDS, Pacheco G, Oliveira APD, Silva KCD, Oliveira ACPD, Aquino CCD, Gois MB, Nicolau LAD, Medeiros JVR. Protective effect of alpha-ketoglutarate against water-immersion restraint stress-induced gastric mucosal damage in mice. Eur J Pharmacol 2023; 960:176118. [PMID: 37871764 DOI: 10.1016/j.ejphar.2023.176118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Gastric lesions have several aetiologies, among which stress is the most prominent. Therefore, identification of new therapies to prevent stress is of considerable importance. Alpha-ketoglutarate (α-kg) several beneficial effects and has shown promise in combating oxidative stress, inflammation, and premature aging. Thus, this study aimed to evaluate the protective effect of α-kg in a gastric damage model by water-immersion restraint stress (WIRS). Pretreatment with α-kg decreased stress-related histopathological scores of tissue oedema, cell loss, and inflammatory infiltration. The α-kg restored the percentage of type III collagen fibres. Mucin levels were preserved as well as the structure and area of the myenteric plexus ganglia were preserved after pretreatment with α-kg. Myeloperoxidase (MPO) levels and the expression of pro-inflammatory cytokines (TNF-α and IL-1β) were also reduced following α-kg pretreatment. Decreased levels of glutathione (GSH) in the stress group were restored by α-kg. The omeprazole group was used as standard drug e also demonstrated improve on some parameters after the exposition to WIRS as inflammatory indexes, GSH and mucin. Through this, was possible to observe that α-kg can protect the gastric mucosa exposed to WIRS, preserve tissue architecture, reduce direct damage to the mucosa and inflammatory factors, stimulate the production of type III collagen and mucin, preserve the myenteric plexus ganglia, and maintain antioxidant potential. Due to, we indicate that α-kg has protective activity of the gastric mucosa, demonstrating its ability to prevent damage associated with gastric lesions caused by stress.
Collapse
Affiliation(s)
- André Luis Fernandes Lopes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Andreza Ketly da Silva Araújo
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Letícia de Sousa Chaves
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Gabriella Pacheco
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Ana Patrícia de Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Katriane Carvalho da Silva
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Antonio Carlos Pereira de Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | | | - Marcelo Biondaro Gois
- Post-Graduation Program in Biosciences and Health, Federal University of Rondonópolis, Rondonópolis, Brazil.
| | - Lucas Antonio Duarte Nicolau
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Jand Venes Rolim Medeiros
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| |
Collapse
|
11
|
Zeng Y, Li R, Dong Y, Yi D, Wu T, Wang L, Zhao D, Zhang Y, Hou Y. Dietary Supplementation with Puerarin Improves Intestinal Function in Piglets Challenged with Escherichia coli K88. Animals (Basel) 2023; 13:1908. [PMID: 37370417 DOI: 10.3390/ani13121908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this study was to investigate the effect of puerarin supplementation on the growth performance and intestinal function of piglets challenged with enterotoxigenic Escherichia coli (ETEC) K88. Twenty-four ternary crossbred piglets were randomly assigned to three treatment groups: control group, ETEC group (challenged with ETEC K88 on day 8), and ETEC + Puerarin group (supplemented with 5 mg/kg puerarin and challenged with ETEC K88 on day 8). All piglets were orally administered D-xylose (0.1 g/kg body weight) on day 10, and blood samples were collected after 1 h. Subsequently, piglets were killed and intestinal samples were collected for further analysis. The results showed that puerarin supplementation significantly decreased the adverse effects of ETEC K88-challenged piglets; significantly improved growth performance; increased the number of Bifidobacterium in the colon and Lactobacillus in the jejunum, cecum and colon; decreased the number of Escherichia coli in the jejunum and cecum; reduced the hydrogen peroxide content in the jejunum and myeloperoxidase activity in the jejunum and ileum; and increased the activities of catalase and superoxide dismutase in the jejunum and ileum. In addition, puerarin supplementation alleviated ETEC K88-induced intestinal injury in piglets, significantly downregulated the mRNA level of Interleukin-1β and upregulated the mRNA levels of intercellular cell adhesion molecule-1, myxovirus resistance protein 1, myxovirus resistance protein 2, and guanylate-binding protein-1 in the small intestine of piglets. In conclusion, dietary supplementation with puerarin could attenuate ETEC K88-induced intestinal injury by increasing the antioxidant and anti-inflammatory capacity and the number of beneficial intestinal bacteria in piglets.
Collapse
Affiliation(s)
- Yitong Zeng
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi Dong
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Wang L, Wang C, Peng Y, Zhang Y, Liu Y, Liu Y, Yin Y. Research progress on anti-stress nutrition strategies in swine. ANIMAL NUTRITION 2023; 13:342-360. [DOI: 10.1016/j.aninu.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
|
13
|
Liu GM, Lu JJ, Sun WX, Jia G, Zhao H, Chen XL, Tian G, Cai JY, Zhang RN, Wang J. Dietary alpha-ketoglutarate enhances intestinal immunity by Th17/Treg immune response in piglets after lipopolysaccharide challenge. J Anim Sci 2023; 101:skad213. [PMID: 37348134 PMCID: PMC10355370 DOI: 10.1093/jas/skad213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
Alpha-ketoglutarate (AKG) is important for improving intestinal and systemic immune function. This study aimed to explore whether AKG enhances gut immunity in lipopolysaccharide (LPS)-challenged piglets by modulating the immune-related helper T cells 17 (Th17)/regulatory T cells (Treg) balance pathway. A 2 × 2 factor design was used on 24 pigs, with the major factors being diet (basal diet or 1% AKG diet) and immunological challenge (saline or LPS). Piglets were fed with a basal or AKG diet for 21 d and then received intraperitoneal injection of LPS or saline. The results demonstrated that AKG supplementation enhanced growth performance compared with the control group (P < 0.05). AKG improved the ileal morphological structure (P < 0.01). Finally, AKG supplementation increased interleukin (IL)-10, transforming growth factor beta-1, forkhead box P3, and signal transducer and activator of transcription 5 genes expression whereas decreasing IL-6, IL-8, IL-1β, tumor necrosis factor-α, IL-17, IL-21, signal transducer and activator of transcription 3 and rar-related orphan receptor c genes expression (P < 0.05). These findings suggested that dietary AKG can improve the growth performance of piglets. Meanwhile, dietary AKG can alleviate LPS-induced intestinal inflammation through Th17/Treg immune response signaling pathway.
Collapse
Affiliation(s)
- Guang M Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Jia J Lu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Wei X Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Xiao L Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Jing Y Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Rui N Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
14
|
Zhang Y, Li Q, Wang Z, Dong Y, Yi D, Wu T, Wang L, Zhao D, Hou Y. Dietary supplementation with a complex of cinnamaldehyde, carvacrol, and thymol negatively affects the intestinal function in LPS-challenged piglets. Front Vet Sci 2023; 10:1098579. [PMID: 37065240 PMCID: PMC10097997 DOI: 10.3389/fvets.2023.1098579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Background The effects of cinnamaldehyde, carvacrol and thymol complex (CCT) on the growth performance and intestinal function of piglets challenged with lipopolysaccharide (LPS) were determined. Colistin sulphate (CS) was as a positive control. Method Piglets (n = 24, 32 days of age) were allocated to four treatments: Control group (fed basal diet), LPS group (fed basal diet), CS+LPS group (fed basal diet + 50 mg/kg CS), and CCT+LPS group (fed basal diet + 50 mg/kg CCT). Results Results showed that diarrhea rates of piglets were significantly reduced by CCT and CS supplementation respectively. Further research showed that CS supplementation tended to improve the intestinal absorption function in LPS-challenged piglets. Moreover, CS supplementation significantly reduced the contents of cortisol in blood and malondialdehyde in the duodenum and the activities of inducible nitric oxide synthase in the duodenum and ileum and total nitric oxide synthase in the ileum in LPS-challenged piglets. CS supplementation significantly increased the activities of sucrase in the ileum and myeloperoxidase in the jejunum in LPS-challenged piglets. CS supplementation significantly alleviated the reduced mRNA levels of immune-related genes (IL-4, IL-6, IL-8, IL-10) in mesenteric lymph nodes and jejunum and mucosal growth-related genes (IGF-1, mTOR, ALP) in LPS-challenged piglets. These results suggested that CS supplementation improved the intestinal function in LPS-challenged piglets by improving intestinal oxidative stress, immune stress, and absorption and repair function. However, although CCT supplementation improved oxidative stress by reducing (p < 0.05) the content of malondialdehyde and the activity of nitric oxide synthase in the duodenum, CCT supplementation tended to aggravate the intestinal absorption dysfunction in LPS-challenged piglets. Furthermore, compared with the control and LPS groups, CCT supplementation remarkably elevated the content of prostaglandin in plasma and the mRNA levels of pro-inflammatory factor IL-6 in mesenteric lymph nodes and jejunum, and reduced the activity of maltase in the ileum in LPS-challenged piglets. These results suggested that CCT supplementation had a negative effect on intestinal function by altering intestinal immune stress response and reducing disaccharidase activity in LPS-challenged piglets. Conclusions Compared to CS, CCT supplementation exhibited a negative effect on intestinal function, suggesting whether CCT can be as an effective feed additive still needs further study.
