1
|
Elariny HA, Atia HA, Abdallah MH, Khalifa AM, Abd Elmaaboud MA, Elkady MA, Kabel AM. Olmesartan attenuates doxorubicin-elicited testicular toxicity: The interaction between sirtuin-1, HMGB1/NLRP3 inflammasome/gasdermin D signaling, and AMPK/mTOR-driven autophagy. Life Sci 2025; 370:123545. [PMID: 40058574 DOI: 10.1016/j.lfs.2025.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND In the recent years, there has been an increased incidence of testicular toxicity associated with doxorubicin (DOX) use in cancer therapy. The mechanisms of this adverse effect may include induction of oxidative stress with augmentation of the inflammatory and the apoptotic signals in the testicular tissues. The ongoing research is directed towards the exploration of new agents that are capable of overcoming this health problem. This study was a trial to evaluate the efficacy of Olmesartan as a protective agent against DOX-induced testicular dysfunction in male rats. MATERIALS AND METHODS Forty adult male Sprague-Dawley rats were divided into control group, DOX-injected group, and three DOX-injected groups treated with olmesartan at 3 dose levels (1, 5, and 10 mg/kg/day). The effect of the different treatments was assessed at the biochemical and the morphological levels. KEY FINDINGS Olmesartan administered to DOX-treated rats induced dose-dependent restoration of the testicular weight and functions, normalization of the hormonal profile, augmentation of the antioxidant defenses, and potentiation of AMPK/mTOR-driven autophagy in comparison to rats treated with DOX alone. These effects were accompanied with a dose-dependent significant mitigation of the cellular events related to pyroptosis and inflammation and a significant amelioration of the testicular morphological changes induced by DOX. SIGNIFICANCE Olmesartan may represent a promising therapy for DOX-elicited testicular dysfunction, possibly via dose-dependent antioxidant, anti-pyroptotic, anti-inflammatory, and autophagy enhancing effects.
Collapse
Affiliation(s)
- Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Amany M Khalifa
- Department of Pathology, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | | | - Mennatallah A Elkady
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Ajiboye BO, Ayemoni FI, Famusiwa CD, Lawal OE, Falode JA, Onikanni SA, Akhtar MF, Gupta S, Oyinloye BE. Effect of Dalbergiella welwitschi alkaloid-rich leaf extracts on testicular damage in streptozotocin-induced diabetic rats. J Mol Histol 2025; 56:93. [PMID: 39976838 DOI: 10.1007/s10735-025-10366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025]
Abstract
Diabetes mellitus is a chronic disease affecting young and old, even though it can be managed with orthodox medicine, which has a series of side effects. Therefore, Dalbergiella welwitschi is one of the medicinal plants that is commonly used for the management of diabetes mellitus and its associated complications. Hence, this study was designed to assess the testicular-protective ability of alkaloid-rich leaf extract of D. welwitschi in streptozotocin-induced type 2 diabetic rats D. welwitshii leaf alkaloid-rich extract was obtained using standard procedure. Streptozotocin was injected into the experimental animals intraperitoneally at a dose of 45 mg/kg body weight to induce type 2 diabetes mellitus. Prior to this, the animals were given 20% (w/v) fructose for one week. Thus, the animals were grouped into five (n = 8), comprising of un-induced rats (NC), diabetic control (DC), diabetic rats treated with low (50 mg/kg body weight) and high (100 mg/kg body weight) doses of D. welwitschi alkaloid-rich leaf extracts (i.e., DWL and DWH respectively) and 200 mg/kg body weight dose of metformin (MET). The animals were sacrificed on the 21st day, blood and testis were harvested and used for the determination of ions (Fe, Cu and Zn), sialic acid, some hormones (testosterone, luteinizing and follicle stimulating), oxidative stress biomarkers [malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione (GSH)] as well as histological examination. In addition, the results show that diabetic rats placed on DWL, and DWH significantly (p < 0.05) decreased ion levels (Fe, Cu and Zn) and ameliorated oxidative stress biomarkers such as MDA, SOD, CAT, GPx, GST, and GSH. These were supported by the histological examination by improving testicular-protective effects in diabetic rats administered DWL, and DWH. Therefore, it is that assume that the alkaloid-rich leaf extracts of D. welwitschi may offer potential benefits in the treatment of diabetic testicular dysfunction.
Collapse
Affiliation(s)
- B O Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria.
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - F I Ayemoni
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - C D Famusiwa
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - O E Lawal
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - J A Falode
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - S A Onikanni
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Postgraduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, 360101, Ekiti State, Nigeria
| | - M F Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Islamabad, Punjab, Pakistan
| | - S Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala, Haryana, India
| | - B E Oyinloye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria
- Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, 360101, Ekiti State, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
3
|
Keshavarzi M, Naraki K, Razavi BM, Hosseinzadeh H. A narrative review and new insights into the protective effects of taurine against drug side effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:203-230. [PMID: 39141023 DOI: 10.1007/s00210-024-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Taurine, a non-essential amino acid produced from cysteine, is abundant in body tissues and blood plasma. It plays vital roles in growth, osmosis, lipid metabolism, and neurohormonal modulation. Taurine has antioxidant, anti-apoptotic, and anti-inflammatory properties, and its deficiency can lead to various diseases including cardiovascular, diabetic, renal, and liver disorders. This report provides a comprehensive review of the functional properties of taurine in counteracting pharmaceutical-induced side effects. A search across databases such as Scopus, PubMed, MEDLINE, and Web of Science yielded 109 articles, of which 75 were included in the study. These results suggest that the protective effects of taurine involve mechanisms such as influencing pathways of Nrf2/OH-1, PI3-kinase/AKT and ERK2, boosting antioxidants (SOD, GPx and CAT), and suppression of inflammatory cytokines (TNF-α, IL-1β and IL-6). Overall, supplementation with taurine along with medications with significant side effects may mitigate these effects and enhance their efficacy. Further investigation of the interactions between taurine and other nutrients or compounds may provide insights into synergistic effects and novel therapeutic approaches.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Asanga EE, Okokon JE, Joseph AP, Ekeleme CM, Ilechukwu SB, Anagboso MO, Umoh M, Raymond AEM. The attenuation of doxorubicin-induced testicular toxicity with improved testicular histoarchitecture of mice by the bioactive compounds in Solanum anomalum leaves: Experimental and computational studies. Toxicol Rep 2024; 13:101827. [PMID: 39649379 PMCID: PMC11625371 DOI: 10.1016/j.toxrep.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024] Open
Abstract
Doxorubicin, as an antibiotic causes toxicity in human tissues through the generation of oxidant species; however, Solanum anomalum (Solanaceae) is ethnopharmacologically and scientifically reported to possess antidotal activities. This study was designed to validate the antidotal potency of the plant's bioactive compounds on rats' testes following induction with doxorubicin through the evaluation of oxidative stress markers, lipid peroxidation indices, testes' histological sections, and in silico profiling of the plant's bioactive compounds against some proteins. The collection and preparation of the plant extract, testicular toxicity induction, seminal analysis, assay of testosterone and oxidative stress markers, lipid peroxidation profiling, histomorphological studies, retrieval of catalase, superoxide dismutase, and glutathione peroxidase from PDB, GC-MS, ADME, and docking analyses followed standard protocols. In addition, Swiss-ADME and Auto Dock Vina 4.2 tool enabled drug-likeness, pharmacokinetic properties, and molecular docking analyses. The administration of differential dosages (70-210 mg/kg) of the extract to male rats induced with doxorubicin revealed that the serum levels of malondialdehyde (MDA), total cholesterol (TC), triglycerides (TG), LDL-C, and VLDL-C were significantly decreased, whereas significant increases were observed in the levels of HDL-C, testosterone, GSH, SOD, GPx, and CAT when compared to negative control animals. The histological findings suggested strong testicular protective potential that corroborated the chemical pathological alterations. Therefore, the compounds (squalene, β-sitosterol, cis-pinane, 1,4-Eicosadiene, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, heptacosane, and bicyclo-heptanes-2,5,6-trimethylsilyl) characterized from S. anomalum leaf that revealed remarkable binding energies, pharmacokinetics, physicochemical, and drug-likeness properties contributed to the attenuation of the doxorubicin-induced testicular toxicity; hence, they possess antidotal activities.
