1
|
de Oliveira KM, Soares GM, da Silva Junior JA, Alves BL, Freitas IN, Bem KCP, Mousovich-Neto F, Ribeiro RA, Carneiro EM. Prolonged postweaning protein restriction induces gut dysbiosis and colonic dysfunction in male mice. Am J Physiol Endocrinol Metab 2025; 328:E599-E610. [PMID: 40019118 DOI: 10.1152/ajpendo.00229.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Insufficient or imbalanced protein can disrupt gut microbiota, potentially compromising gut barrier function and increasing health risks. Herein, we investigated the effects of protein restriction on cecal microbiota and colon morphofunction in male mice. From 30 to 120 days of age, C57Bl/6 mice were fed a control protein diet [14% protein, control (C) group] or a low-protein diet [6% protein, protein-restricted (R) group]. At the end of the experimental period, R mice exhibited typical features of undernutrition, such as reduced body weight, hypoalbuminemia, and hypoproteinemia. In addition, despite the hyperphagia displayed in the R group, these mice presented a decreased amount of excreted feces and less energy content in feces. Cecal microbiota analysis demonstrated that protein restriction led to reductions in Shannon and Simpson indices and, therefore, dysbiosis. This effect was accompanied by morphological modifications in the proximal colon of R mice, such as 1) reduction in the total area of neurons of myenteric plexus; 2) increased number of goblet cells, with mucin droplets less developed; 3) reductions in crypt depth and diameter; 4) decreases in gene expressions for mucins and in the tight junction proteins expression; 5) enhanced paracellular permeability and expression of pro-inflammatory cytokines (tumor necrosis factor α, toll-like receptor 4, interferon γ, interleukin 1β, and interleukin 6), decreased anti-inflammatory cytokines (interleukins 4 and 10) in the colon, and increased plasma LPS binding protein concentrations. Therefore, protein restriction induced gut dysbiosis and may result in structural and functional negative impacts on the proximal colon barrier against luminal bacteria.NEW & NOTEWORTHY Prolonged postweaning protein restriction induced gut dysbiosis and led to a reduced neuron area in the myenteric plexus, with increased but underdeveloped goblet cells. Protein restriction decreased colonic crypt depth and diameter, and increased paracellular permeability due to lower expression of mucin-related genes and tight junction proteins. The diminished barrier function resulted in systemic inflammation, evidenced by elevated plasma LPS-binding protein and pro-inflammatory markers in the colon.
Collapse
Affiliation(s)
- Kênia Moreno de Oliveira
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Joel Alves da Silva Junior
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bruna Lourençoni Alves
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Israelle Netto Freitas
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Kelly Cristina Pereira Bem
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Felippe Mousovich-Neto
- Departments of Pediatrics, Cell and Developmental Biology, Drukier Institute for Children's Health and Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States
| | - Rosane Aparecida Ribeiro
- Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
2
|
Geng N, Gao Y, Ji Y, Niu Y, Qi C, Zhen Y, Chen J, Ren L. Geriatric nutritional risk index is correlated with islet function but not insulin resistance in elderly patients with type 2 diabetes: A retrospective study. Medicine (Baltimore) 2024; 103:e37438. [PMID: 38489692 PMCID: PMC10939577 DOI: 10.1097/md.0000000000037438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
The geriatric nutritional risk index (GNRI) is a simple nutritional assessment tool that can predict poor prognosis in elderly subjects. The aim of this study was to evaluate the association between GNRI and both islet function and insulin sensitivity in patients with type 2 diabetes mellitus. This research carries significant implications for the integrated treatment and nutritional management of this patient population. A total of 173 patients with type 2 diabetes mellitus, aged 60 years or older, who were hospitalized in the Endocrinology Department at Hebei General Hospital from February 2018 to June 2021, were selected as the research subjects. These subjects were divided into 4 groups according to the quartile of their GNRI values: T1 (GNRI < 99.4, n = 43), T2 (99.4 ≤ GNRI < 103, n = 43), T3 (103 ≤ GNRI < 106.3, n = 43), and T4 (GNRI ≥ 106.3, n = 44). Glucose, insulin, and C-peptide concentrations were tested at 0, 30, 60, 120, and 180 minutes during a 75 g oral glucose tolerance test. The homeostasis model assessment for insulin resistance and the homeostasis model assessment for β cell function index were calculated. As the GNRI value increased, the levels of total protein, albumin, hemoglobin, alanine transaminase, aspartate aminotransferase, and 25-hydroxyvitamin D increased significantly. The area under the curve for blood glucose decreased significantly across the 4 groups, while the AUCs for insulin and C-peptide showed an overall increasing trend. β Cell function index increased significantly with the increase of GNRI; meanwhile, both the early-phase insulin secretion index and the late-phase insulin secretion index increased significantly. Although there was an increasing trend, homeostasis model assessment for insulin resistance did not change significantly among the 4 groups. This study indicates that elderly type 2 diabetes patients with higher nutritional risk have worse islet function, while insulin sensitivity is not associated with nutritional risk.