Collapse
|
15
|
Zhou J, Ren Y, Wen X, Yue S, Wang Z, Wang L, Peng Q, Hu R, Zou H, Jiang Y, Hong Q, Xue B. Comparison of coated and uncoated trace elements on growth performance, apparent digestibility, intestinal development and microbial diversity in growing sheep. Front Microbiol 2022; 13:1080182. [PMID: 36605519 PMCID: PMC9808050 DOI: 10.3389/fmicb.2022.1080182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The suitable supplement pattern affects the digestion and absorption of trace minerals by ruminants. This study aimed to compare the effects of coated and uncoated trace elements on growth performance, apparent digestibility, intestinal development and microbial diversity in growing sheep. Thirty 4-month-old male Yunnan semi-fine wool sheep were randomly assigned to three treatments (n = 10) and fed with following diets: basal diet without adding exogenous trace elements (CON), basal diet plus 400 mg/kg coated trace elements (CTE, the rumen passage rate was 65.87%) and basal diet plus an equal amount of trace elements in uncoated form (UTE). Compared with the CON group, the average daily weight gain and apparent digestibility of crude protein were higher (P < 0.05) in the CTE and UTE groups, while there was no difference between the CTE and UTE groups. The serum levels of selenium, iodine and cobalt were higher (P < 0.05) in the CTE and UTE groups than those in the CON group, the serum levels of selenium and cobalt were higher (P < 0.05) in the CTE group than those in the UTE group. Compared with the CON and UTE groups, the villus height and the ratio of villus height to crypt depth in duodenum and ileum were higher (P < 0.05) in the CTE groups. The addition of trace minerals in diet upregulated most of the relative gene expression of Ocludin, Claudin-1, Claudin-2, ZO-1, and ZO-2 in the duodenum and jejunum and metal ion transporters (FPN1 and ZNT4) in small intestine. The relative abundance of the genera Christensenellaceae R-7 group, Ruminococcus 1, Lachnospiraceae NK3A20 group, and Ruminococcaceae in ileum, and Ruminococcaceae UCG-014 and Lactobacillus in colon was higher in the CTE group that in the CON group. These results indicated that dietary trace mineral addition improved the growth performance and intestinal development, and altered the structure of intestinal bacteria in growing sheep. Compared to uncoated form, offering trace mineral elements to sheep in coated form had a higher absorption efficiency, however, had little effect on improving growth performance of growing sheep.
Collapse
Affiliation(s)
- Jia Zhou
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yifan Ren
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiao Wen
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuangming Yue
- 2Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu, China
| | - Zhisheng Wang
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yahui Jiang
- 3College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qionghua Hong
- 4Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Bai Xue
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,*Correspondence: Bai Xue,
| |
Collapse
|
16
|
Zhang Z, Wang S, Zheng L, Hou Y, Guo S, Wang L, Zhu L, Deng C, Wu T, Yi D, Ding B. Tannic acid-chelated zinc supplementation alleviates intestinal injury in piglets challenged by porcine epidemic diarrhea virus. Front Vet Sci 2022; 9:1033022. [PMID: 36299630 PMCID: PMC9589514 DOI: 10.3389/fvets.2022.1033022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry all over the world, causing significant profit losses. Tannins and organic zinc have been shown to exert protective effects on the intestinal dysfunction caused by endotoxins. However, there is little information on tannic acid-chelated zinc (TAZ) supplementation in the diet of newborn piglets. This study was conducted to determine the effects of TAZ on the intestinal function of piglets infected with PEDV. Thirty-two 7-day-old piglets were randomly allocated to 1 of 4 treatments in a 2 × 2 factorial design consisting of 2 diets (0 or 50 mg/kg BW TAZ) and challenge (saline or PEDV). On day 9 of the trial, 8 pigs per treatment received either sterile saline or PEDV solution at 106 TCID50 (50% tissue culture infectious dose) per pig. Pigs infected with PEDV had greater diarrhea rate and lower average daily gain (ADG) (P < 0.05). PEDV infection decreased plasma D-xylose concentration, most antioxidative enzyme activities in plasma and intestine, as well as the small intestinal villus height (P < 0.05). Plasma diamine oxidase and blood parameters were also affected by PEDV infection. Dietary supplementation with TAZ could ameliorate the PEDV-induced changes in all measured variables (P < 0.05). Moreover, TAZ decreased the concentration of malondialdehyde in plasma, duodenum, jejunum, and colon (P < 0.05). Collectively, our results indicated that dietary TAZ could alleviate PEDV induced damage on intestinal mucosa and antioxidative capacity, and improve the absorptive function and growth in piglets. Therefore, our novel findings also suggest that TAZ, as a new feed additive for neonatal and weaning piglets, has the potential to be an alternative to ZnO.
Collapse
|
17
|
Sweeney KM, Aranibar CD, Kim WK, Williams SM, Avila LP, Starkey JD, Starkey CW, Wilson JL. Impact of every-day versus skip-a-day feeding of broiler breeder pullets during rearing on body weight uniformity and reproductive performance. Poult Sci 2022; 101:101959. [PMID: 35760003 PMCID: PMC9241026 DOI: 10.1016/j.psj.2022.101959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic selection for increased growth rate in broilers makes feed restriction programs such as skip-a-day (SAD) feeding, for broiler breeders essential to managing body weight, flock uniformity, and reproductive performance. The objective of this experiment was to compare intestinal development, weight gain of breeder pullets, and reproductive performance (22-45 wk) when fed a high fiber diet (3.8% crude fiber) on either an every-day (ED) or SAD basis during rearing. The same developer ration and feed amounts were fed to both treatments. Day-old Ross 708 pullet chicks (n = 912) were randomly distributed into 4 floor pens (n = 228/pen, 2 pens/treatment). At 20 wk of age all birds were weighed, and the coefficient of variation (CV) and average body weight was calculated for each treatment. Birds were then distributed into 10 lay pens (n = 35 birds/pen, 5 pens/treatment) at 21.5 wk of age. Light was increased from 8 h to 15.25 h at move to the lay facility, and all birds were daily fed for the remainder of the study. Data were analyzed by SAS SLICE using a significance level of P ≤ 0.05. During lay, 25% of the birds from each treatment were weighed weekly to adjust feed and monitor body weight. At 21 wk the ED fed pullets were more uniform (P = 0.0007) than the SAD fed pullets. Eggs were collected daily and set for hatch every 4 wk from 28 to 42 wk of age. No significant difference in the hatch data were observed. The ED fed birds achieved first egg at 166 d of age while the SAD fed birds achieved first egg at 173 d of age. Specific gravity was measured every 2 wk from 30 to 40 wk, with ED reared birds having better overall eggshell quality (P = 0.02) and greater egg weight (P < 0.0001) than those fed SAD. Feeding a high fiber diet on an ED basis during rearing, improved body weight uniformity in rearing, encouraged early lay, improved eggshell quality and increased egg weight.
Collapse
Affiliation(s)
- K M Sweeney
- Department of Poultry Science, University of Georgia, Athens GA, 30602, USA
| | - C D Aranibar
- Department of Poultry Science, University of Georgia, Athens GA, 30602, USA
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens GA, 30602, USA
| | - S M Williams
- Department of Population Health, University of Georgia, Athens GA, 30602, USA
| | - L P Avila
- Department of Poultry Science, Auburn University, Auburn AL 36849, USA
| | - J D Starkey
- Department of Poultry Science, Auburn University, Auburn AL 36849, USA
| | - C W Starkey
- Department of Poultry Science, Auburn University, Auburn AL 36849, USA
| | - J L Wilson
- Department of Poultry Science, University of Georgia, Athens GA, 30602, USA.
| |
Collapse
|
18
|
Wu D, Fan Z, Li J, Zhang Y, Xu Q, Wang L, Wang L. Low Protein Diets Supplemented With Alpha-Ketoglutarate Enhance the Growth Performance, Immune Response, and Intestinal Health in Common Carp ( Cyprinus carpio). Front Immunol 2022; 13:915657. [PMID: 35720284 PMCID: PMC9200961 DOI: 10.3389/fimmu.2022.915657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the effects of alpha-ketoglutarate (AKG) supplementation in a low protein (LP) diet on the growth performance, immune response, and intestinal health of common carp (Cyprinus carpio), 600 carp were randomly divided into five dietary groups: a normal protein (NP) diet containing 32% crude protein, an LP diet formulated with 28% crude protein, and LP with AKG at 0.4%, 0.8%, and 1.2% (dry matter). After an 8-week trial period, the results demonstrated that an LP diet led to a decrease in performance, immune response, and intestinal barrier function. Compared with the LP group, the final body weight and weight gain rate in the LP+0.4% AKG group were significantly higher, the feed conversion ratio was significantly decreased with the addition of 0.4% and 0.8% AKG. The supplementation with 0.4% and 0.8% AKG markedly increased the activities of T-SOD and GSH-Px, as well as the expression levels of GPX1a and GPX1b relative to the LP group, whereas the MDA content was significantly decreased in the LP+0.4% AKG group. In addition, the expression levels of tight junctions including claudin-3, claudin-7, ZO-1, and MLCK were significantly up-regulated in the LP+0.4% AKG group, and the relative expression levels of the pro-inflammatory factors IL-1β and IL-6α were significantly lower with the addition of 0.4%, 0.8%, and 1.2% AKG. Moreover, the abundance of Proteobacteria in the LP+0.4% AKG group was lower than that in the LP group, and the abundance of Firmicutes and Fusobacteria was higher at the phylum level. The abundance of Citrobacter in the LP+0.4% AKG group was decreased compared to the LP group, while the abundance of Aeromonas was increased at the genus level. In short, the effects of AKG on the intestinal health of the common carp were systematically and comprehensively evaluated from the perspectives of intestinal physical barrier, chemical barrier, biological barrier, and immune barrier. We found that an LP diet supplemented with 0.4% AKG was beneficial to the growth performance and intestinal health of common carp.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, China
| | - Liang Wang
- AHP Application Research Institute, Weifang Addeasy Bio-Technology Co., Ltd, Weifang, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
19
|
Dietary Alpha-Ketoglutarate Partially Abolishes Adverse Changes in the Small Intestine after Gastric Bypass Surgery in a Rat Model. Nutrients 2022; 14:nu14102062. [PMID: 35631203 PMCID: PMC9146360 DOI: 10.3390/nu14102062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/03/2023] Open
Abstract
Alpha-ketoglutarate (AKG) is one of the key metabolites that play a crucial role in cellular energy metabolism. Bariatric surgery is a life-saving procedure, but it carries many gastrointestinal side effects. The present study investigated the beneficial effects of dietary AKG on the structure, integrity, and absorption surface of the small intestine after bariatric surgery. Male 7-week-old Sprague Dowley rats underwent gastric bypass surgery, after which they received AKG, 0.2 g/kg body weight/day, administered in drinking water for 6 weeks. Changes in small intestinal morphology, including histomorphometric parameters of enteric plexuses, immunolocalization of claudin 3, MarvelD3, occludin and zonula ocludens 1 in the intestinal mucosa, and selected hormones, were evaluated. Proliferation, mucosal and submucosal thickness, number of intestinal villi and Paneth cells, and depth of crypts were increased; however, crypt activity, the absorption surface, the expression of claudin 3, MarvelD3, occludin and zonula ocludens 1 in the intestinal epithelium were decreased after gastric bypass surgery. Alpha-ketoglutarate supplementation partially improved intestinal structural parameters and epithelial integrity in rats undergoing this surgical procedure. Dietary AKG can abolish adverse functional changes in the intestinal mucosa, enteric nervous system, hormonal response, and maintenance of the intestinal barrier that occurred after gastric bypass surgery.