Collapse
Affiliation(s)
| | - Jude Efiom Okokon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria
| | - Akaninyene Paul Joseph
- Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo State, Nigeria
| | | | - Somto Basil Ilechukwu
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University Nigeria, Nigeria
| | | | - Mercy Umoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria
| | | |
Collapse
|
5
|
Baraka SM, Hussien YA, Ahmed-Farid OA, Hassan A, Saleh DO. Acrylamide-induced hypothalamic-pituitary-gonadal axis disruption in rats: Androgenic protective roles of apigenin by restoring testicular steroidogenesis through upregulation of 17β-HSD, CYP11A1 and CYP17A1. Food Chem Toxicol 2024; 194:115078. [PMID: 39515511 DOI: 10.1016/j.fct.2024.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Acrylamide (ARL) exposure induces significant toxicity to the hypothalamic-pituitary-gonadal (HPG) axis, leading to detrimental effects on behavior, neuroendocrine functions, steroidogensis, oxidative stress, inflammation, hormonal balance, sperm quality, and histopathological integrity in rats. This study investigates the protective role of oral apigenin (API; 10 or 20 mg/kg/day for 28 days) against ARL-induced toxicity in the HPG axis of male Wistar rats. Behavioral assessments revealed that ARL exposure impaired motor coordination and balance, as evidenced by increased landing foot splay distance and gait score. ARL-induced toxicity elevated brain Tau protein levels and disrupted hypothalamic GnRH levels, both mitigated by API. ARL triggered oxidative/nitrosative stress, reducing GSH contents and increasing MDA and NO levels in brain and testicular tissues, which were reversed by API. Hormonal imbalance, marked by decreased serum testosterone, FSH, and LH levels, was corrected by API. API enhanced semen quality parameters, with elevation in sperm count concentration and the percentages of both progressive motility and individual motility. It also normalized testicular PS and PC content, enhanced testicular cellular energy and restored seminal amino acid. The repression of testicular steroidogenesis-related enzymes CYP11A1, CYP17A1, and 17β-HSD following ARL exposure was alleviated by API administration. API also mitigated the inflammatory effects of ARL by reducing the expression of p-NF-κB p65 and TNF-α in testicular tissue. Histopathological examinations showed that API reduced neuronal and testicular degeneration, improving spermatogenesis. These findings suggest that API confers significant protective effects against ARL-induced HPG axis toxicity by restoring testicular steroidogenesis through the upregulation of 17β-HSD, CYP11A1, and CYP17A1, potentially due to its antioxidant, anti-inflammatory, and neuroprotective properties.
Collapse
Affiliation(s)
- Sara M Baraka
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt
| | - Yosra A Hussien
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt
| | - Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
6
|
Erbaş E, Gelen V, Kara H, Gedikli S, Yeşildağ A, Özkanlar S, Akarsu SA. Silver Nanoparticles Loaded with Oleuropein Reduce Doxorubicin-Induced Testicular Damage by Regulating Endoplasmic Reticulum Stress, and Apoptosis. Biol Trace Elem Res 2024; 202:4687-4698. [PMID: 38197904 PMCID: PMC11339148 DOI: 10.1007/s12011-024-04058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Doxorubicin (DOX) is the most used chemotherapeutic agent for treating solid tumors. DOX treatment may lead to testicular damage using oxidative stress, resulting in infertility. These adverse effects may be prevented by the activation of antioxidant systems. Oleuropein (OLE) is a powerful flavonoid with several ameliorative effects, including antioxidative, antiproliferative, and anti-inflammatory. It would be more efficient and applicable in treating chronic human diseases if its poor bioavailability improves with a nano-delivery system. The current study aims to assess the histopathological changes and antioxidative effects of OLE loaded with silver nanoparticles oleuropein (OLE-AgNP) on the testicular injury triggered by DOX in rats. Forty-eight male albino rats were randomly divided into six groups as follows: the control, DOX (2.5 mg/kg), OLE (50 mg/kg), AgNP (100 mg/kg), OLE + AgNP (50 mg/kg), OLE (50 mg/kg) + DOX (2.5 mg/kg), AgNP (100 mg/kg) + DOX (2.5 mg/kg), and OLE-AgNP (50 mg/kg) + DOX (2.5 mg/kg) for 11 days. Oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress markers, sperm analysis, and histopathological analyses were performed on testicular tissues taken from rats decapitated after the applications and compared between the experimental groups. The tissue MDA level was lower in the OLE and OLE+AgNP-treated groups than in the DOX-treated group. In addition, SOD and GSH levels significantly increased in both the OLE and OLE+AgNP-treated groups compared to the DOX group. Both OLE and OLE+AgNP, particularly OLE+AgNP, ameliorated DOX-induced testicular tissue injury, as evidenced by reduced injury and improved seminiferous tubules and spermatocyte area. In addition, OLE and OLE+AgNP, especially OLE+AgNP, inhibited DOX-induced testicular tissue inflammation, apoptosis, and endoplasmic reticulum stress. The findings suggest that nanotechnology and the production of OLE+AgNP can ameliorate DOX-induced testicular damage.