Collapse
Affiliation(s)
- Nan Geng
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yaxue Gao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yuanyuan Ji
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yingchun Niu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Cuijuan Qi
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunfeng Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Sung BJ, Lim SB, Yang WM, Kim JH, Kulkarni RN, Kim YB, Lee MK. ROCK1 regulates insulin secretion from β-cells. Mol Metab 2022; 66:101625. [PMID: 36374631 PMCID: PMC9649378 DOI: 10.1016/j.molmet.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The endocrine pancreatic β-cells play a pivotal role in maintaining whole-body glucose homeostasis and its dysregulation is a consistent feature in all forms of diabetes. However, knowledge of intracellular regulators that modulate β-cell function remains incomplete. We investigated the physiological role of ROCK1 in the regulation of insulin secretion and glucose homeostasis. METHODS Mice lacking ROCK1 in pancreatic β-cells (RIP-Cre; ROCK1loxP/loxP, β-ROCK1-/-) were studied. Glucose and insulin tolerance tests as well as glucose-stimulated insulin secretion (GSIS) were measured. An insulin secretion response to a direct glucose or pyruvate or pyruvate kinase (PK) activator stimulation in isolated islets from β-ROCK1-/- mice or β-cell lines with knockdown of ROCK1 was also evaluated. A proximity ligation assay was performed to determine the physical interactions between PK and ROCK1. RESULTS Mice with a deficiency of ROCK1 in pancreatic β-cells exhibited significantly increased blood glucose levels and reduced serum insulin without changes in body weight. Interestingly, β-ROCK1-/- mice displayed a progressive impairment of glucose tolerance while maintaining insulin sensitivity mostly due to impaired GSIS. Consistently, GSIS markedly decreased in ROCK1-deficient islets and ROCK1 knockdown INS-1 cells. Concurrently, ROCK1 blockade led to a significant decrease in intracellular calcium and ATP levels and oxygen consumption rates in isolated islets and INS-1 cells. Treatment of ROCK1-deficient islets or ROCK1 knockdown β-cells either with pyruvate or a PK activator rescued the impaired GSIS. Mechanistically, we observed that glucose stimulation in β-cells greatly enhanced ROCK1 binding to PK. CONCLUSIONS Our findings demonstrate that β-cell ROCK1 is essential for glucose-stimulated insulin secretion and for glucose homeostasis and that ROCK1 acts as an upstream regulator of glycolytic pyruvate kinase signaling.
Collapse
Affiliation(s)
- Byung-Jun Sung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Sung-Bin Lim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, and Harvard Medical School, Boston, MA, USA.
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Nowon Eulji University Hospital, Eulji University School of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Cangelosi AL, Puszynska AM, Roberts JM, Armani A, Nguyen TP, Spinelli JB, Kunchok T, Wang B, Chan SH, Lewis CA, Comb WC, Bell GW, Helman A, Sabatini DM. Zonated leucine sensing by Sestrin-mTORC1 in the liver controls the response to dietary leucine. Science 2022; 377:47-56. [PMID: 35771919 PMCID: PMC10049859 DOI: 10.1126/science.abi9547] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase controls growth in response to nutrients, including the amino acid leucine. In cultured cells, mTORC1 senses leucine through the leucine-binding Sestrin proteins, but the physiological functions and distribution of Sestrin-mediated leucine sensing in mammals are unknown. We find that mice lacking Sestrin1 and Sestrin2 cannot inhibit mTORC1 upon dietary leucine deprivation and suffer a rapid loss of white adipose tissue (WAT) and muscle. The WAT loss is driven by aberrant mTORC1 activity and fibroblast growth factor 21 (FGF21) production in the liver. Sestrin expression in the liver lobule is zonated, accounting for zone-specific regulation of mTORC1 activity and FGF21 induction by leucine. These results establish the mammalian Sestrins as physiological leucine sensors and reveal a spatial organization to nutrient sensing by the mTORC1 pathway.
Collapse
Affiliation(s)
- Andrew L. Cangelosi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna M. Puszynska
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin M. Roberts
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea Armani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Thao P. Nguyen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jessica B. Spinelli
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brianna Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - William C. Comb
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George W. Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aharon Helman
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - David M. Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Bonifacio M, Benfato ID, de Almeida Cruz M, de Sales DC, Pandolfo IL, Quintana HT, Carvalho CPDF, de Oliveira CAM, Renno ACM. Effects of photobiomodulation on glucose homeostasis and morphometric parameters in pancreatic islets of diabetic mice. Lasers Med Sci 2021; 37:1799-1809. [PMID: 34604943 DOI: 10.1007/s10103-021-03434-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
High-fat diets lead to accumulation of body fat that is associated with the onset of insulin resistance and type II diabetes mellitus. On the other hand, photobiomodulation (PBM) is an electrophysical resource that interacts with cells, stimulating mitochondrial respiration, increasing ATP production, reducing key inflammatory mediators, inhibiting apoptosis, and stimulating angiogenesis. However, little is known about its therapeutic effectiveness on the development of diabetes in diet-induced obese mice. Thus, our aim was to evaluate the effect of PBM applied single point over the pancreas area on glucose homeostasis, insulin expression, and pancreatic morphometric parameters of mice submitted to high-fat diet for 12 weeks. Male mice C57BL6/J were divided into three groups: control group (C), diabetic group (D), and diabetic + PBM (D + PBM). The treatment with PBM started at 9th week and ended in the 12th week, applied 3 × /week. Body mass, fast blood glucose, and glucose and insulin tolerance were evaluated. Immunohistochemistry to detect insulin expression and pancreatic morphometry were also performed. At the end of 12th week, both groups submitted to high-fat diet showed an increase in body mass, adiposity, disturbances on glucose homeostasis, and high insulin expression when compared to the control group. However, mice treated with PBM had more discrete impairments on glucose homeostasis during the glucose tolerance test when compared to untreated D animals. Despite modest, the results were positive and encourage future investigations to explore different doses and duration of PBM to better elucidate its role in obesity-associated type 2 diabetes development.