Collapse
|
20
|
Gyanwali B, Lim ZX, Soh J, Lim C, Guan SP, Goh J, Maier AB, Kennedy BK. Alpha-Ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol Metab 2022; 33:136-146. [PMID: 34952764 DOI: 10.1016/j.tem.2021.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023]
Abstract
Alpha-ketoglutarate (AKG) is an intermediate in the Krebs cycle involved in various metabolic and cellular pathways. As an antioxidant, AKG interferes in nitrogen and ammonia balance, and affects epigenetic and immune regulation. These pleiotropic functions of AKG suggest it may also extend human healthspan. Recent studies in worms and mice support this concept. A few studies published in the 1980s and 1990s in humans suggested the potential benefits of AKG in muscle growth, wound healing, and in promoting faster recovery after surgery. So far there are no recently published studies demonstrating the role of AKG in treating aging and age-related diseases; hence, further clinical studies are required to better understand the role of AKG in humans. This review will discuss the regulatory role of AKG in aging, as well as its potential therapeutic use in humans to treat age-related diseases.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zi Xiang Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System, Singapore
| | - Clarissa Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shou Ping Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute of Clinical Sciences, A*STAR, Singapore.
| |
Collapse
|
21
|
Sun D, Mao S, Zhu W, Liu J. Proteomic identification of ruminal epithelial protein expression profiles in response to starter feed supplementation in pre-weaned lambs. ACTA ACUST UNITED AC 2021; 7:1271-1282. [PMID: 34786500 PMCID: PMC8567165 DOI: 10.1016/j.aninu.2021.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/01/2022]
Abstract
The present study aimed to comparatively characterize the ruminal epithelial protein expression profiles in lambs fed ewe milk or milk plus starter diet using proteome analysis. Twenty new-born lambs were randomly divided into a group receiving ewe milk (M, n = 10) and a group receiving milk plus starter diet (M + S, n = 10). From 10 d old, M group lambs remained with the ewe and suckled ewe milk without receiving the starter diet. The lambs in the M + S group were separated from the ewe and received starter feed. All lambs were slaughtered at 56 d old. Eight rumen epithelia samples (4 per group) were collected to characterize their protein expression profiles using proteomic technology. Proteome analysis showed that 31 upregulated proteins and 40 downregulated proteins were identified in the rumen epithelium of lambs in response to starter diet supplementation. The results showed that starter feeding regulates a variety of biological processes in the epithelium, especially blood vessel development and extracellular matrix protein expression. Meanwhile, the expression of proteins associated with synthesis and degradation of ketone bodies, butanoate metabolism, and citrate cycle signaling transduction pathway were upregulated in the group with starter diet supplementation, including 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGCS2, fold change [FC] = 1.93), 3-hydroxybutyrate dehydrogenase 1 (BDH1, FC = 1.91), and isocitrate dehydrogenase 1 (IDH1, FC = 8.12). The metabolic processes associated with ammonia detoxification and antioxidant stress were also affected by starter diet supplementation, with proteins, microsomal glutathione S-transferase 3 (MGST3, FC = 2.37) and IDH1, linked to the biosynthesis of glutamate and glutathione metabolism pathway being upregulated in the group with starter diet supplementation. In addition, starter feeding decreased the expression of Ras-related protein rap-1A (RAP1A, FC = 0.48) enriched in Rap1 signaling pathway, Ras signaling pathway, cyclic adenosine monophosphate (cAMP) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway. In summary, starter feed supplementation changed the expression of proteins related to energy production, ammonia detoxification, antioxidant stress, and signaling pathways related to proliferation and apoptosis, which facilitates the rumen epithelia development in lambs. The results provide new insights into the molecular adaptation of rumen epithelia in response to starter diet supplementation at the protein level in lambs.
Collapse
Affiliation(s)
- Daming Sun
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Gu F, Liang S, Zhu S, Liu J, Sun HZ. Multi-omics revealed the effects of rumen-protected methionine on the nutrient profile of milk in dairy cows. Food Res Int 2021; 149:110682. [PMID: 34600684 DOI: 10.1016/j.foodres.2021.110682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
Cow's milk is a highly-nutritious dairy product part of human diet worldwide. Rumen-protected methionine (RPM) is widely used to improve lactation performance of dairy cows, but understanding of the effects of RPM on milk nutrients composition are still limited. In this study, twenty mid-lactating dairy cows were supplemented with 20 gm/day RPM for 8 weeks to investigate the responses of milk nutritional composition to RPM. Metabolomics was applied for analyzing milk metabolites and 16S rRNA gene sequencing was used for analysis of rumen microbial composition. Milk fat content and yield were significantly increased after RPM supplementation. Totally 443 compounds belonging to 15 classes were identified, among which 15 metabolites were significantly changed. The functional nutrient α-ketoglutaric acid were significantly increased in the milk after RPM supplementation. We found 48 significantly differing bacterial genera in the rumen after supplementing RPM. Multi-omics integrated analysis revealed the higher abundance of Acetobacter, unclassified_f_Lachnospiraceae and Saccharofermentan contributed to the improved milk fat. In addition, the enriched abundance of Thermoactinomyces, Asteroleplasma, and Saccharofermentan showed positive correlations with higher α-ketoglutaric acid of milk. Our results uncover the metabolomic fingerprint and the key functional metabolites in the milk after supplementing RPM in dairy cows, as well as the key rumen bacteria associated with them. These findings provide novel insights into the development of functional dairy products that enriched the functional nutrient α-ketoglutaric acid or high milk fat.
Collapse
Affiliation(s)
- Fengfei Gu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuling Liang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Senlin Zhu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jianxin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hui-Zeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
23
|
Sood A, Dev A, Sardoiwala MN, Choudhury SR, Chaturvedi S, Mishra AK, Karmakar S. Alpha-ketoglutarate decorated iron oxide-gold core-shell nanoparticles for active mitochondrial targeting and radiosensitization enhancement in hepatocellular carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112394. [PMID: 34579913 DOI: 10.1016/j.msec.2021.112394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023]
Abstract
The ability of some tumours to impart radioresistance serves as a barrier in the cancer therapeutics. Mitochondrial metabolism significantly persuades this cancer cell survival, incursion and plays a crucial role in conferring radioresistance. It would be of great importance to target the active mitochondria to overcome this resistance and achieve tumoricidal efficacy. The current report investigates the improved radiosensitization effect (under Gamma irradiation) in hepatocellular carcinoma through active mitochondrial targeting of alpha-ketoglutarate decorated iron oxide-gold core-shell nanoparticles (GNP). The loading of a chemotherapeutic drug N-(4-hydroxyphenyl)retinamide in GNP allows adjuvant chemotherapy, which further sensitizes cancerous cells for radiotherapy. The GNP shows a drug loading efficiency of 8.5 wt% with a sustained drug release kinetics. The X-Ray diffraction (XRD) pattern and High-Resolution Transmission Electron microscopy (HRTEM) indicates the synthesis of core iron oxide nanoparticles with indications of a thin layer of gold shell on the surface with 1:7 ratios of Fe: Au. The GNP application significantly reduced per cent cell viability in Hepatocellular carcinoma cells through improved radiosensitization at 5 Gy gamma radiation dose. The molecular mechanism revealed a sharp increment in reactive oxygen species (ROS) generation and DNA fragmentation. The mitochondrial targeting probes confirm the presence of GNP in the mitochondria, which could be the possible reason for such improved cellular damage. In addition to the active mitochondrial targeting, the currently fabricated nanoparticles work as a potent Magnetic Resonance Imaging (MRI)/Computed Tomography (CT) contrast agent. This multifunctional therapeutic potential makes GNP as one of the most promising theragnostic molecules in cancer therapeutics.
Collapse
Affiliation(s)
- Ankur Sood
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | - Atul Dev
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | | | | | - Shubhra Chaturvedi
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, New Delhi, India
| | - Anil Kumar Mishra
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, New Delhi, India.
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India.
| |
Collapse
|
24
|
Yang C, Wang M, Tang X, Yang H, Li F, Wang Y, Li J, Yin Y. Effect of Dietary Amylose/Amylopectin Ratio on Intestinal Health and Cecal Microbes' Profiles of Weaned Pigs Undergoing Feed Transition or Challenged With Escherichia coli Lipopolysaccharide. Front Microbiol 2021; 12:693839. [PMID: 34354689 PMCID: PMC8329381 DOI: 10.3389/fmicb.2021.693839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background Dietary amylose/amylopectin ratio (DAR) plays an important role in piglets' intestinal health. It is controversial whether diarrhea could be relieved by changing DAR in weaning piglets. Methods Sixty (Landrace × Yorkshire) castrated male pigs (initial body weight (BW) 6.51 ± 0.64 kg) were randomly allocated to five groups (one pig per cage and 12 replicates per group) according to their BW. Piglets received diets with different DARs (0.00, 0.20, 0.40, 0.60, and 0.80) for 29 days. Feed transition occurs at day 15. The piglets were challenged with lipopolysaccharides (Escherichia coli LPS, 100 μg/kg BW) on day 29 by intraperitoneal injection at 12 h before slaughter. Chyme was collected for pH value, short-chain fatty acid (SCFA), and cecal microbe analysis using 16S rRNA gene sequencing; mucosa was sampled for detecting gene expression. Results Rate and degree of diarrhea were higher when DAR was 0.40 than when it was 0.20 and 0.80 during the third week (P < 0.05). The chyme pH value in the cecum was higher (P < 0.05) in 0.20 DAR than in 0.00 and 0.80 DARs, but with no significant difference compared with 0.40 and 0.60 DARs (P > 0.05). Cecal isobutyric acid and isovaleric acid concentrations were higher in 0.20 than in other groups (P < 0.01). Cecal SCFAs such as acetic acid, propionic acid, and total SCFA, concentrations were higher in 0.40 DAR than in 0.00, 0.60, and 0.80 DARs (P < 0.05), but with no significant difference when compared with 0.20 (P > 0.05). Cecal crypt depth was lower (P < 0.05) in 0.80 than in other groups, but not 0.40. Claudin mRNA expression in the mucosa of the ileum was higher in 0.20 than in other groups (P < 0.01). The alpha diversity of cecal microbe representative by goods coverage was higher in group 0.40 when compared with group 0.20 (P < 0.05). At the genus level, the abundances of the Ruminococcaceae_NK4A214_group and Anaerotruncus were higher but that of Cetobacterium was lower in the cecal chyme of group 0.20 than that of group 0.60 (P < 0.05), with no significant difference compared with other groups (P > 0.05). The diarrhea rate during the third week was negatively correlated with the abundances of Rikenellaceae_RC9_gut_group and X.Eubacterium_coprostanoligenes_group (P < 0.05). Conclusion Compared with diet high in amylose or amylopectin, diet with DAR 0.40 showed a worse degree of diarrhea in weaned piglets during feed transition. But the intestinal health will be improved the week after the microbes and metabolites are regulated by DAR.