Collapse
Affiliation(s)
- Elif Erbaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey.
| | - Hülya Kara
- Department of Anatomy, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ali Yeşildağ
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Seçkin Özkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
7
|
Sadek KM, Khalifa NE, Alshial EE, Abdelnour SA, Mohamed AAR, Noreldin AE. Potential hazards of bisphenol A on the male reproductive system: Induction of programmed cell death in testicular cells. J Biochem Mol Toxicol 2024; 38:e23844. [PMID: 39252451 DOI: 10.1002/jbt.23844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
A common industrial chemical known as bisphenol A (BPA) has been linked to endocrine disruption and can interfere with hormonal signaling pathways in humans and animals. This comprehensive review aims to explore the detrimental consequences of BPA on reproductive organ performance and apoptosis induction, shedding light on the emerging body of evidence from laboratory animal studies. Historically, most studies investigating the connection between BPA and reproductive tissue function have mainly leaned on laboratory animal models. These studies have provided crucial insights into the harmful effects of BPA on several facets of reproduction. This review consolidates an increasing literature that correlates exposure to BPA in the environment with a negative impact on human health. It also integrates findings from laboratory studies conducted on diverse species, collectively bolstering the mounting evidence that environmental BPA exposure can be detrimental to both humans and animals, particularly to reproductive health. Furthermore, this article explores the fundamental processes by which BPA triggers cell death and apoptosis in testicular cells. By elucidating these mechanisms, this review aids a deeper understanding of the complex interactions between BPA and reproductive tissues.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Eman E Alshial
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amany A-R Mohamed
- Departmentof Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
8
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
9
|
Gad F, Abdelghaffar Emam M, Eldeeb AA, Abdelhameed AA, Soliman MM, Alotaibi KS, Albattal SB, Abughrien B. Mitigative Effects of l-Arginine and N-Acetyl Cysteine against Cisplatin-Induced Testicular Dysfunction and Toxicity through the Regulation of Antioxidant, Anti-inflammatory, and Antiapoptotic Markers: Role of miR-155 and miR-34c Expression. ACS OMEGA 2024; 9:27680-27691. [PMID: 38947789 PMCID: PMC11209920 DOI: 10.1021/acsomega.4c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Testicular dysfunction is a common adverse effect of cisplatin (CIS) administration as a chemotherapeutic drug. The current study has outlined the role of micro-RNAs (miR-155 and 34c) in CIS-induced testicular dysfunction and evaluated the protective effect of N-acetyl cysteine (NAC) and/or l-arginine (LA). Seven groups of Albino rats were used for this study. The control (C) group received physiological saline; the CIS group was injected CIS (7 mg/kg IP, once) on day 21 of the experiment; the NAC group was administered NAC (150 mg/kg intragastric, for 28 days); and the LA group was injected LA (50 mg/kg IP, for 28 days). NAC+CIS, LA+CIS, and NAC+LA+CIS groups received the above regime. CIS significantly reduced serum testosterone, LH, and FSH concentrations with decline of testicular enzyme activities. CIS caused significant elevation in testicular oxidative-stress biomarkers, inflammation-associated cytokines, and apoptosis markers, along with overexpression of miR-155 and low miR-34c expression. Additionally, marked testicular degenerative changes were observed in the examined histological section; a significant decrease in the expression of PCNA with significant increase in expressions of F4/80 and BAX was confirmed. The administration of NAC or LA upregulated testicular functions and improved histopathological and immunohistochemical changes as well as miRNA expression compared with the CIS-administered group. Rats receiving both NAC and LA showed a more significant ameliorative effect compared with groups receiving NAC or LA alone. In conclusion, NAC or LA showed an ameliorative effect against CIS-induced testicular toxicity and dysfunction through the regulation of antioxidant, anti-inflammatory, and antiapoptotic markers and via modulating miR-155 and miR-34c expression.
Collapse
Affiliation(s)
- Fatma
A. Gad
- Clinical
Pathology Department, Faculty of Veterinary Medicine, Benha University, P.O. Box13736 Benha, Egypt
| | - Mahmoud Abdelghaffar Emam
- Histology
Department., Faculty of Veterinary Medicine, Benha University, P.O. Box 13736 Benha, Egypt
| | - Abeer A. Eldeeb
- Clinical
Pharmacology Department, Faculty of Medicine, Benha University, 13511 Benha, Egypt
| | - Abeer A. Abdelhameed
- Clinical
Pharmacology Department, Faculty of Medicine, Benha University, 13511 Benha, Egypt
| | - Mohamed Mohamed Soliman
- Department
of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O.
Box 11099, Taif 21944, Saudi Arabia
| | - Khalid S. Alotaibi
- General
Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Shatha B. Albattal
- General
Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Badia Abughrien
- Anatomy and
Histology Department, Faculty of Veterinary Medicine, Tripoli University, 15673 Tripoli, Libya
| |
Collapse
|
10
|
Ijaz MU, Yaqoob S, Hamza A, David M, Afsar T, Husain FM, Amor H, Razak S. Apigetrin ameliorates doxorubicin prompted testicular damage: biochemical, spermatological and histological based study. Sci Rep 2024; 14:9049. [PMID: 38643196 PMCID: PMC11555402 DOI: 10.1038/s41598-024-59392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Doxorubicin (DOX) is a highly effective, commonly prescribed, potent anti-neoplastic drug that damages the testicular tissues and leads to infertility. Apigetrin (APG) is an important flavonoid that shows diverse biological activities. The present research was designed to evaluate the alleviative role of APG against DOX-induced testicular damages in rats. Forty-eight adult male albino rats were randomly distributed into 4 groups, control, DOX administered (3 mgkg-1), DOX + APG co-administered (3 mgkg-1 of DOX; 15 mgkg-1 of APG), and APG administered group (15 mgkg-1). Results of the current study indicated that DOX treatment significantly reduced the activities of superoxide dismutase (SOD), glutathione reductase (GSR), catalase (CAT) and glutathione peroxidase (GPx), while increasing the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). DOX treatment also reduced the sperm count, viability, and motility. Moreover, DOX significantly increased the sperm morphological anomalies and reduced the levels of plasma testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The administration of DOX significantly increased the expressions of Bax and Caspase-3, as well as the levels of inflammatory markers. Additionally, DOX treatment significantly downregulated the expressions of steroidogenic enzymes (StAR, 3β-HSD and 17β-HSD) and Bcl-2. Furthermore, DOX administration provoked significant histopathological abnormalities in the testicular tissues. However, APG supplementation significantly reversed all the testicular damages due to its androgenic, anti-apoptotic, anti-oxidant and anti-inflammatory nature. Therefore, it is concluded that APG may prove a promising therapeutic agent to treat DOX-induced testicular damages.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Saba Yaqoob
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mehwish David