Collapse
Affiliation(s)
- Mirian Bonifacio
- Graduação em Fisioterapia, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Izabelle Dias Benfato
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil. .,Laboratório de Diabetes Experimental e Sinalização Celular, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136. Vila Mathias, 11015-020, Santos, São Paulo, Brazil.
| | - Matheus de Almeida Cruz
- Departamento de Biociências, Programa de Pós-Graduação em Bioprodutos e Bioprocessos, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniele Correia de Sales
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Isabella Liba Pandolfo
- Graduação em Fisioterapia, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Hananiah Tardivo Quintana
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Camila Aparecida Machado de Oliveira
- Laboratório de Diabetes Experimental e Sinalização Celular, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136. Vila Mathias, 11015-020, Santos, São Paulo, Brazil.,Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Ana Cláudia Muniz Renno
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| |
Collapse
|
6
|
Pereira de Arruda EH, Vieira da Silva GL, da Rosa-Santos CA, Arantes VC, de Barros Reis MA, Colodel EM, Gaspar de Moura E, Lisboa PC, Carneiro EM, Damazo AS, Latorraca MQ. Protein restriction during pregnancy impairs intra-islet GLP-1 and the expansion of β-cell mass. Mol Cell Endocrinol 2020; 518:110977. [PMID: 32791189 DOI: 10.1016/j.mce.2020.110977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022]
Abstract
We evaluated whether protein restriction during pregnancy alters the morphometry of pancreatic islets, the intra-islet glucagon-like peptide-1 (GLP-1) production, and the anti-apoptotic signalling pathway modulated by GLP-1. Control non-pregnant (CNP) and control pregnant (CP) rats were fed a 17% protein diet, and low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) groups were fed a 6% protein diet. The masses of islets and β-cells were similar in the LPNP group and the CNP group but were higher in the CP group than in the CNP group and were equal in the LPP group and the LPNP group. Both variables were lower in the LPP group than in the CP group. Prohormone convertase 2 and GLP-1 fluorescence in α-cells was lower in the low-protein groups than in the control groups. The least PC2/glucagon colocalization was observed in the LPP group, and the most was observed in the CP group. There was less prohormone convertase 1/3/glucagon colocalization in the LPP group than in the CP group. GLP-1/glucagon colocalization was similar in the LPP, CP and CNP groups, which showed less GLP-1/glucagon colocalization than the LPNP group. The mRNA Pka, Creb and Pdx-1 contents were higher in islets from pregnant rats than in islets from non-pregnant rats. Protein restriction during pregnancy impaired the mass of β-cells and the intra-islet GLP-1 production but did not interfere with the transcription of genes of the anti-apoptotic signalling pathway modulated by GLP-1.