Collapse
Affiliation(s)
- Can Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in Nanyue Mountain Area, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Health Livestock, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Min Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China
| | - XiaoWu Tang
- College of Bioengineering, Hunan Vocational Technical College of Environment and Biology, Hengyang, China
| | - HuanSheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China
| | - FengNa Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Health Livestock, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - YanCan Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China
| | - YuLong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Health Livestock, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
25
|
Wu D, Fan Z, Li J, Zhang Y, Wang C, Xu Q, Wang L. Evaluation of Alpha-Ketoglutarate Supplementation on the Improvement of Intestinal Antioxidant Capacity and Immune Response in Songpu Mirror Carp ( Cyprinus carpio) After Infection With Aeromonas hydrophila. Front Immunol 2021; 12:690234. [PMID: 34220849 PMCID: PMC8250152 DOI: 10.3389/fimmu.2021.690234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
As an intermediate substance of the tricarboxylic acid cycle and a precursor substance of glutamic acid synthesis, the effect of alpha-ketoglutarate on growth and protein synthesis has been extensively studied. However, its prevention and treatment of pathogenic bacteria and its mechanism have not yet been noticed. To evaluate the effects of alpha-ketoglutarate on intestinal antioxidant capacity and immune response of Songpu mirror carp, a total of 360 fish with an average initial weight of 6.54 ± 0.08 g were fed diets containing alpha-ketoglutarate with 1% for 8 weeks. At the end of the feeding trial, the fish were challenged with Aeromonas hydrophila for 2 weeks. The results indicated that alpha-ketoglutarate supplementation significantly increased the survival rate of carp after infection with Aeromonas hydrophila (P < 0.05), and the contents of immune digestion enzymes including lysozyme, alkaline phosphatase and the concentration of complement C4 were markedly enhanced after alpha-ketoglutarate supplementation (P < 0.05). Also, appropriate alpha-ketoglutarate increased the activities of total antioxidant capacity and catalase and prevented the up-regulation in the mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 (P < 0.05). Furthermore, the mRNA expression levels of toll-like receptor 4 (TLR4), and nuclear factor kappa-B (NF-κB) were strikingly increased after infection with Aeromonas hydrophila (P < 0.05), while the TLR4 was strikingly decreased with alpha-ketoglutarate supplementation (P < 0.05). Moreover, the mRNA expression levels of tight junctions including claudin-1, claudin-3, claudin-7, claudin-11 and myosin light chain kinases (MLCK) were upregulated after alpha-ketoglutarate supplementation (P < 0.05). In summary, the appropriate alpha-ketoglutarate supplementation could increase survival rate, strengthen the intestinal enzyme immunosuppressive activities, antioxidant capacities and alleviate the intestinal inflammation, thereby promoting the intestinal immune responses and barrier functions of Songpu mirror carp via activating TLR4/MyD88/NF-κB and MLCK signaling pathways after infection with Aeromonas hydrophila.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Chang'an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
26
|
Chalvon-Demersay T, Luise D, Le Floc'h N, Tesseraud S, Lambert W, Bosi P, Trevisi P, Beaumont M, Corrent E. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Front Vet Sci 2021; 8:663727. [PMID: 34113671 PMCID: PMC8185281 DOI: 10.3389/fvets.2021.663727] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many challenges which alter performance, animal health, welfare and livability. Preventive strategies are needed to mitigate the impacts of these challenges on gut health while reducing the need to use antimicrobials. In the first part of the review, we propose a common definition of gut health for pig and chickens relying on four pillars, which correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion, (ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For each pillar, we describe the most commonly associated indicators. In the second part of the review, we present the potential of functional amino acid supplementation to preserve and improve gut health in piglets and chickens. We highlight that amino acid supplementation strategies, based on their roles as precursors of energy and functional molecules, as signaling molecules and as microbiota modulators can positively contribute to gut health by supporting or restoring its four intertwined pillars. Additional work is still needed in order to determine the effective dose of supplementation and mode of administration that ensure the full benefits of amino acids. For this purpose, synergy between amino acids, effects of amino acid-derived metabolites and differences in the metabolic fate between free and protein-bound amino acids are research topics that need to be furtherly investigated.
Collapse
Affiliation(s)
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
27
|
Tian Q, Bravo Iniguez A, Sun Q, Wang H, Du M, Zhu MJ. Dietary Alpha-Ketoglutarate Promotes Epithelial Metabolic Transition and Protects against DSS-Induced Colitis. Mol Nutr Food Res 2021; 65:e2000936. [PMID: 33547710 DOI: 10.1002/mnfr.202000936] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/12/2020] [Indexed: 12/13/2022]
Abstract
SCOPE As a natural compound in foods, alpha-ketoglutarate (aKG) is one of the key metabolites maintaining energy homeostasis. This study examines the beneficial effects of dietary aKG against the development of experimental colitis and further explores the underlying molecular mechanisms. METHODS AND RESULTS Eight-week-old male C57BL/6 mice receive drinking water with or without 1% aKG for 4 weeks. At week 3, colitis is induced by 2.5% dextran sulfate sodium (DSS) for 7 days followed by 7 days recovery. Dietary aKG supplementation decreases DSS-induced body weight loss, gross bleeding, fecal consistency score, and disease activity index. In agreement, aKG supplementation restores DSS-associated colon shortening, ameliorated mucosal damage, and macrophage infiltration into colonic tissue, which are associated with suppressed gut inflammation and Wnt signaling, and improved epithelial structure. Consistently, aKG supplementation enhances M1 to M2 macrophage polarization and strengthens intestinal barrier function. Additionally, aKG supplementation elevates colonic aKG levels while decreasing 2-hydroxyglutarate levels, which increases oxidative instead of glycolytic metabolism. CONCLUSION aKG supplementation protects against epithelial damage and ameliorates DSS-induced colitis, which are associated with suppressed inflammation, Wnt signaling pathway, and glycolysis. Intake of foods enriched with aKG or aKG supplementation can be an alternative approach for the prevention or treatment of colitis that are common in Western societies.
Collapse
Affiliation(s)
- Qiyu Tian
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
- Department of Animal Science, Washington State University, Pullman, WA, 99164, USA
| | | | - Qi Sun
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Hongbin Wang
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
28
|
The Regulatory Role of α-Ketoglutarate Metabolism in Macrophages. Mediators Inflamm 2021; 2021:5577577. [PMID: 33859536 PMCID: PMC8024083 DOI: 10.1155/2021/5577577] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Macrophages are multifunctional immune cells whose functions depend on polarizable phenotypes and the microenvironment. Macrophages have two phenotypes, including the M1 proinflammatory phenotype and the M2 anti-inflammatory phenotype, which play important roles in many inflammatory responses and diseases. α-Ketoglutarate is a key metabolite of the TCA cycle and can regulate the phenotype of macrophage polarization to exert anti-inflammatory effects in many inflammation-related diseases. In this review, we primarily elucidate the metabolism, regulatory mechanism, and perspectives of α-ketoglutarate on macrophages. The regulation of macrophage polarization by α-ketoglutarate may provide a promising target for the prevention and therapy of inflammatory diseases and is beneficial to animal health.
Collapse
|
29
|
Wu M, Yi D, Zhang Q, Wu T, Yu K, Peng M, Wang L, Zhao D, Hou Y, Wu G. Puerarin enhances intestinal function in piglets infected with porcine epidemic diarrhea virus. Sci Rep 2021; 11:6552. [PMID: 33753826 PMCID: PMC7985190 DOI: 10.1038/s41598-021-85880-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Puerarin has been reported to be an excellent antioxidant, anti-inflammatory and antimicrobial agent, but the potential effect of puerarin on porcine epidemic diarrhea virus (PEDV) is unclear. This study aimed to determine whether puerarin could alleviate intestinal injury in piglets infected with PEDV. A PEDV (Yunnan province strain) infection model was applied to 7-day-old piglets at 104.5 TCID50 (50% tissue culture infectious dose). Piglets were orally administered with puerarin at the dosage of 0.5 mg/kg body weight from day 5 to day 9. On day 9 of the trial, piglets were inoculated orally with PEDV. Three days later, jugular vein blood and intestinal samples were collected. Results showed puerarin reduced morbidity of piglets infected with PEDV. In addition, puerarin reduced the activities of aspartate aminotransferase and alkaline phosphatase, the ratio of serum aspartate aminotransferase to serum alanine aminotransferase, the number of white blood cells and neutrophils, and the plasma concentrations of interleukin-6, interleukin-8 and tumor necrosis factor-α, as well as protein abundances of heat shock protein-70 in PEDV-infected piglets. Moreover, puerarin increased D-xylose concentration but decreased intestinal fatty acid-binding protein concentration and diamine oxidase activity in the plasma of piglets infected with PEDV. Puerarin increased the activities of total superoxide dismutase, glutathione peroxidase and catalase, while decreasing the activities of myeloperoxidase and concentration of hydrogen peroxide in both the intestine and plasma of PEDV-infected piglets. Puerarin decreased mRNA levels of glutathione S-transferase omega 2 but increased the levels of nuclear factor erythroid 2-related factor 2. Furthermore, puerarin increased the abundance of total eubacteria (16S rRNA), Enterococcus genus, Lactobacillus genus and Enterobacteriaceae family in the intestine, but reduced the abundance of Clostridium coccoides in the caecum. These data indicate puerarin improved intestinal function in piglets infected by PEDV and may be a promising supplement for the prevention of PEDV infection.