- Department of Animal Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, Homburg, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Ijaz MU, Alvi K, Hamza A, Anwar H, Al-Ghanim KA, Riaz MN. Curative effects of tectochrysin on paraquat-instigated testicular toxicity in rats: A biochemical and histopathological based study. Heliyon 2024; 10:e25337. [PMID: 38356568 PMCID: PMC10865255 DOI: 10.1016/j.heliyon.2024.e25337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Background Paraquat (PQ) is a herbicide that is used globally in the agriculture sector to eradicate unwanted weeds, however it also induces significant damages in various organs of the body such as testes. Tectochrysin (TEC) is an important flavonoid that shows versatile therapeutic potentials. Currently, there is no established antidote to cure PQ-induced testicular toxicity. Objective The present study was conducted to evaluate the ameliorative effects of TEC against PQ prompted testicular damage. Methods Sprague-Dawley rats (n = 48) were used to conduct the trial. Rats were allocated in to 4 groups i.e., Control, PQ administrated group (5 mgkg-1), PQ + TEC co-administrated group (5 mgkg-1 + 2.5 mgkg-1) and TEC only administrated group (2.5 mgkg-1). The trial was conducted for 8 weeks. The activity of anti-oxidants and the levels of MDA and ROS were determined by spectrophotometric method. Steroidogenic enzymes as well as apoptotic markers expressions were evaluated by qRT-PCR. The level of hormones and inflammatory indices was quantified by enzyme-linked immunosorbent assay. Results PQ exposure markedly (P < 0.05) disturbed the biochemical, spermatogenic and histological profile in the rats. Nevertheless, TEC treatment considerably (P < 0.05) increased CAT, GPx GSR and SOD activity, besides decreasing MDA and ROS contents. TEC administration also increased sperm viability, count and motility. 17β-HSD, 3β-HSD, StAR and Bcl-2 expressions were also increased following TEC administration. The supplementation of TEC substantially (P < 0.05) decreased Bax, Caspase-3 expression and the levels of inflammatory markers i.e., interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) activity. Additionally, the levels of plasma testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were increased following TEC supplementation. Furthermore, TEC supplementation considerably decreased sperm structural abnormalities and histomorphological damages of the testes. The mitigative role of TEC might be due to its anti-inflammatory, anti-apoptotic, androgenic and anti-oxidant potentials. Conclusion Taken together, it is concluded that TEC can be used as a potential candidate to treat testicular toxicity.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kaynat Alvi
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University of Faisalabad, Faisalabad, Pakistan
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
12
|
Mostafa Mohammed D, El-Messery TM, Baranenko DA, Hashim MA, Tyutkov N, Marrez DA, Elmessery WM, El-Said MM. Effect of Spirulina maxima microcapsules to mitigate testicular toxicity induced by cadmium in rats: Optimization of in vitro release behavior in the milk beverage. J Funct Foods 2024; 112:105938. [DOI: 10.1016/j.jff.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
|
13
|
Ijaz MU, Qamer M, Hamza A, Ahmed H, Afsar T, Abulmeaty M, Ayub A, Razak S. Sciadopitysin mitigates spermatological and testicular damage instigated by paraquat administration in male albino rats. Sci Rep 2023; 13:19753. [PMID: 37957289 PMCID: PMC10643627 DOI: 10.1038/s41598-023-46898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
Paraquat (PQ) is a herbicide that has ability to induce testicular toxicity by producing reactive oxygen species (ROS). Sciadopitysin (SPS) is a promising flavonoid that displays multiple pharmacological properties i.e., anti-inflammatory, anti-oxidant and anti-apoptotic. Therefore, the present study was designed to evaluate the mitigative role of SPS against PQ induced testicular toxicity in male rats. The experiment was performed on male albino rats (n = 48) that were divided into 4 groups. The group-1 was control group. Group-2 was administrated orally with PQ (5 mg/kg). Group-3 was administrated orally with PQ (5 mg/kg) and SPS (2 mg/kg). Group-4 was supplemented with SPS (2 mg/kg) through oral gavage. The experiment was conducted for 56 days. The exposure to PQ significantly lowered the activities of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD) as well as glutathione peroxidase (GPx). Whereas, a substantial increase was observed in dead sperms number, abnormalities in the tail, head as well as midpiece of sperms in PQ intoxicated rats. Moreover, a significant increase in the level of ROS and malondialdehyde (MDA) was noticed in PQ administrated group. Furthermore, steroidogenic enzymes expression was significantly decreased in PQ-intoxicated group, whereas the level of inflammatory markers was increased in PQ administrated rats. Besides, the expression of apoptotic markers was significantly escalated in PQ exposed rats, whereas the expression of anti-apoptotic markers was considerably reduced. A significant reduction in hormonal level was also noticed in the rats that were administrated with PQ. Moreover, the histopathological examination revealed that PQ significantly damaged the testicles. However, the supplementation of SPS with PQ significantly reduced the adverse effects of PQ in the testes of albino rats. Therefore, the current investigation demonstrated that SPS possesses a significant potential to avert PQ-induced testicular dysfunction due to its anti-apoptotic, androgenic, anti-oxidant and anti-inflammatory nature.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Mohammad Qamer
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Buner, Khyber Pakhtunkhwa, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Mahmoud Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Arusha Ayub
- Department of Medicine, School of Health Sciences, University of Georgia, Tbilisi, GA, Georgia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Alafifi SA, Wahdan SA, Elhemiely AA, Elsherbiny DA, Azab SS. Modulatory effect of liraglutide on doxorubicin-induced testicular toxicity and behavioral abnormalities in rats: role of testicular-brain axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2987-3005. [PMID: 37162541 PMCID: PMC10567954 DOI: 10.1007/s00210-023-02504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Doxorubicin (DOX) is a powerful chemotherapeutic agent used in many types of malignancies. However, its use results in testicular damage. DOX-induced testicular damage results in low level of serum testosterone which may affect cognitive function. The current study investigated the protective effect of liraglutide (50, 100 μg/kg/day) in testicular toxicity and the consequent cognitive impairment induced by DOX. DOX treatment reduced sperm count (62%) and sperm motility (53%) and increased sperm abnormalities (786%), as compared to control group. DOX also reduced serum testosterone level (85%) and the gene expression of testicular 3β-HSD (68%) and 17β-HSD (82%). Moreover, it increased testicular oxidative stress (MDA and GSH) by 103% and 59%, respectively, apoptotic (caspase-3 and P53) by 996% and 480%, respectively. In addition, DOX resulted in increasing autophagic markers including PAKT, mTOR, and LC3 by 48%, 56%, and 640%, respectively. Additionally, rats' behavior in Y-maze (60%) and passive avoidance task (85%) was disrupted. The histopathological results of testis and brain supported the biochemical findings. Treatment with liraglutide (100 μg/kg/day) significantly abrogated DOX-induced testicular damage by restoring testicular architecture, increasing sperm count (136%) and sperm motility (106%), and decreasing sperm abnormalities (84%) as compared to DOX group. Furthermore, liraglutide increased serum testosterone (500%) and steroidogenesis enzymes 3β-HSD (105%) and 17β-HSD (181%) along with suppressing oxidative stress (MDA and GSH) by 23% and 85%, respectively; apoptotic (caspase-3 and P53) by 59% and55%, respectively; and autophagic markers including PAKT, mTOR, and LC3 by 48%, 97%, and 60%, respectively. Moreover, it enhanced the memory functions in passive avoidance and Y-maze tests (132%). In conclusion, liraglutide is a putative agent for protection against DOX-induced testicular toxicity and cognitive impairment through its antioxidant, antiapoptotic, and antiautophagic effects.