Collapse
Affiliation(s)
| | | | - Chaiane Aline da Rosa-Santos
- Mestrado em Nutrição, Alimentos e Metabolismo, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Vanessa Cristina Arantes
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | | | - Edson Moleta Colodel
- Departamento de Clínica Médica Veterinária, Faculdade de Agronomia e Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Egberto Gaspar de Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Everardo Magalhães Carneiro
- Departamento de Anatomia, Biologia Cellular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Amílcar Sabino Damazo
- Departamento de Ciências Básicas da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Márcia Queiroz Latorraca
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
7
|
Xiong QY, Xiong CQ, Wang LZ, Gao JL. Effect of sidt2 Gene on Cell Insulin Resistance and Its Molecular Mechanism. J Diabetes Res 2020; 2020:4217607. [PMID: 32964053 PMCID: PMC7502120 DOI: 10.1155/2020/4217607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/25/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Sidt2 (SID1 transmembrane family, member 2) is a multiple transmembrane lysosomal membrane protein newly discovered in our previous study. In the previous study, we used gene targeting technique to make a mouse model of sidt2 gene knockout (sidt2-/-). It was found that sidt2-/- mice showed elevated fasting blood glucose and impaired glucose tolerance, showing a disorder of glucose metabolism, suggesting that sidt2 may be closely related to insulin resistance. We used 3T3-L1 adipocytes, C2-C12 myoblasts, and HEPA1-6 hepatoma cells as subjects to observe the effects of sidt2 on insulin-stimulated glucose uptake and the abovementioned insulin signal transduction pathways, and then to explore the effect of sidt2 on peripheral tissue insulin resistance and its possible molecular mechanism. METHODS (1) Lentiviruses with sidt2 gene knockout and puromycin resistance were constructed by Crispr/cas9 vector and transfected into 3T3-L1 adipocytes, C2-C12 myoblasts, and HEPA1-6 hepatoma cells to construct sidt2 knockout cell line model. (2) Glucose uptake of 3T3-L1 adipocytes, C2-C12 myoblasts, and HEPA1-6 hepatoma cells stimulated by insulin was detected by glucose detection kit, and the results were analyzed. (3) Sidt2 knockout group and control group of 3T3-L1 adipocytes, C2-C12 myoblast, and HEPA1-6 hepatoma cells were cultured according to the routine method. The total proteins of the above cells were extracted, and the expression of PAKT (thr308), PI3-K, and PIRS-1 (ser307) in the IRS-1 signaling pathway of the three groups was detected by western blot technique. RESULTS (1) The sidt2 elimination models of 3T3-L1 adipocytes, C2-C12 myoblasts, and HEPA1-6 hepatoma cells were successfully constructed. (2) It was found that the glucose uptake of cells in the sidt2 knockout group was lower than that in normal group under insulin stimulation through the detection of glucose concentration in the cell culture medium. (3) It was found that the expression of PAKT (thr308) and PI3-K protein decreased and the expression of PIRS-1 (ser307) protein increased in sidt2-/- group compared to the control group. CONCLUSIONS sidt2 knockout can reduce glucose uptake in peripheral tissue under insulin stimulation, which may lead to peripheral tissue insulin resistance by affecting the IRS-1 signal pathway.
Collapse
Affiliation(s)
- Qian-Ying Xiong
- Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
| | - Chao-Qun Xiong
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wuhu 242001, China
| | - Li-Zhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wuhu 242001, China
- Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu 241001, China
| | - Jia-Lin Gao
- Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wuhu 242001, China
| |
Collapse
|
8
|
Mateus Gonçalves L, Vettorazzi JF, Vanzela EC, Figueiredo MS, Batista TM, Zoppi CC, Boschero AC, Carneiro EM. Amino acid restriction increases β-cell death under challenging conditions. J Cell Physiol 2019; 234:16679-16684. [PMID: 30815898 DOI: 10.1002/jcp.28389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 11/08/2022]
Abstract
Malnutrition programs metabolism, favor dysfunction of β cells. We aimed to establish an in vitro protocol of malnutrition, assessing the effect of amino acid restriction upon the β cells. Insulin-producing cells INS-1E and pancreatic islets were maintained in RPMI 1640 medium containing 1× (Ctl) or 0.25× (AaR) of amino acids. We evaluated several markers of β-cell function and viability. AaR Insulin secretion was reduced, whereas cell viability was unaltered. Calcium oscillations in response to glucose increased in AaR. AaR showed lower Ins1 RNAm, snap 25, and PKC (protein kinase C) protein content, whereas phospho-eIF2α was increased. AaR cells exposed to nutrient or chemical challenges displayed higher apoptosis rates. We showed that amino acid restriction programmed β cell and induced functional changes. This model might be useful for the study of molecular mechanisms involved with β-cell programming helping to establish novel therapeutic targets to prevent harmful outcomes of malnutrition.
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Emerielle Cristine Vanzela
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Mariana Sarto Figueiredo
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Thiago Martins Batista
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Claudio Cesar Zoppi
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Pandya K, Clark GJ, Lau-Cam CA. Investigation of the Role of a Supplementation with Taurine on the Effects of Hypoglycemic-Hypotensive Therapy Against Diabetes-Induced Nephrotoxicity in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:371-400. [PMID: 28849470 DOI: 10.1007/978-94-024-1079-2_32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This study has examined the role of supplementing a treatment of diabetic rats with captopril (CAP), metformin (MET) or CAP-MET with the antioxidant amino acid taurine (TAU) on biochemical indices of diabetes-induced metabolic changes, oxidative stress and nephropathy. To this end, groups of 6 male Sprague-Dawley rats (250-375 g) were made diabetic with a single, 60 mg/kg, intraperitoneal dose of streptozotocin (STZ) in 10 mM citrate buffer pH 4.5 and, after 14 days, treated daily for up to 42 days with either a single oral dose of CAP (0.15 mM/kg), MET (2.4 mM/kg) or TAU (2.4 mM/kg), or with a binary or tertiary combination of these agents. Rats receiving only 10 mM citrate buffer pH 4.5 or only STZ served as negative and positive controls, respectively. All rats were sacrificed by decapitation on day 57 and their blood and kidneys collected. In addition, a 24 h urine sample was collected starting on day 56. Compared to normal rats, untreated diabetic ones exhibited frank hyperglycemia (+313%), hypoinsulinemia (-76%) and elevation of the glycated hemoglobin value (HbA1c, +207%). Also they showed increased plasma levels of Na+ (+35%), K+ (+56%), creatinine (+232%), urea nitrogen (+158%), total protein (-53%) and transforming growth factor-β1 (TGF-β1, 12.4-fold) values. These changes were accompanied by increases in the renal levels of malondialdehyde (MDA, +42%), by decreases in the renal glutathione redox state (-71%), and activities of catalase (-70%), glutathione peroxidase (-71%) and superoxide dismutase (-85%), and by moderate decreases of the urine Na+ (-33%) and K+ (-39%) values. Following monotherapy, MET generally showed a greater attenuating effect than CAP or TAU on the changes in circulating glucose, insulin and HbA1c levels, urine total protein, and renal SOD activity; and CAP appeared more potent than TAU and MET, in that order, in antagonizing the changes in plasma creatinine and urea nitrogen levels. On the other hand, TAU generally provided a greater protection against changes in glutathione redox state and in CAT and GPx activities, with other actions falling in potency between those of CAP and MET. Adding TAU to a treatment with CAP, but not to one with MET, led to an increase in protective action relative to a treatment with drug alone. On the other hand, the actions of CAP-MET, which were about equipotent with those of MET, became enhanced in the presence of TAU, particularly against the changes of the glutathione redox state and activities of antioxidant enzymes. In short, the present results suggest that the addition of TAU to a treatment of diabetes with CAP or CAP-MET, and sometimes to one with MET, will lead to a gain in protective potency against changes in indices of glucose metabolism and of renal functional impairment and oxidative stress.