Collapse
Affiliation(s)
- Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kui Yu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Meng Peng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
30
|
Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent. Ageing Res Rev 2021; 66:101237. [PMID: 33340716 DOI: 10.1016/j.arr.2020.101237] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
An intermediate of tricarboxylic acid cycle alpha-ketoglutarate (AKG) is involved in pleiotropic metabolic and regulatory pathways in the cell, including energy production, biosynthesis of certain amino acids, collagen biosynthesis, epigenetic regulation of gene expression, regulation of redox homeostasis, and detoxification of hazardous substances. Recently, AKG supplement was found to extend lifespan and delay the onset of age-associated decline in experimental models such as nematodes, fruit flies, yeasts, and mice. This review summarizes current knowledge on metabolic and regulatory functions of AKG and its potential anti-ageing effects. Impact on epigenetic regulation of ageing via being an obligate substrate of DNA and histone demethylases, direct antioxidant properties, and function as mimetic of caloric restriction and hormesis-induced agent are among proposed mechanisms of AKG geroprotective action. Due to influence on mitochondrial respiration, AKG can stimulate production of reactive oxygen species (ROS) by mitochondria. According to hormesis hypothesis, moderate stimulation of ROS production could have rather beneficial biological effects, than detrimental ones, because of the induction of defensive mechanisms that improve resistance to stressors and age-related diseases and slow down functional senescence. Discrepancies found in different models and limitations of AKG as a geroprotective drug are discussed.
Collapse
|
31
|
Wang H, Li C, Peng M, Wang L, Zhao D, Wu T, Yi D, Hou Y, Wu G. N-Acetylcysteine improves intestinal function and attenuates intestinal autophagy in piglets challenged with β-conglycinin. Sci Rep 2021; 11:1261. [PMID: 33441976 PMCID: PMC7807065 DOI: 10.1038/s41598-021-80994-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/01/2021] [Indexed: 11/09/2022] Open
Abstract
β-Conglycinin (β-CG), an anti-nutritional factor, is a major allergen in soybeans to induce intestinal dysfunction and diarrhea in neonatal animals, including piglets and human infants. This study with a piglet model determined the effects of N-acetylcysteine (NAC) on intestinal function and autophagy in response to β-CG challenge. Twenty-four 12-day-old piglets (3.44 ± 0.28 kg), which had been weaned at 7 days of age and adapted for 5 days after weaning, were randomly allocated to the control, β-CG, and β-CG + NAC groups. Piglets in the control group were fed a liquid diet containing 10% casein, whereas those in the β-CG and β-CG + NAC groups were fed the basal liquid diets containing 9.5% casein and 0.5% β-CG for 2 days. Thereafter, pigs in the β-CG + NAC group were orally administrated with 50 mg (kg BW)-1 NAC for 3 days, while pigs in the other two groups were orally administrated with the same volume of sterile saline. NAC numerically reduced diarrhea incidence (- 46.2%) and the concentrations of hydrogen peroxide and malondialdehyde, but increased claudin-1 and intestinal fatty-acid binding protein (iFABP) protein abundances and activities of catalase and glutathione peroxidase in the jejunum of β-CG-challenged piglets. Although β-CG challenge decreased the villus height, villus height/crypt depth ratio, and mRNA levels of claudin-1 and occludin, no significant differences were observed in these indices between the control and β-CG + NAC groups, suggesting the positive effects of NAC supplementation on intestinal mucosal barrier function. Moreover, NAC increased the concentrations of citrulline and D-xylose in the plasma, as well as the expression of genes for aquaporin (AQP) 3, AQP4, peptide transporter 1 (PepT1), sodium/glucose co-transporter-1 (SGLT-1), potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13), and solute carrier family 1 member 1 (SLC1A1) in the jejunum, demonstrating that NAC augmented intestinal metabolic activity and absorptive function. Remarkably, NAC decreased Atg5 protein abundance and the LC3II/LC3I ratio (an indicator of autophagy) in the jejunum of β-CG-challenged piglets. Taken together, NAC supplementation improved intestinal function and attenuated intestinal autophagy in β-CG-challenged piglets.
Collapse
Affiliation(s)
- Huiyun Wang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chengcheng Li
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Meng Peng
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lei Wang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Di Zhao
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tao Wu
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dan Yi
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
32
|
Alpha-Ketoglutarate: An Effective Feed Supplement in Improving Bone Metabolism and Muscle Quality of Laying Hens: A Preliminary Study. Animals (Basel) 2020; 10:ani10122420. [PMID: 33348724 PMCID: PMC7767309 DOI: 10.3390/ani10122420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the experiment was to assess the effect of dietary alpha-ketoglutarate (AKG) supplementation on performance, serum hormonal indices, duodenum and jejunum histomorphometry, meat quality characteristics, bone quality traits and cartilage degradation in laying hens with a mature skeletal system. Forty-eight 30 week-old Bovans Brown laying hens were randomly assigned to a control group or the group fed the basal diet plus 1.0% AKG. The experimental trial lasted 30 weeks. The supplementation of AKG increases blood serum content of leptin, ghrelin, bone alkaline phosphatate and receptor activator of nuclear factor kappa-Β ligand, while osteoprotegerin and osteocalcin decrease. While dietary AKG was given to laying hens negatively influenced villus length, crypt depth, villus/crypt ratio and absorptive surface area in duodenum and jejunum, these changes have no effect on feed intake, weight gain, nor laying performance. In breast muscles, no significant changes in skeletal muscle fatty acid composition were observed, however, a higher shear force and decreased cholesterol content following AKG supplementation were noted, showing the improvement of muscle quality. While dietary AKG supplementation did not affect the general geometric and mechanical properties of the tibia, it increased collagen synthesis and enhanced immature collagen content. In medullary bone, an increase of bone volume fraction, trabecular thickness, fractal dimension and decrease of trabecular space were observed in AKG supplemented group. The trabeculae in bone metaphysis were also significantly thicker after AKG supplementation. AKG promoted fibrillogenesis in articular cartilage, as indicated by increased cartilage oligomeric matrix protein immunoexpression. By improving the structure and maintaining the proper bone turnover rate of highly reactive and metabolically active medullar and trabecular bones AKG showed its anti-osteoporotic action in laying hens.
Collapse
|
33
|
Dietary Supplementation of Inorganic, Organic, and Fatty Acids in Pig: A Review. Animals (Basel) 2020; 10:ani10101740. [PMID: 32992813 PMCID: PMC7600838 DOI: 10.3390/ani10101740] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The role of acids in pig feed strategies has changed from feed acidifier and preservative to growth promoter and antibiotics substitute. Since the 2006 European banning of growth promoters in the livestock sector, several feed additives have been tested with the goal of identifying molecules with the greatest beneficial antimicrobial, growth-enhancing, or disease-preventing abilities. These properties have been identified among various acids, ranging from inexpensive inorganic acids to organic and fatty acids, and these have been widely used in pig production. Acids are mainly used during the weaning period, which is considered one of the most critical phases in pig farming, as well as during gestation, lactation, and fattening. Such supplementation generally yields improved growth performance and increased feed efficiency; these effects are the consequences of different modes of action acting on the microbiome composition, gut mucosa morphology, enzyme activity, and animal energy metabolism. Abstract Reduction of antibiotic use has been a hot topic of research over the past decades. The European ban on growth-promoter use has increased the use of feed additivities that can enhance animal growth performance and health status, particularly during critical and stressful phases of life. Pig farming is characterized by several stressful periods, such as the weaning phase, and studies have suggested that the proper use of feed additives during stress could prevent disease and enhance performance through modulation of the gastrointestinal tract mucosa and microbiome. The types of feed additive include acids, minerals, prebiotics, probiotics, yeast, nucleotides, and phytoproducts. This review focuses on commonly used acids, classified as inorganic, organic, and fatty acids, and their beneficial and potential effects, which are widely reported in the bibliography. Acids have long been used as feed acidifiers and preservatives, and were more recently introduced into feed formulated for young pigs with the goal of stabilizing the stomach pH to offset their reduced digestive capacity. In addition, some organic acids represent intermediary products of the tricarboxylic acid cycle (TCA), and thus could be considered an energy source. Moreover, antimicrobial properties have been exploited to modulate microbiota populations and reduce pathogenic bacteria. Given these potential benefits, organic acids are no longer seen as simple acidifiers, but rather as growth promoters and potential antibiotic substitutes owing to their beneficial action on the gastrointestinal tract (GIT).
Collapse
|
34
|
Lv Z, Dai H, Wei Q, Jin S, Wang J, Wei X, Yuan Y, Yu D, Shi F. Dietary genistein supplementation protects against lipopolysaccharide-induced intestinal injury through altering transcriptomic profile. Poult Sci 2020; 99:3411-3427. [PMID: 32616235 PMCID: PMC7597844 DOI: 10.1016/j.psj.2020.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Genistein is abundant in the corn-soybean meal feed. Little information is available about the effect of dietary genistein on the intestinal transcriptome of chicks, especially when suffering from intestinal injury. In this study, 180 one-day-old male ROSS 308 broiler chickens were randomly allocated to 3 groups, with 4 replicates (cages) of 15 birds each. The treatments were as follows: chicks received a basal diet (CON), a basal diet and underwent lipopolysaccharide-challenge (LPS), or a basal diet supplemented with 40 mg/kg genistein and underwent LPS-challenge (GEN). LPS injection induced intestinal injury and inflammatory reactions in the chicks. Transcriptomic analysis identified 7,131 differently expressed genes (3,281 upregulated and 3,851 downregulated) in the GEN group compared with the LPS group (P adjusted value < 0.05, |fold change| > 1.5), which revealed that dietary genistein exposure altered the gene expression profile and signaling pathways in the ileum of LPS-treated chicks. Furthermore, dietary genistein improved intestinal morphology, mucosal immune function, tight junction, antioxidant activity, apoptotic process, and growth performance, which were adversely damaged by LPS injection. Therefore, adding genistein into the diet of chicks can alter RNA expression profile and ameliorate intestinal injury in LPS-challenged chicks, thereby improving the growth performance of chicks with intestinal injury.