Collapse
Affiliation(s)
- Shorouk A Alafifi
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sara A Wahdan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | - Doaa A Elsherbiny
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Samar S Azab
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
15
|
Gedikli E, Barış VÖ, Yersal N, Dinçsoy AB, Müftüoğlu SF, Erdem A. Taurine Protects Doxorubicin-Induced Hepatotoxicity via Its Membrane-Stabilizing Effect in Rats. Life (Basel) 2023; 13:2031. [PMID: 37895413 PMCID: PMC10608465 DOI: 10.3390/life13102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Doxorubicin (dox) is a chemotherapeutic agent widely used against various tumors. However, the clinical use of this agent is limited due to various organ toxicities. Taurine is an intracellular free β-amino acid with antioxidant properties. The present study investigated the protective mechanism of taurine on dox-induced hepatotoxicity. METHODS In total, 31 male Sprague-Dawley rats were used in the study. The control group received intraperitoneal (i.p.) 0.9% NaCl alone for 14 days; the taurine (Tau) group received i.p. taurine 150 mg/kg body weight/day for 14 days; the dox group received dox on days 12, 13, and 14 at a cumulative dose of 25 mg/kg body weight/3 days; and the tau+dox group received taurine and dox together at the same dose and through the same route. On day 15, biochemical evaluations were performed on blood samples taken from the left ventricle followed by histological examinations on liver samples. RESULTS Dox was found to increase liver function enzymes and tissue protein carbonyl levels, causing congestion and tissue damage, thereby leading to dysfunction. Tau was found to histologically preserve the liver morphology without showing any corrective effect on oxidative stress parameters. These findings suggest that the membrane-stabilizing effect of taurine may be more effective than its radical scavenging activity in preventing dox-induced toxicity. CONCLUSION Taurine can prevent doxorubicin-induced hepatotoxicity through non-antioxidant pathways.
Collapse
Affiliation(s)
- Esra Gedikli
- Department of Physiology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey; (E.G.); (A.B.D.)
| | - Veysel Özgür Barış
- Department of Cardiology, Dr Ersin Arslan Research and Education Hospital, 27010 Gaziantep, Turkey;
| | - Nilgün Yersal
- Department of Histology & Embryology, Gaziosmanpaşa University Faculty of Medicine, 60030 Tokat, Turkey;
| | - Adnan Berk Dinçsoy
- Department of Physiology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey; (E.G.); (A.B.D.)
| | - Sevda Fatma Müftüoğlu
- Department of Histology & Embryology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey;
| | - Ayşen Erdem
- Department of Physiology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey; (E.G.); (A.B.D.)
| |
Collapse
|
16
|
Ijaz MU, Mustafa S, Ain QU, Hamza A, Ahmed H, Abdel-Daim MM, Albadrani GM, Najda A, Ali S. Eriodictyol attenuates Furan induced testicular toxicity in Rats: Role of oxidative stress, steroidogenic enzymes and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115003. [PMID: 37224777 DOI: 10.1016/j.ecoenv.2023.115003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Furan (C4H4O) is a naturally occurring organic compound. It develops as a result of the thermal processing of food and stimulates critical impairments in male reproductive tract. Eriodictyol (Etyol) is a natural dietary flavonoid possessing diverse pharmacological potentials. The recent investigation was proposed to ascertain the ameliorative potential of eriodictyol against furan-instigated reproductive dysfunctions. Male rats (n = 48) were classified into 4 groups: untreated/control, furan (10 mg/kg), furan+ eriodictyol (10 mg/kg + 20 mg/kg) and eriodictyol (20 mg/kg). At the 56th day of the trial, the protective effects of eriodictyol were evaluated by assessing various parameters. Results of the study revealed that eriodictyol attenuated furan-induced testicular toxicity in the biochemical profile by increasing catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) along with glutathione reductase (GSR) activities, whereas reduced the reactive oxygen species (ROS) along with malondialdehyde (MDA) levels. It also restored the normal state of sperm motility, viability, the count of hypo-osmotic tail swelled sperm as well as epididymal sperm number along with reduced sperm anomalies (morphological) tail, mid-piece and head. Furthermore, it elevated the decreased levels of luteinizing hormone (LH), plasma testosterone and follicle-stimulating hormone (FSH) as well steroidogenic enzymes (17β-HSD, StAR protein & 3β-HSD) and testicular anti-apoptotic marker (Bcl-2) expression, whereas, down-regulating apoptotic markers (Bax & Caspase-3) expression. Eriodictyol treatment also effectively mitigated the histopathological damages. The outcomes of the current study provide fundamental insights into the ameliorative potential of eriodictyol against furan-instigated testicular toxicity.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
17
|
Babalola AA, Adelowo AR, Da-Silva OF, Ikeji CN, Owoeye O, Rocha JBT, Adedara IA, Farombi EO. Attenuation of doxorubicin-induced hypothalamic-pituitary-testicular axis dysfunction by diphenyl diselenide involves suppression of hormonal deficits, oxido-inflammatory stress and caspase 3 activity in rats. J Trace Elem Med Biol 2023; 79:127254. [PMID: 37379681 DOI: 10.1016/j.jtemb.2023.127254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is one of the popular anti-cancer drugs in the world and several literatures have implicated it in various toxicities especially cardiotoxicity and reproductive toxicity. Diphenyl diselenide (DPDS) is well acknowledged for its compelling pharmacological effects in numerous disease models and chemically-mediated toxicity. This study was carried out to investigate the effect of DPDS on DOX-induced changes in the reproductive indices of male Wistar rats. METHODS Rats were intraperitoneally injected with 7.5 mg/kg body weight of DOX alone once followed by treatment with DPDS at 5 and 10 mg/kg for seven successive days. Excised hypothalamus, testes and epididymis were processed for biochemical and histological analyses. RESULTS DPDS treatment significantly (p < 0.05) abated DOX-induced oxidative damage by decreasing the levels of oxidative stress indices such as hydrogen peroxide, reactive oxygen and nitrogen species, and lipid peroxidation with a respective improvement in the level of glutathione in the hypothalamic, testicular and epididymal tissues of DOX-treated rats. The activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione S-transferase and glutathione peroxidase were upregulated in the DPDS co-treated group. DPDS co-treatment alleviates the burden of DOX-induced inflammation by significant reductions in myeloperoxidase activity, levels of nitric oxide and tumor necrosis factor alpha with concomitant decline in the activity of caspase-3, an apoptotic biomarker. Consequently, significant improvement in the spermiogram, levels of reproductive hormones (follicle stimulating hormone, luteinizing hormone, prolactin, serum testosterone and intra-testicular testosterone) levels in the DPDS co-treatment group in comparison to DOX alone-treated group were observed. Histology results of the testes and epididymis showed that DPDS significantly alleviated pathological lesions induced by DOX in the animals. CONCLUSION DPDS may modulate reproductive toxicity associated with DOX therapy in male cancer patients.