Collapse
Affiliation(s)
- Kashyap Pandya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | - George J Clark
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | - Cesar A Lau-Cam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA.
| |
Collapse
|
11
|
Horiuchi M, Takeda T, Takanashi H, Ozaki-Masuzawa Y, Taguchi Y, Toyoshima Y, Otani L, Kato H, Sone-Yonezawa M, Hakuno F, Takahashi SI, Takenaka A. Branched-chain amino acid supplementation restores reduced insulinotropic activity of a low-protein diet through the vagus nerve in rats. Nutr Metab (Lond) 2017; 14:59. [PMID: 28932254 PMCID: PMC5602936 DOI: 10.1186/s12986-017-0215-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 02/09/2023] Open
Abstract
Background Previously, we reported that a low-protein diet significantly reduced insulin secretion in response to feeding within 1 h in rats, suggesting that the insulinotropic effect of dietary protein plays an important role in maintaining normal insulin release. The current study aimed to elucidate whether deficiency of certain amino acids could diminish the insulinotropic activity and to investigate whether reduced insulin secretion in response to a low-protein diet is restored by supplementation with certain amino acids. Methods First, we fed male Wistar rats (5–6 rats per group) with diets deficient in every single amino acid or three branched-chain amino acids (BCAAs); within 1–2 h after the onset of feeding, we measured the plasma insulin levels by using an enzyme-linked immunosorbent assay (ELISA). As insulin secretion was reduced in BCAA-deficient groups, we fed low-protein diets supplemented with BCAAs to assess whether the reduced insulin secretion was restored. In addition, we treated the pancreatic beta cell line MIN6 with BCAAs to investigate the direct insulinotropic activity on beta cells. Lastly, we investigated the effect of the three BCAAs on sham-operated or vagotomized rats to assess involvement of the vagus nerve in restoration of the insulinotropic activity. Results Feeding a low-protein diet reduced essential amino acid concentrations in the plasma during an absorptive state, suggesting that reduced plasma amino acid levels can be an initial signal of protein deficiency. In normal rats, insulin secretion was reduced when leucine, valine, or three BCAAs were deficient. Insulin secretion was restored to normal levels by supplementation of the low-protein diet with three BCAAs, but not by supplementation with any single BCAA. In MIN6 cells, each BCAA alone stimulated insulin secretion but the three BCAAs did not show a synergistic stimulatory effect. The three BCAAs showed a synergistic stimulatory effect in sham-operated rats but failed to stimulate insulin secretion in vagotomized rats. Conclusions Leucine and valine play a role in maintaining normal insulin release by directly stimulating beta cells, and supplementation with the three BCAAs is sufficient to compensate for the reduced insulinotropic activity of the low-protein diet, through the vagus nerve.
Collapse
Affiliation(s)
- Mami Horiuchi
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Tomoya Takeda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Hiroyuki Takanashi
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Yori Ozaki-Masuzawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kanagawa, Japan.,Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Yusuke Taguchi
- Institute for Advanced Medical Sciences, Nippon Medical School, Kanagawa, Japan
| | - Yuka Toyoshima
- Institute for Advanced Medical Sciences, Nippon Medical School, Kanagawa, Japan
| | - Lila Otani
- Corporate Sponsored Research Program "Food for Life" Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Hisanori Kato
- Corporate Sponsored Research Program "Food for Life" Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Meri Sone-Yonezawa
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kanagawa, Japan
| |
Collapse
|
12
|
Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. Int J Mol Sci 2017; 18:ijms18061188. [PMID: 28574454 PMCID: PMC5486011 DOI: 10.3390/ijms18061188] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM.