Collapse
Affiliation(s)
- Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Jin
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Jiao Wang
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Xihui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunwei Yuan
- Poultry Production Department, Jiangsu Hesheng Food Limited Company, Taizhou 225300, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Wu M, Zhang Q, Yi D, Wu T, Chen H, Guo S, Li S, Ji C, Wang L, Zhao D, Hou Y, Wu G. Quantitative Proteomic Analysis Reveals Antiviral and Anti-inflammatory Effects of Puerarin in Piglets Infected With Porcine Epidemic Diarrhea Virus. Front Immunol 2020; 11:169. [PMID: 32174911 PMCID: PMC7055472 DOI: 10.3389/fimmu.2020.00169] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused enormous economic losses to the swine industry worldwide in recent years. Puerarin (PR), a major isoflavonoid isolated from the Chinese herb Gegen, possesses many pharmacological activities, including anti-inflammatory, and anti-viral activities. This study was conducted with both PEDV-infected African green monkey kidney cells (Vero) and neonatal pigs to determine the effect of PR on PEDV infection and to elucidate the underlying mechanisms by using proteomic analyses. Twenty-four piglets fed a milk replacer were randomly allocated into one of three groups (Control, PEDV, and PEDV + PR). After a 5-day period of adaption, piglets (n = 8/group) in the PEDV + PR were orally administered with PR (0.5 mg/kg body weight) between days 5 and 9, whereas piglets in the other two groups received the same volume of liquid milk replacer. On day 9, piglets were orally administered with either sterile saline or PEDV (Yunnan province strain) at 104.5 TCID50 (50% tissue culture infectious dose) per pig. On day 12 of the trial, jugular vein blood and intestinal samples were collected. In addition, Vero cells were assigned randomly into three groups (Control, PEDV, PEDV + PR). Cells in the PEDV and PEDV + PR groups were infected with PEDV at a multiplicity of infection of 0.01, while cells in the control group were treated with the same volume of sterile saline. One hour later, cells in the Control and PEDV groups were cultured in serum-free DMEM, while cells in the PEDV + PR group were supplemented with PR. After 36 h of culture, cells were harvested. PR attenuated the reductions in cell proliferation in vitro and growth performance in PEDV-infected piglets, and inhibited PEDV replication and the expression of several cytokines (including IL-8) both in vitro and in vivo. Proteomic analyses identified that the abundances of 29 proteins in the ileum were altered by PEDV infection and restored to the control level by PR. Pathway analyses revealed that PR restored the expression of several interferon-stimulated genes and selectively upregulated the expression of guanylate-binding proteins. Western blot analyses showed that PR supplementation inhibited the PEDV-induced NF-κB activation. Collectively, these results indicate that PR could exert antiviral and anti-inflammatory effects in piglets infected with PEDV and have the potential to be an effective antiviral feed additive.
Collapse
Affiliation(s)
- Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Siyuan Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Changzheng Ji
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Department of Animal Science, Texas A&M University, College Station, TX, United States
| |
Collapse
|
36
|
Lactobacillus delbrueckii Ameliorates Intestinal Integrity and Antioxidant Ability in Weaned Piglets after a Lipopolysaccharide Challenge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6028606. [PMID: 32104535 PMCID: PMC7035547 DOI: 10.1155/2020/6028606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
This study was conducted to evaluate the effect of dietary supplementation with Lactobacillus delbrueckii (LAB) on intestinal morphology, barrier function, immune response, and antioxidant capacity in weaned piglets challenged with lipopolysaccharide (LPS). A total of 36 two-line crossbred (Landrace × large Yorkshire) weaned piglets (28 days old) were divided into three groups: (1) nonchallenged control (CON); (2) LPS-challenged control (LPS); and (3) LAB+LPS treatment (0.2% LAB+LPS). Compared to the LPS piglets, the LAB+LPS piglets improved intestinal morphology, indicated by greater (P < 0.05) villus height in the duodenum and ileum; villus height : crypt depth ratio in the duodenum, jejunum, and ileum, as well as decreased (P < 0.05) crypt depth in the jejunum and ileum; and better intestinal barrier function, indicated by upregulated (P < 0.05) mRNA expression of tight junction proteins in the intestinal mucosa. Moreover, compared to the LPS piglets, LAB significantly decreased (P < 0.05) concentrations of TNF-α and IL-1β in the small intestine and increased (P < 0.05) IL-10 levels in the jejunum and ileum. Additionally, LAB increased (P < 0.05) T-AOC activities of the colon, GSH concentrations of the jejunum, and mRNA expression of CAT and Cu/Zn-SOD, while reduced (P < 0.05) MDA concentrations in the jejunum and ileum in LPS-changed piglets. Collectively, our results indicate that supplementation of LAB improved intestinal integrity and immune response and alleviated intestinal oxidative damage in LPS-challenged piglets.
Collapse
|
37
|
Tugnoli B, Giovagnoni G, Piva A, Grilli E. From Acidifiers to Intestinal Health Enhancers: How Organic Acids Can Improve Growth Efficiency of Pigs. Animals (Basel) 2020; 10:ani10010134. [PMID: 31947627 PMCID: PMC7022919 DOI: 10.3390/ani10010134] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Organic acids have been used successfully in pig production as a cost-effective performance-enhancing option and they continue to be the number one alternative to antibiotic growth promoters. The aim of this review is to provide the biological rationale behind organic acids use in pig production, focusing on their different effects along the gastrointestinal tract of pigs. Organic acids are reviewed for their antimicrobial properties and for their classic use as acidifiers, with particular attention to pH modulation and microflora control. Additional beneficial effects on intestinal health and general metabolism are presented and we explain the advantage of microencapsulation as a tool to deliver organic acids along the intestine.
Collapse
Affiliation(s)
| | - Giulia Giovagnoni
- Dipartimento di Scienze Mediche Veterinarie, DIMEVET-Università di Bologna-Via Tolara di sopra, 50-40064 Ozzano Emilia, Bologna, Italy; (G.G.); (E.G.)
| | - Andrea Piva
- Vetagro S.p.A.-Via Porro 2, 42124 Reggio Emilia, Italy;
- Dipartimento di Scienze Mediche Veterinarie, DIMEVET-Università di Bologna-Via Tolara di sopra, 50-40064 Ozzano Emilia, Bologna, Italy; (G.G.); (E.G.)
- Correspondence: ; Tel.: +39-051-209-7387
| | - Ester Grilli
- Dipartimento di Scienze Mediche Veterinarie, DIMEVET-Università di Bologna-Via Tolara di sopra, 50-40064 Ozzano Emilia, Bologna, Italy; (G.G.); (E.G.)
- Vetagro Inc., 116 W. Jackson Blvd., Suite #320, Chicago, IL 60604, USA
| |
Collapse
|
38
|
Zhang J, Wan J, Wu G, Chen D, Yu B, Huang Z, Mao X, Zheng P, Yu J, He J. Low-molecular-weight chitosan relieves enterotoxigenic Escherichia coli-induced growth retardation in weaned pigs. Int Immunopharmacol 2020; 78:105798. [DOI: 10.1016/j.intimp.2019.105798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
|
39
|
Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus. Sci Rep 2019; 9:19798. [PMID: 31875021 PMCID: PMC6930262 DOI: 10.1038/s41598-019-56391-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection can induce intestinal dysfunction, resulting in severe diarrhea and even death, but the mode of action underlying these viral effects remains unclear. This study determined the effects of PEDV infection on intestinal absorption and the expression of genes for nutrient transporters via biochemical tests and microarray analysis. Sixteen 7-day-old healthy piglets fed a milk replacer were randomly allocated to one of two groups. After 5-day adaption, piglets (n = 8/group) were orally administrated with either sterile saline or PEDV (the strain from Yunnan province) at 104.5 TCID50 (50% tissue culture infectious dose) per pig. All pigs were orally infused D-xylose (0.1 g/kg BW) on day 5 post PEDV or saline administration. One hour later, jugular vein blood samples as well as intestinal samples were collected for further analysis. In comparison with the control group, PEDV infection increased diarrhea incidence, blood diamine oxidase activity, and iFABP level, while reducing growth and plasma D-xylose concentration in piglets. Moreover, PEDV infection altered plasma and jejunal amino acid profiles, and decreased the expression of aquaporins and amino acid transporters (L-type amino acid transporter 1, sodium-independent amino acid transporter, B(°,+)-type amino acid transport protein, sodium-dependent neutral amino acid transporter 1, sodium-dependent glutamate/aspartate transporter 3, and peptide transporter (1), lipid transport and metabolism-related genes (lipoprotein lipase, apolipoprotein A1, apolipoprotein A4, apolipoprotein C2, solute carrier family 27 member 2, solute carrier family 27 member 4, fatty acid synthase, and long-chain acyl-CoA synthetase (3), and glucose transport genes (glucose transporter-2 and insulin receptor) in the jejunum. However, PEDV administration increased mRNA levels for phosphoenolpyruvate carboxykinase 1, argininosuccinate synthase 1, sodium/glucose co-transporter-1, and cystic fibrosis transmembrane conductance regulator in the jejunum. Collectively, these comprehensive results indicate that PEDV infection induces intestinal injury and inhibits the expression of genes encoding for nutrient transporters.