Collapse
Affiliation(s)
- Adesina A Babalola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedoyin R Adelowo
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatobiloba F Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
18
|
Ijaz MU, Najam S, Hamza A, Azmat R, Ashraf A, Unuofin JO, Lebelo SL, Simal-Gandara J. Pinostrobin alleviates testicular and spermatological damage induced by polystyrene microplastics in adult albino rats. Biomed Pharmacother 2023; 162:114686. [PMID: 37044025 DOI: 10.1016/j.biopha.2023.114686] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Polystyrene microplastics (PS-MPs) have become major environmental pollutants that adversely effects multiple organs specifically testicles. Pinostrobin (PN) is an important flavonoid which, shows several pharmacological potentials. PURPOSE The current study was designed to elucidate the mitigative effects of PN against PS-MPs induced testicular toxicities in rats. METHODS 48 male albino rats were randomly distributed into 4 groups, control, PS-MPs group (0.01 mg/kg), PS-MPs + PN group (0.01 mg/kg of PS-MPs; 40 mg/kg of PN) and PN group (40 mg/kg). RESULTS PS-MPs intoxication substantially lessened the activities of glutathione peroxidase (GPx), glutathione reductase (GSR), superoxide dismutase (SOD) along with catalase (CAT) while, raised the level of malondialdehyde (MDA) as well as reactive oxygen species (ROS). Additionally, PS-MPs reduced luteinizing hormone (LH), plasma testosterone, follicle-stimulating hormone (FSH) concentration, sperm motility, sperm count, expression of steroidogenic enzymes and Bcl-2 (anti-apoptotic protein) along with the count of spermatogenic cells. While, dead sperm count, sperm abnormalities (tail, neck and head), Bax and caspase-3 (apoptotic proteins) expression along with histopathological anomalies were elevated. Moreover, PS-MPs exposure increased the level of inflammatory markers. However, PN treatment considerably decreased oxidative stress (OS) by reducing ROS as well as increased sperm motility and alleviated all the damages induced by the PS-MPs. CONCLUSION Therefore, it is concluded that PN may prove a potential therapeutic candidate to restore all the PS-MPs-induced testicular toxicities.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Saira Najam
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Rabia Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan.
| | - Jeremiah Oshiomame Unuofin
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Private Bag X06, Florida 1710, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Private Bag X06, Florida 1710, South Africa
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense E32004, Spain.
| |
Collapse
|
19
|
Mustafa S, Anwar H, Ain QU, Ahmed H, Iqbal S, Ijaz MU. Therapeutic effect of gossypetin against paraquat-induced testicular damage in male rats: a histological and biochemical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62237-62248. [PMID: 36940025 DOI: 10.1007/s11356-023-26469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paraquat (PQ) is an organic compound, which is commonly used as a herbicide in the agriculture sector, and it is also known to stimulate critical damages in the male reproductive system. Gossypetin (GPTN) is one of important members of the flavonoid family, which is an essential compound in flowers and calyx of Hibiscus sabdariffa with potential pharmacological properties. The current investigation was aimed to examine the ameliorative potential of GPTN against PQ-instigated testicular damages. Adult male Sprague-Dawley rats (n = 48) were distributed into four groups: control, PQ (5 mg/kg), PQ + GPTN (5 mg/kg + 30 mg/kg respectively), and GPTN (30 mg/kg). After 56 days of treatment, biochemical, spermatogenic indices, hormonal, steroidogenic, pro-or-anti-apoptotic, and histopathological parameters were estimated. PQ exposure disturbed the biochemical profile by reducing the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR), while it increased the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA) level. Furthermore, PQ exposure decreased the sperm motility, viability, number of hypo-osmotic tail swelled spermatozoa, and epididymal sperm count; additionally, it increased sperm morphological (head mid-piece and tail) abnormalities. Moreover, PQ lessened the follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone levels. Besides, PQ-intoxication downregulated the gene expression of steroidogenic enzymes (StAR, 3β-HSD, and 17β-HSD) and anti-apoptotic marker (Bcl-2), whereas upregulated the gene expression of apoptotic markers (Bax and Caspase-3). PQ exposure led to histopathological damages in testicular tissues as well. Nonetheless, GPTN inverted all the illustrated impairments in testes. Taken together, GPTN could potently ameliorate PQ-induced reproductive dysfunctions due to its antioxidant, androgenic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
20
|
Milián-Sorribes MC, Peres H, Tomás-Vidal A, Moutinho S, Peñaranda DS, Jover-Cerdá M, Oliva-Teles A, Martínez-Llorens S. Hepatic, Muscle and Intestinal Oxidative Status and Plasmatic Parameters of Greater Amberjack (Seriola dumerili, Risso, 1810) Fed Diets with Fish Oil Replacement and Probiotic Addition. Int J Mol Sci 2023; 24:ijms24076768. [PMID: 37047740 PMCID: PMC10095327 DOI: 10.3390/ijms24076768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
The present study was conducted to investigate the effects of dietary fish oil replacement with a mixture of vegetable oils and probiotic supplementation on plasma biochemical parameters, oxidative stress, and antioxidant ability of Seriola dumerili. Specimens with an initial weight of 175 g were used. Four feeds were formulated with 0% (FO-100), 75% (FO-25), and 100% (FO-0 and FO-0+ with the addition of Lactobacillus probiotics) substitution of fish oil with a mixture of linseed, sunflower, and palm oils. After 109 days, no significant differences were observed in the activity of antioxidant enzymes in the liver, foregut, and hindgut, only glucose-6-phosphate dehydrogenase activity in the liver was higher in the fish fed the FO-100 diet than in those fed the FO-0 diet. No significant differences were observed in the total, reduced, and oxidized glutathione and the oxidative stress index in the liver. In addition, lipid peroxidation in the liver and red muscle values were higher in the fish fed the FO-100 diet than in the fish fed the FO-0+ diet, however, the foregut of the fish fed the FO-100 diet presented lower values than that of the fish fed the FO replacement diet, with and without probiotics. There were significant differences in cholesterol levels in the FO-100 group; they were significantly higher than those observed with the fish diets without fish oil. To sum up, fish oil can be replaced by up to 25% with vegetable oils in diets for Seriola dumerili juveniles, but total fish oil substitution is not feasible because it causes poor survival. The inclusion of probiotics in the FO-0+ diet had no effects on the parameters measured.