Collapse
|
13
|
Ekström EC, Lindström E, Raqib R, El Arifeen S, Basu S, Brismar K, Selling K, Persson LÅ. Effects of prenatal micronutrient and early food supplementation on metabolic status of the offspring at 4.5 years of age. The MINIMat randomized trial in rural Bangladesh. Int J Epidemiol 2016; 45:1656-1667. [PMID: 27694568 PMCID: PMC5100620 DOI: 10.1093/ije/dyw199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 11/13/2022] Open
Abstract
Background: Fetal nutritional insults may alter the later metabolic phenotype. We hypothesized that early timing of prenatal food supplementation and multiple micronutrient supplementation (MMS) would favourably influence childhood metabolic phenotype. Methods: Pregnant women recruited 1 January to 31 December 2002 in Matlab, Bangladesh, were randomized into supplementation with capsules of either 30 mg of iron and 400 μg of folic acid, 60 mg of iron and 400 μg of folic acid, or MMS containing a daily allowance of 15 micronutrients, and randomized to food supplementation (608 kcal) either with early invitation (9 weeks’ gestation) or usual invitation (at 20 weeks). Their children (n = 1667) were followed up at 4.5 years with assessment of biomarkers of lipid and glucose metabolism, inflammation and oxidative stress. Results: Children in the group with early timing of food supplementation had lower cholesterol (difference -0.079 mmol/l, 95% confidence interval (CI) -0.156; -0.003), low-density lipoprotein (LDL) (difference -0.068 mmol/l, 95% CI -0.126; -0.011) and ApoB levels (difference -0.017 g/l, 95% CL -0.033; -0.001). MMS supplementation resulted in lower high-density lipoprotein (HDL) (difference -0.028 mmol/l, 95% CL -0.053; -0.002), lower glucose (difference -0.099 mmol/l, 95% CL -0.179; -0.019) and lower insulin-like growth factor 1 (IGF-1) (difference on log scale -0.141 µg/l, 95% CL -0.254; -0.028) than 60 mg iron and 400 μg folic acid. There were no effects on markers of inflammation or oxidative stress. Conclusions: Findings suggest that in a population where malnutrition is prevalent, nutrition interventions during pregnancy may modify the metabolic phenotype in the young child that could have consequences for later chronic disease risks.
Collapse
Affiliation(s)
- Eva-Charlotte Ekström
- International Maternal and Child Health, Women's and Children's Health, Uppsala University, Uppsala, Sweden,
| | - Emma Lindström
- International Maternal and Child Health, Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Rubhana Raqib
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shams El Arifeen
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Samar Basu
- Oxidative Stress and Inflammation, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden, and Chaire d'Excellence Program, Department of Biochemistry, Molecular Biology and Nutrition, Universite d'Auvergne, Clermont-Ferrand, France and
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Selling
- International Maternal and Child Health, Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Lars-Åke Persson
- International Maternal and Child Health, Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice. Sci Rep 2016; 6:33464. [PMID: 27633083 PMCID: PMC5025848 DOI: 10.1038/srep33464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 08/30/2016] [Indexed: 12/28/2022] Open
Abstract
Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity.
Collapse
|
15
|
Berná G, Oliveras-López MJ, Jurado-Ruíz E, Tejedo J, Bedoya F, Soria B, Martín F. Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients 2014; 6:5338-69. [PMID: 25421534 PMCID: PMC4245593 DOI: 10.3390/nu6115338] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 01/17/2023] Open
Abstract
Diabetes mellitus (DM) is considered a global pandemic, and the incidence of DM continues to grow worldwide. Nutrients and dietary patterns are central issues in the prevention, development and treatment of this disease. The pathogenesis of DM is not completely understood, but nutrient-gene interactions at different levels, genetic predisposition and dietary factors appear to be involved. Nutritional genomics studies generally focus on dietary patterns according to genetic variations, the role of gene-nutrient interactions, gene-diet-phenotype interactions and epigenetic modifications caused by nutrients; these studies will facilitate an understanding of the early molecular events that occur in DM and will contribute to the identification of better biomarkers and diagnostics tools. In particular, this approach will help to develop tailored diets that maximize the use of nutrients and other functional ingredients present in food, which will aid in the prevention and delay of DM and its complications. This review discusses the current state of nutrigenetics, nutrigenomics and epigenomics research on DM. Here, we provide an overview of the role of gene variants and nutrient interactions, the importance of nutrients and dietary patterns on gene expression, how epigenetic changes and micro RNAs (miRNAs) can alter cellular signaling in response to nutrients and the dietary interventions that may help to prevent the onset of DM.