Collapse
|
40
|
Jiang Q, Adebowale TO, Tian J, Yin Y, Yao K. Effects of dietary alpha-ketoglutarate on bacteria profiles in the faeces of lactating sows and their suckling piglets. Arch Anim Nutr 2019; 74:39-56. [PMID: 31552757 DOI: 10.1080/1745039x.2019.1639443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of the study was to investigate the effects of dietary alpha-ketoglutarate (AKG) on the faecal bacteria composition of suckling piglets after supplementation of AKG to the diet of lactating sows. After farrowing, the sows were assigned to either a normal lactation diet (control group, n = 12) or a diet supplemented with 0.25% AKG (AKG group, n = 12) based on body weight (BW) and parity. During the 21-d suckling period, BW and diarrhoea occurrences of piglets were recorded daily, while faeces were sampled weekly from sows and piglets. The levels of pH, ammonia, short-chain fatty acids (SCFA) and lactate in the faeces of piglets were determined. In particular, bacteria profiles in faeces of sows and their suckling piglets were examined by Illumina sequencing. The results showed that the AKG diet altered the faecal bacteria composition in sows during the 21-d lactation period, leading to increases (p < 0.05) in the abundances of genera Prevotella, Lactobacillus, Bacteroides and Methanobrevibacter, but decreases (p < 0.05) in the abundances of genera Oscillospira and Dorea. AKG supplement to the sows during lactation indirectly enhanced (p < 0.05) bacterial richness and SCFA levels (especially, acetate) in the faeces of piglets during the 21-d suckling period. It is suggested that maternal AKG supplementation alters the composition of faecal bacteria in the sows, and increases the faecal bacteria richness and acetate levels in the piglets, which might be associated with an enhanced growth performance of piglets.
Collapse
Affiliation(s)
- Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Tolulope Oluwadamilare Adebowale
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Junquan Tian
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| |
Collapse
|
41
|
Xu H, Dai S, Zhang K, Ding X, Bai S, Wang J, Peng H, Zeng Q. Dietary phosphorus deficiency impaired growth, intestinal digestion and absorption function of meat ducks. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1897-1906. [PMID: 31010980 PMCID: PMC6819689 DOI: 10.5713/ajas.18.0683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/07/2019] [Indexed: 02/05/2023]
Abstract
Objective An experiment was conducted to investigate the effects of dietary non-phytate phosphorus (nPP) deficiency on intestinal pH value, digestive enzyme activity, morphology, nutrient utilization, and gene expression of NaPi-IIb in meat ducks from 1 to 21 d of age. Methods A total of 525 one-d-old Cherry Valley ducklings were fed diets (with 7 pens of 15 ducklings, or 105 total ducklings, on each diet) with five levels of nPP (0.22%, 0.34%, 0.40%, 0.46%, or 0.58%) for 21 d in a completely randomized design. Five experimental diets contained a constant calcium (Ca) content of approximately 0.9%. Body weight (BW), body weight gain (BWG), feed intake (FI), and feed to gain ratio (F:G) were measured at 14 and 21 d of age. Ducks were sampled for duodenum and jejunum digestion and absorption function on 14 and 21 d. Nutrient utilization was assessed using 25- to 27-d-old ducks. Results The results showed ducks fed 0.22% nPP had lower (p<0.05) growth performance and nutrient utilization and higher (p<0.05) serum Ca content and alkaline phosphatase (ALP) activity. When dietary nPP levels were increased, BW (d 14 and 21), BWG and FI (all intervals), and the serum phosphorus (P) content linearly and quadratically increased (p<0.05); and the jejunal pH value (d 14), duodenal muscle layer thickness (d 14), excreta dry matter, crude protein, energy, Ca and total P utilization linearly increased (p<0.05); however, the serum ALP activity, jejunal Na+-K+-ATPase activity, and duodenal NaPi-IIb mRNA level (d 21) linearly decreased (p<0.05). Conclusion The results indicated that ducks aged from 1 to 21 d fed diets with 0.22% nPP had poor growth performance related to poor intestinal digestion and absorption ability; but when fed diets with 0.40%, 0.46%, and 0.58% nPP, ducks presented a better growth performance, intestinal digestion and absorption function.
Collapse
Affiliation(s)
- Huimin Xu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shujun Dai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
42
|
Liu S, He L, Jiang Q, Duraipandiyan V, Al-Dhabi NA, Liu G, Yao K, Yin Y. Effect of dietary α-ketoglutarate and allicin supplementation on the composition and diversity of the cecal microbial community in growing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5816-5821. [PMID: 29756325 DOI: 10.1002/jsfa.9131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The search for substitutes for antibiotics has recently become urgent. In our previous work, dietary α-ketoglutarate (AKG) combined with allicin improved growth performance and enhanced immunity in growing pigs, whereas the effects on them of intestinal microbiota were unclear. Here, we further investigate the effects of dietary AKG and allicin supplementation on the composition and diversity of intestinal microbiota in growing pigs. RESULTS Treatment with a combination of AKG and allicin enhanced cecal bacteria richness and diversity, as evidenced by changes in Chao 1, ACE, Shannon, and Simpson values when compared to the control group and antibiotics group. At the phylum level, Bacteroidetes and Firmicutes were the two most abundant phyla. Treatment with a combination of AKG and allicin increased the numbers of Firmicutes and reduced the numbers of Bacteroidetes. Prevotella was the most abundant genus; it was increased by treatment with a combination of AKG and allicin. Furthermore, compared with the antibiotic group, the level of acetate was increased in the AKG group with or without allicin. Treatment with a combination of AKG and allicin increased the levels of cecal butyrate and total volatile fatty acids (VFA) when compared with the control group in growing pigs. CONCLUSION Dietary 1.0% AKG combined with 0.5% allicin improved cecal microbial composition and diversity, which might further promote VFA metabolism in growing pigs. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaojuan Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liuqin He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Jiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Veeramuthu Duraipandiyan
- Addiriya Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif A Al-Dhabi
- Addiriya Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Kang Yao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| |
Collapse
|
43
|
Xiong J, Qiu H, Bi Y, Zhou HL, Guo S, Ding B. Effects of Dietary Supplementation with Tributyrin and Coated Sodium Butyrate on Intestinal Morphology, Disaccharidase Activity and Intramuscular Fat of Lipopolysaccharide-Challenged Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2018-0787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J Xiong
- Wuhan Polytechnic University, China; Wuhan Polytechnic University, China
| | - H Qiu
- Wuhan Polytechnic University, China; Wuhan Polytechnic University, China
| | - Y Bi
- Wuhan Polytechnic University, China; Wuhan Polytechnic University, China
| | - HL Zhou
- Xiangyang Vocational and Technical College, China
| | - S Guo
- Wuhan Polytechnic University, China; Wuhan Polytechnic University, China
| | - B Ding
- Wuhan Polytechnic University, China; Wuhan Polytechnic University, China
| |
Collapse
|
44
|
Wu T, Li K, Yi D, Wang L, Zhao D, Lv Y, Zhang L, Chen H, Ding B, Hou Y, Wu G. Dietary Supplementation with Trihexanoin Enhances Intestinal Function of Weaned Piglets. Int J Mol Sci 2018; 19:ijms19103277. [PMID: 30360365 PMCID: PMC6213997 DOI: 10.3390/ijms19103277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/01/2022] Open
Abstract
Trihexanoin is a short-chain triglyceride (SCT). Many studies have reported that SCTs play important roles in the maintenance of intestinal epithelial structure and function. The present work was to investigate the effects of trihexanoin on growth performance, carbohydrate and fat metabolism, as well as intestinal morphology and function in weaned piglets. Twenty weaned piglets (21 ± 2 d) were randomly allocated to one of two treatment groups: The control group (basal diet supplemented with 0.5% soya oil); the TH group (basal diet supplemented with 0.5% trihexanoin). Dietary trihexanoin supplementation significantly reduced diarrhea rate; increased the concentrations of LDL, HDL and total protein in plasma; decreased cholesterol concentrations and glutamyl transpeptidase activity in plasma; improved intestinal morphologic structure; altered the mRNA levels and abundances of proteins related to glycogen and fat metabolism, mucosal barrier function, antioxidant capacity and water transport capacity; and altered the community of intestinal microflora. These results indicate that dietary trihexanoin supplementation could reduce diarrhea, regulate carbohydrate and fat metabolism, exert beneficial effects on the intestinal mucosal barrier, protect the intestinal mucosa from injuries, improve intestinal transport and absorption, and enhance antioxidant capacity. In conclusion, dietary supplementation with 0.5% trihexanoin improves the intestinal function and health of weaned piglets.