Collapse
Affiliation(s)
- Maria Consolación Milián-Sorribes
- Aquaculture and Biodiversity Group, Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera, 14, 46071 Valencia, Spain
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Ana Tomás-Vidal
- Aquaculture and Biodiversity Group, Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera, 14, 46071 Valencia, Spain
| | - Sara Moutinho
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - David S. Peñaranda
- Aquaculture and Biodiversity Group, Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera, 14, 46071 Valencia, Spain
| | - Miguel Jover-Cerdá
- Aquaculture and Biodiversity Group, Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera, 14, 46071 Valencia, Spain
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Silvia Martínez-Llorens
- Aquaculture and Biodiversity Group, Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera, 14, 46071 Valencia, Spain
| |
Collapse
|
21
|
Zhou L, Yang H, Wang J, Liu Y, Xu Y, Xu H, Feng Y, Ge W. The Therapeutic Potential of Antioxidants in Chemotherapy-Induced Peripheral Neuropathy: Evidence from Preclinical and Clinical Studies. Neurotherapeutics 2023; 20:339-358. [PMID: 36735180 PMCID: PMC10121987 DOI: 10.1007/s13311-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
As cancer therapies advance and patient survival improves, there has been growing concern about the long-term adverse effects that patients may experience following treatment, and concerns have been raised about such persistent, progressive, and often irreversible adverse effects. Chemotherapy is a potentially life-extending treatment, and chemotherapy-induced peripheral neuropathy (CIPN) is one of its most common long-term toxicities. At present, strategies for the prevention and treatment of CIPN are still an open problem faced by medicine, and there has been a large amount of previous evidence that oxidative damage is involved in the process of CIPN. In this review, we focus on the lines of defense involving antioxidants that exert the effect of inhibiting CIPN. We also provide an update on the targets and clinical prospects of different antioxidants (melatonin, N-acetylcysteine, vitamins, α-lipoic acid, mineral elements, phytochemicals, nutritional antioxidants, cytoprotectants and synthetic compounds) in the treatment of CIPN with the help of preclinical and clinical studies, emphasizing the great potential of antioxidants as adjuvant strategies to mitigate CIPN.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hui Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yinqiu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hang Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yong Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, #42 Baizi Ting Road, Nanjing, 210009, Jiangsu, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
22
|
Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, Xie Z, Chen C. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne) 2023; 14:1017886. [PMID: 36742382 PMCID: PMC9889556 DOI: 10.3389/fendo.2023.1017886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such as bile salt formation, osmotic regulation, oxidative stress inhibition, immunomodulation and neuromodulation. Taurine has been proved to be synthesized and abundant in male reproductive organs. Recently, accumulating data showed that taurine has a potential protective effect on reproductive function of male animals. In physiology, taurine can promote the endocrine function of the hypothalamus-pituitary-testis (HPT) axis, testicular tissue development, spermatogenesis and maturation, delay the aging of testicular structure and function, maintain the homeostasis of the testicular environment, and enhance sexual ability. In pathology, taurine supplement may be beneficial to alleviate pathological damage of male reproductive system, including oxidative damage of sperm preservation in vitro, testicular reperfusion injury and diabetes -induced reproductive complications. In addition, taurine acts as a protective agent against toxic damage to the male reproductive system by exogenous substances (e.g., therapeutic drugs, environmental pollutants, radiation). Related mechanisms include reduced oxidative stress, increased antioxidant capacity, inhibited inflammation and apoptosis, restored the secretory activity of the HPT axis, reduced chromosomal variation, enhanced sperm mitochondrial energy metabolism, cell membrane stabilization effect, etc. Therefore, this article reviewed the protective effect of taurine on male reproductive function and its detailed mechanism, in order to provide reference for further research and clinical application.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jia Shang
- Arts Department, School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Wanglin Dong
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Sijia Wu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiajun Guo
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Henan, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|
23
|
Arunachalam S, Nagoor Meeran MF, Azimullah S, Kumar Jha N, Saraswathiamma D, Albawardi A, Beiram R, Ojha S. α-Bisabolol Attenuates NF-κB/MAPK Signaling Activation and ER-Stress-Mediated Apoptosis by Invoking Nrf2-Mediated Antioxidant Defense Systems against Doxorubicin-Induced Testicular Toxicity in Rats. Nutrients 2022; 14:nu14214648. [PMID: 36364909 PMCID: PMC9657294 DOI: 10.3390/nu14214648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the effects of α-bisabolol on DOX-induced testicular damage in rats. Testicular damage was induced in rats by injecting DOX (12.5 mg/kg, i.p., single dose) into rats. α-Bisabolol (25 mg/kg, i.p.) was administered to the rats along with DOX pre- and co-treatment daily for a period of 5 days. DOX-injected rats showed a decrease in absolute testicular weight and relative testicular weight ratio along with concomitant changes in the levels/expression levels of oxidative stress markers and Nrf2 expression levels in the testis. DOX injection also triggered the activation of NF-κB/MAPK signaling and increased levels/expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and inflammatory mediators (iNOS and COX-2) in the testis. DOX triggered apoptosis, manifested by an increment in the expression levels of pro-apoptotic markers (Bax, Bcl2, cleaved caspase-3 and -9, and cytochrome-C) and a decline in the expression levels of anti-apoptotic markers (Bcl-xL and Bcl2) in the testis. Additionally, light microscopy revealed the changes in testicular architecture. α-Bisabolol rescued alterations in the testicular weight; restored all biochemical markers; modulated the expression levels of Nrf2-mediated antioxidant responses, NF-κB/MAPK signaling, endoplasmic reticulum (ER) stress, and apoptosis markers in DOX-injected testicular toxicity in rats. Based on our findings, it can be concluded that α-bisabolol has the potential to attenuate DOX-induced testicular injury by modifying NF-κB/MAPK signaling and the ER-stress-mediated mitochondrial pathway of apoptosis by invoking Nrf2-dependent antioxidant defense systems in rats. Based on the findings of the present study, α-bisabolol could be suggested for use as an agent or adjuvant with chemotherapeutic drugs to attenuate their deleterious effects of DOX on many organs including the testis. However, further regulatory toxicology and preclinical studies are necessary before making recommendations in clinical tests.