Collapse
Affiliation(s)
- Genoveva Berná
- Department of Stem Cells, Andalusian Center of Molecular Biology and Regenerative Medicine, University Pablo Olavide (CABIMER-UPO), Seville 41091, Spain.
| | - María Jesús Oliveras-López
- Department of Stem Cells, Andalusian Center of Molecular Biology and Regenerative Medicine, University Pablo Olavide (CABIMER-UPO), Seville 41091, Spain.
| | - Enrique Jurado-Ruíz
- Department of Stem Cells, Andalusian Center of Molecular Biology and Regenerative Medicine, University Pablo Olavide (CABIMER-UPO), Seville 41091, Spain.
| | - Juan Tejedo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), CIBER of Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Francisco Bedoya
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), CIBER of Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Bernat Soria
- Department of Stem Cells, Andalusian Center of Molecular Biology and Regenerative Medicine, University Pablo Olavide (CABIMER-UPO), Seville 41091, Spain.
| | - Franz Martín
- Department of Stem Cells, Andalusian Center of Molecular Biology and Regenerative Medicine, University Pablo Olavide (CABIMER-UPO), Seville 41091, Spain.
| |
Collapse
|
16
|
Abstract
The glucokinase (GK) enzyme (EC 2.7.1.1.) is essential for the use of dietary glucose because it is the first enzyme to phosphorylate glucose in excess in different key tissues such as the pancreas and liver. The objective of the present review is not to fully describe the biochemical characteristics and the genetics of this enzyme but to detail its nutritional regulation in different vertebrates from fish to human. Indeed, the present review will describe the existence of the GK enzyme in different animal species that have naturally different levels of carbohydrate in their diets. Thus, some studies have been performed to analyse the nutritional regulation of the GK enzyme in humans and rodents (having high levels of dietary carbohydrates in their diets), in the chicken (moderate level of carbohydrates in its diet) and rainbow trout (no carbohydrate intake in its diet). All these data illustrate the nutritional importance of the GK enzyme irrespective of feeding habits, even in animals known to poorly use dietary carbohydrates (carnivorous species).
Collapse
|
17
|
Tang ZQ, Wu T, Cui SW, Zhu XH, Yin T, Wang CF, Zhu JY, Wu AJ. Stimulation of insulin secretion by large-dose oral arginine administration in healthy adults. Exp Ther Med 2013; 6:248-252. [PMID: 23935755 PMCID: PMC3735549 DOI: 10.3892/etm.2013.1119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/25/2013] [Indexed: 12/15/2022] Open
Abstract
The effects of large-dose oral arginine administration on the secretion of insulin by islet β-cells in healthy adults were determined. Eight non-obese healthy volunteers with normal glucose tolerance participated randomly in tests with four stages (with an interval of at least 3 days): the 300 ml purified water stage (PWS), the 75 g glucose stage (GSS), the 30 g arginine stage (ARS) and the 75 g glucose with 30 g arginine stage (GAS). Venous blood samples were collected to detect the concentrations of glucose and insulin at baseline (0) and at 15, 30, 45, 60 and 120 min after drug administration. The glucose and insulin levels were steady in the PWS. The remaining three stages had similarly shaped insulin concentration-time curves, which differed from that of the PWS. The peak concentration of blood insulin and the net incremental area under the curve of blood insulin in the GSS, ARS and GAS were significantly higher compared with those in the PWS (P<0.05). In the ARS, the glucose levels remained stable; however, the net incremental area under the curve for blood insulin in the ARS was much lower compared with that in the GSS or GAS (P<0.05). Large-dose oral arginine administration may slightly stimulate insulin secretion by islet β-cells in healthy adults with normal glucose tolerance in a manner that is independent of glucose concentration.
Collapse
Affiliation(s)
- Zhu-Qi Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Roysommuti S, Wyss JM. Perinatal taurine exposure affects adult arterial pressure control. Amino Acids 2012; 46:57-72. [PMID: 23070226 DOI: 10.1007/s00726-012-1417-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022]
Abstract
Taurine is an abundant, free amino acid found in mammalian cells that contributes to many physiologic functions from that of a simple cell osmolyte to a programmer of adult health and disease. Taurine's contribution extends from conception throughout life, but its most critical exposure period is during perinatal life. In adults, taurine supplementation prevents or alleviates cardiovascular disease and related complications. In contrast, low taurine consumption coincides with increased risk of cardiovascular disease, obesity and type II diabetes. This review focuses on the effects that altered perinatal taurine exposure has on long-term mechanisms that control adult arterial blood pressure and could thereby contribute to arterial hypertension through its ability to program these cardiovascular regulatory mechanisms very early in life. The modifications of these mechanisms can last a lifetime and transfer to the next generation, suggesting that epigenetic mechanisms underlie the changes. The ability of perinatal taurine exposure to influence arterial pressure control mechanisms and hypertension in adult life appears to involve the regulation of growth and development, the central and autonomic nervous system, the renin-angiotensin system, glucose-insulin interaction and changes to heart, blood vessels and kidney function.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | |
Collapse
|
19
|
Li J, Song J, Cassidy MG, Rychahou P, Starr ME, Liu J, Li X, Epperly G, Weiss HL, Townsend CM, Gao T, Evers BM. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport. Mol Endocrinol 2012; 26:1380-93. [PMID: 22700584 DOI: 10.1210/me.2012-1024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Frost RA, Lang CH. Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle. Endocrinol Metab Clin North Am 2012; 41:297-322, vi. [PMID: 22682632 PMCID: PMC3376019 DOI: 10.1016/j.ecl.2012.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review describes the current literature on the interaction between insulin-like growth factors, endocrine hormones, and branched-chain amino acids on muscle physiology in healthy young individuals and during select pathologic conditions. Emphasis is placed on the mechanism by which physical and hormonal signals are transduced at the cellular level to either grow or atrophy skeletal muscle. The key role of the mammalian target of rapamycin and its ability to respond to hypertrophic and atrophic signals informs our understanding how a combination of physical, nutritional, and pharmacologic therapies may be used in tandem to prevent or ameliorate reductions in muscle mass.