Collapse
Affiliation(s)
- Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Kang Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Lv
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lin Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Hongbo Chen
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guoyao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
45
|
Wan J, Zhang J, Chen D, Yu B, Mao X, Zheng P, Yu J, Luo J, He J. Alginate oligosaccharide-induced intestinal morphology, barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs. J Anim Sci Biotechnol 2018; 9:58. [PMID: 30128148 PMCID: PMC6094457 DOI: 10.1186/s40104-018-0273-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/06/2018] [Indexed: 01/18/2023] Open
Abstract
Background Alginate oligosaccharide (AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechanisms by which AOS regulates porcine growth remain to be elucidated. Therefore, we investigated the AOS-mediated changes in the growth performance of weaned pigs by determining the intestinal morphology, barrier function, as well as epithelium apoptosis. Methods Twenty-four weaned pigs were distributed into two groups (n = 12) and received either a basal diet (control group) or the same diet supplemented with 100 mg/kg AOS. On d 15, D-xylose (0.1 g/kg body weight) was orally administrated to eight randomly selected pigs per treatment, and their serum and intestinal mucosa samples were collected 1 h later. Results Our results showed that inclusion of AOS in the diet for 2 wk increased (P < 0.05) the average daily body weight gain in weaned pigs. Notably, AOS supplementation ameliorated the intestinal morphology and barrier function, as suggested by the enhanced (P < 0.05) intestinal villus height, secretory immunoglobulin A content and goblet cell counts. Compared to the control group, AOS ingestion both decreased (P < 0.05) the total apoptotic percentage and increased (P < 0.05) the proportion of S phase in the intestinal epithelial cells. Furthermore, AOS not only up-regulated (P < 0.05) the B-cell lymphoma-2 (BCL2) transcriptional level but also down-regulated (P < 0.05) the B-cell lymphoma-2-associated X protein (BAX), cysteinyl aspartate-specific proteinase-3 (caspase-3) and caspase-9 transcriptional levels in the small intestine. Conclusions In summary, this study provides evidence that supplemental AOS beneficially affects the growth performance of weaned pigs, which may result from the improved intestinal morphology and barrier function, as well as the inhibited enterocyte death, through reducing apoptosis via mitochondria-dependent apoptosis.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Jiao Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| |
Collapse
|
46
|
Wu T, Zhang Y, Lv Y, Li P, Yi D, Wang L, Zhao D, Chen H, Gong J, Hou Y. Beneficial Impact and Molecular Mechanism of Bacillus coagulans on Piglets' Intestine. Int J Mol Sci 2018; 19:ijms19072084. [PMID: 30021943 PMCID: PMC6073773 DOI: 10.3390/ijms19072084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this research was to investigate the beneficial impact and molecular mechanism of B. coagulans on piglets' intestine. Twenty-four 21 days old weaned piglets were allotted to three treatments: Control group (basal diet), B6 group (basal diet + 2 × 10⁶ CFU/g B. coagulans), and the B7 group (basal diet + 2 × 10⁷ CFU/g B. coagulans). The results showed that, compared with the control group, the B7 group had a reduced cholesterol content and gamma glutamyl transpeptidase (GGT) in plasma (p < 0.05); the B6 and B7 groups had a significantly decreased diarrhea rate and diamine oxidase (DAO) activity in plasma (p < 0.05), increased villus height in ileum and decreased crypt depth in the jejunum (p < 0.05); increased activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the content of malondialdehyde (MDA) and H₂O₂ in the intestine (p < 0.05). These data suggested that supplementing B. coagulans had beneficial impacts on promoting nutrients' metabolism, maintaining intestinal integrity, and alleviating oxidative stress and diarrhea. Further research of molecular mechanisms showed changing expression levels of related proteins and genes, suggesting that these could be involved in the regulation of the impact. The community composition of the gut microbiota was also found to be altered in several operational taxonomic units within the genus, Prevotella (order Bacteroidales), and the order, Clostridiales.
Collapse
Affiliation(s)
- Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| | - Yue Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| | - Yang Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan 430023, China.
| |
Collapse
|
47
|
Chen J, Kang B, Jiang Q, Han M, Zhao Y, Long L, Fu C, Yao K. Alpha-Ketoglutarate in Low-Protein Diets for Growing Pigs: Effects on Cecal Microbial Communities and Parameters of Microbial Metabolism. Front Microbiol 2018; 9:1057. [PMID: 29904374 PMCID: PMC5991137 DOI: 10.3389/fmicb.2018.01057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Alpha-ketoglutarate (AKG), a critical molecule in the tricarboxylic acid cycle, is beneficial to intestinal functions. However, its influence on intestinal microbiota and metabolism is not fully understood. We investigated the effects of a low-protein (LP) diet supplemented with AKG on cecal microbial communities and the parameters of microbial metabolism in growing pigs. Twenty-seven young pigs (Large White × Landrace) with an average initial body weight of 11.96 ± 0.18 kg were randomly allotted into three groups (n = 9): a normal protein (NP) diet containing 20% crude protein (CP); LP diet formulated with 17% CP (LP diet); or LP diet supplemented with 10 g kg-1 of AKG (ALP diet). After a 35-day trial period, the digesta of the cecum were collected to analyze the concentrations of ammonia and short-chain fatty acids (SCFAs). We also performed a microbial analysis. Although no significant differences were found in performance among the diet groups, pigs fed the ALP diet had greater average daily gain (ADG) when compared with those in the LP group. Experimental diet did not affect cecal bacterial richness or diversity, as determined by Chao1 and ACE species richness measures and Shannon and Simpson indices, respectively. The predominant phyla Firmicutes, Bacteroidetes, and Proteobacteria increased in relative abundances in the cecum of pigs fed ALP diet. At the genus level, compared to the LP diet, the ALP diet significantly increased the abundances of Lachnospiraceae UCG-005, Lachnospiraceae NK4A136 group, Phascolarctobacterium and Parabacteroides, while decreased Vibrio and Maritalea. Pigs fed the ALP diet increased Oribacterium and Lachnoclostridium when compared with the NP diet. Non-metric multidimensional scaling analysis revealed that the distribution of microbiota at each group was distinctly clustered separately along principal coordinate. In addition, quantitative PCR revealed that the ALP diet was also associated with increases in the amounts of Bacteroides, Bifidobacterium, and Lactobacillus, but a decrease in the level of Escherichia coli. Compared with the NP diet, the ALP diet enhanced the concentrations of valerate and propionate. This ALP diet also increased the concentrations of valerate and isobutyrate when compared with the LP diet. Moreover, the ALP diet was linked with a significant decline in the concentration of ammonia in the cecum. These results indicate that a LP diet supplemented with AKG can alter the balance in microbial communities, increasing the population of SCFA-producing bacteria and the amounts of Bacteroides and Bifidobacterium, while reducing the counts of Escherichia coli and the amount of ammonia in the cecum.
Collapse
Affiliation(s)
- Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, China
| | - Baoju Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Jiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Mengmeng Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, China
| | - Lina Long
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, China
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, China
| | - Kang Yao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
48
|
Yi D, Fang Q, Hou Y, Wang L, Xu H, Wu T, Gong J, Wu G. Dietary Supplementation with Oleum Cinnamomi Improves Intestinal Functions in Piglets. Int J Mol Sci 2018; 19:E1284. [PMID: 29693599 PMCID: PMC5983671 DOI: 10.3390/ijms19051284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023] Open
Abstract
The present study was to determine the efficacy of dietary supplementation with oleum cinnamomi (OCM) on growth performance and intestinal functions in piglets. Sixteen piglets (24-day-old) were randomly assigned to the control or OCM groups. Piglets in the control group were fed a basal diet, whereas piglets in the OCM group were fed the basal diet supplemented with 50 mg/kg OCM. On day 20 of the trial, blood samples and intestinal tissues were obtained from piglets. Compared with the control group, dietary OCM supplementation increased (p < 0.05) average daily feed intake, plasma insulin levels, villus width and villous surface area in the duodenum and jejunum, DNA levels and RNA/DNA ratios in the ileum, the abundance of Enterococcus genus and Lactobacillus genus in caecum digesta, mRNA levels for epithelial growth factor receptor (EGFR), Ras, extracellular signal-regulated kinase 1/2 (Erk1/2), b-cell lymphoma-extra large (Bcl-xL), villin, junctional adhesion molecule A (JAM-A), myxovirus resistance (MX) 1, MX2 and regenerating islet-derived protein 3 gamma (REG3G), and protein abundances of Ras and claudin-1, but decreased (p < 0.05) diarrhoea incidence; the abundances of Enterobacteriaceae family, Enterococcus genus, Lactobacillus genus, Bifidobacterium genus, and Clostrium coccoides in the colon digesta, and AMP-activated protein kinase (AMPK) mRNA levels and caspase-3 protein abundance in the jejunal mucosa of piglets. Taken together, these data indicate that dietary OCM supplementation modulates intestinal microbiota and improves intestinal function in weanling pigs. OCM is an effective feed additive and alternative to feed antibiotics for improving intestinal health in swine.
Collapse
Affiliation(s)
- Dan Yi
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Qiuhong Fang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lei Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Haiwang Xu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tao Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Guoyao Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
49
|
Chen S, Bin P, Ren W, Gao W, Liu G, Yin J, Duan J, Li Y, Yao K, Huang R, Tan B, Yin Y. Alpha-ketoglutarate (AKG) lowers body weight and affects intestinal innate immunity through influencing intestinal microbiota. Oncotarget 2018; 8:38184-38192. [PMID: 28465471 PMCID: PMC5503525 DOI: 10.18632/oncotarget.17132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Alpha-ketoglutarate (AKG), a precursor of glutamate and a critical intermediate in the tricarboxylic acid cycle, shows beneficial effects on intestinal function. However, the influence of AKG on the intestinal innate immune system and intestinal microbiota is unknown. This study explores the effect of oral AKG administration in drinking water (10 g/L) on intestinal innate immunity and intestinal microbiota in a mouse model. Mouse water intake, feed intake and body weight were recorded throughout the entire experiment. The ileum was collected for detecting the expression of intestinal proinflammatory cytokines and innate immune factors by Real-time Polymerase Chain Reaction. Additionally, the ileal luminal contents and feces were collected for 16S rDNA sequencing to analyze the microbial composition. The intestinal microbiota in mice was disrupted with an antibiotic cocktail. The results revealed that AKG supplementation lowered body weight, promoted ileal expression of mammalian defensins of the alpha subfamily (such as cryptdins-1, cryptdins-4, and cryptdins-5) while influencing the intestinal microbial composition (i.e., lowering the Firmicutes to Bacteroidetes ratio). In the antibiotic-treated mouse model, AKG supplementation failed to affect mouse body weight and inhibited the expression of cryptdins-1 and cryptdins-5 in the ileum. We concluded that AKG might affect body weight and intestinal innate immunity through influencing intestinal microbiota.
Collapse
Affiliation(s)
- Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Bin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jielin Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Ruilin Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| |
Collapse
|
50
|
Liu S, He L, Yao K. The Antioxidative Function of Alpha-Ketoglutarate and Its Applications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3408467. [PMID: 29750149 PMCID: PMC5884300 DOI: 10.1155/2018/3408467] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/19/2018] [Indexed: 12/26/2022]
Abstract
Alpha-ketoglutarate (AKG) is a crucial intermediate of the Krebs cycle and plays a critical role in multiple metabolic processes in animals and humans. Of note, AKG contributes to the oxidation of nutrients (i.e., amino acids, glucose, fatty acids) and then provides energy for cell processes. As a precursor of glutamate and glutamine, AKG acts as an antioxidant agent as it directly reacts with hydrogen peroxide with formation of succinate, water, and carbon dioxide; meanwhile, it discharges plenty of ATP by oxidative decarboxylation. Recent studies also show that AKG has alleviative effect on oxidative stress as a source of energy and an antioxidant in mammalian cells. In this review, we highlight recent advances in the antioxidative function of AKG and its applications in animals and humans.
Collapse
Affiliation(s)
- Shaojuan Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqin He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Yao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| |
Collapse
|