Collapse
Affiliation(s)
- Robert A. Frost
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
- Professor and Vice Chairman, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| | - Charles H. Lang
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| |
Collapse
|
21
|
Pi M, Quarles LD. Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology 2012; 153:2062-9. [PMID: 22374969 PMCID: PMC3339644 DOI: 10.1210/en.2011-2117] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/30/2012] [Indexed: 01/29/2023]
Abstract
Emerging evidence supports the hypothesis that the skeleton is an endocrine organ that regulates energy metabolism through the release of the osteoblast-derived hormone, osteocalcin (Ocn). This bone-pancreas endocrine network is controversial because important gaps remain to be filled in our knowledge of the physiological effects of Ocn in multiple organs and the complex alterations in other hormonal networks induced by Ocn administration. A key step toward understanding the integrative regulation of energy metabolism by bone is the identification of GPCR family C group 6 member A (GPRC6A) as the Ocn receptor. GPRC6A is an amino acid-sensing G protein-coupled receptor highly expressed in β-cells and is activated by recombinant Ocn in vitro and in vivo but that is widely expressed in tissues other than the pancreas and is capable of sensing multiple structurally unrelated ligands, including l-amino acids, cations, and anabolic steroids in addition to Ocn. The broad expression and multiligand specificity of GPRC6A is identifying both systemic and paracrine regulation of seemingly disparate biological processes, ranging from energy metabolism, sexual reproduction, hypothalamic-pituitary function, bone formation, and prostate cancer. Consistent with the existence of more complex endocrine networks, ablation of GPRC6A in Gprc6a(-/-) mice results in complex metabolic abnormalities, including obesity, glucose intolerance, hepatic steatosis, insulin resistance, hyperphosphatemia, osteopenia, plus several hormonal abnormalities, including decreased circulating testosterone, IGF-I, and insulin and increased estradiol, LH, GH, and leptin. Recombinant Ocn also regulates testosterone production by the testes and male fertility through a GPRC6A-dependent mechanism, and testosterone regulation of LH secretion is abnormal in Gprc6a(-/-) mice. Thus, GPRC6A, as the biologically relevant receptor for Ocn, defines not only a molecular mechanism for linking bone metabolism with metabolic regulation of β-cells and sexual reproduction but also as a receptor shared by testosterone and dietary factors, and it is also involved in multiple endocrine networks integrating the functions of pancreas, muscle, liver, fat, testes, bone, and the hypothalamic-pituitary axis with alterations in both environmental and endogenous ligands.
Collapse
Affiliation(s)
- Min Pi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
22
|
Protein restriction in early life is associated with changes in insulin sensitivity and pancreatic β-cell function during pregnancy. Br J Nutr 2012; 109:236-47. [PMID: 22475371 DOI: 10.1017/s000711451200089x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Malnutrition in early life impairs glucose-stimulated insulin secretion in adulthood. Conversely, pregnancy is associated with a significant increase in glucose-stimulated insulin secretion under conditions of normoglycaemia. A failure in β-cell adaptive changes may contribute to the onset of diabetes. Thus, glucose homeostasis and β-cell function were evaluated in control-fed pregnant (CP) and non-pregnant (CNP) or protein-restricted pregnant (LPP) and non-pregnant (LPNP) rats, from fetal to adult life, and in protein-restricted rats that were recovered after weaning (RP and RNP). The typical insulin resistance of pregnancy was not observed in the RP rats, nor did pregnancy increase the insulin content/islet in the LPP group. The glucose dose-response curves from pregnant rats were shifted to the left in relation to the non-pregnant rats, except in the recovered group. Glucose utilisation but not oxidation in islets from the RP and LPP groups was reduced at a concentration of 8.3 mm-glucose compared with islets from the CP group. Cyclic AMP content and the potentiation of glucose-stimulated insulin secretion by isobutylmethylxanthine at a concentration of 2.8 mm-glucose indicated increased adenylyl cyclase 3 activity but reduced protein kinase A-α activity in islets from the RP and LPP rats. Protein kinase C (PKC)-α but not phospholipase C (PLC)-β1 expression was reduced in islets from the RP group. Phorbol-12-myristate 13-acetate produced a less potent stimulation of glucose-stimulated insulin secretion in the RP group. Thus, the alterations exhibited by islets from the LPP group appeared to be due to reduced islet mass and/or insulin biosynthesis. In the RP group the loss of the adaptive capacity apparently resulted from uncoupling between glucose metabolism and the amplifying signals of the secretory process, as well as a severe attenuation of the PLC/PKC pathway.
Collapse
|