Collapse
Affiliation(s)
- Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Dhanya Saraswathiamma
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: ; Tel.: +973-7137-524
| |
Collapse
|
24
|
Özay Güleş, Doğan G, Ercins UH, Eren Ü. Effects of Quercetin against Doxorubicin-Induced Testicular Toxicity in Male Rats. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Wilczyński B, Dąbrowska A, Saczko J, Kulbacka J. The Role of Chloride Channels in the Multidrug Resistance. MEMBRANES 2021; 12:38. [PMID: 35054564 PMCID: PMC8781147 DOI: 10.3390/membranes12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Nowadays, one of medicine's main and most challenging aims is finding effective ways to treat cancer. Unfortunately, although there are numerous anti-cancerous drugs, such as cisplatin, more and more cancerous cells create drug resistance. Thus, it is equally important to find new medicines and research the drug resistance phenomenon and possibilities to avoid this mechanism. Ion channels, including chloride channels, play an important role in the drug resistance phenomenon. Our article focuses on the chloride channels, especially the volume-regulated channels (VRAC) and CLC chloride channels family. VRAC induces multidrug resistance (MDR) by causing apoptosis connected with apoptotic volume decrease (AVD) and VRAC are responsible for the transport of anti-cancerous drugs such as cisplatin. VRACs are a group of heterogenic complexes made from leucine-rich repetition with 8A (LRRC8A) and a subunit LRRC8B-E responsible for the properties. There are probably other subunits, which can create those channels, for example, TTYH1 and TTYH2. It is also known that the ClC family is involved in creating MDR in mainly two mechanisms-by changing the cell metabolism or acidification of the cell. The most researched chloride channel from this family is the CLC-3 channel. However, other channels are playing an important role in inducing MDR as well. In this paper, we review the role of chloride channels in MDR and establish the role of the channels in the MDR phenomenon.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
26
|
Andersen CL, Byun H, Li Y, Xiao S, Miller DM, Wang Z, Viswanathan S, Hancock JM, Bromfield J, Ye X. Varied effects of doxorubicin (DOX) on the corpus luteum of C57BL/6 mice during early pregnancy†. Biol Reprod 2021; 105:1521-1532. [PMID: 34554181 PMCID: PMC8689115 DOI: 10.1093/biolre/ioab180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/22/2021] [Indexed: 11/14/2022] Open
Abstract
Certain chemotherapeutic drugs are toxic to ovarian follicles. The corpus luteum (CL) is normally developed from an ovulated follicle for producing progesterone (P4) to support early pregnancy. To fill in the knowledge gap about effects of chemotherapy on the CL, we tested the hypothesis that chemotherapy may target endothelial cells and/or luteal cells in the CL to impair CL function in P4 steroidogenesis using doxorubicin (DOX) as a representative chemotherapeutic drug in mice. In both mixed background mice and C57BL/6 mice, a single intraperitoneal injection of DOX (10 mg/kg) on 0.5-day postcoitum (D0.5, postovulation) led to ~58% D3.5 mice with serum P4 levels lower than the serum P4 range in the phosphate buffer saline-treated control mice. Further studies in the C57BL/6 ovaries revealed that CLs from DOX-treated mice with low P4 levels had less defined luteal cords and disrupted collagen IV expression pattern, indicating disrupted capillary, accompanied with less differentiated luteal cells that had smaller cytoplasm and reduced StAR expression. DOX-treated ovaries had increased granulosa cell death in the growing follicles, reduced proliferating cell nuclear antigen-positive endothelial cells in the CLs, enlarged lipid droplets, and disrupted F-actin in the luteal cells. These novel data suggest that the proliferating endothelial cells in the developing CL may be the primary target of DOX to impair the vascular support for luteal cell differentiation and subsequently P4 steroidogenesis. This study fills in the knowledge gap about the toxic effects of chemotherapy on the CL and provides critical information for risk assessment of chemotherapy in premenopausal patients.
Collapse
Affiliation(s)
- Christian Lee Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Haeyeun Byun
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Yuehuan Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Doris M Miller
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zidao Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Suvitha Viswanathan
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jonathan Matthew Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Jaymie Bromfield
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
27
|
Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants (Basel) 2021; 10:1876. [PMID: 34942978 PMCID: PMC8698923 DOI: 10.3390/antiox10121876] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic β-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15-20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau's antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
28
|
Kara H, Orem A, Yulug E, Balaban Yucesan F, Kerimoglu G, Vanizor Kural B, Ozer Yaman S, Bodur A, Turedi S, Alasalvar C. Effects of hazelnut supplemented diet on doxorubicin-induced damage of reproductive system in male rats. J Food Biochem 2021; 45:e13973. [PMID: 34664725 DOI: 10.1111/jfbc.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
The present study was objected to investigate the effect of hazelnut supplemented diet on the levels of oxidative stress and fertility parameters against doxorubicin-induced testicular and epididymal tissue damage of male rats. Rats were randomly divided into four groups (each n = 8), namely control group (CG), doxorubicin group (DG), doxorubicin + hazelnut group (DHG), and doxorubicin + vitamin E group (DEG). This is the first study designed using DHG. Doxorubicin was intraperitoneally injected into all diet groups except CG at a dose of 3 mg/kg body weight on days 1, 7, 14, 21, and 28. In addition, DHG was supplemented with a hazelnut diet at a dose of 3 g/kg body weight/day and vitamin E was added to the drinking water of DEG at a dose of 50 mg/kg body weight/day. DHG reversed the side effects of doxorubicin and positively improved the epididymis sperm quality, testicular and epididymal tissue injury, testosterone level, epididymis oxidative stress index, and lipid peroxidation in male rats. These findings suggest that hazelnut has positive effects against doxorubicin dependent damage on male rats and it may be a promising supplement for amelioration of testicular toxicity. PRACTICAL APPLICATIONS: Hazelnut has numerous positive health effects due to its macronutrients, micronutrients, lipid-soluble compounds and bioactive phenolics. Studies have shown that regular consumption of hazelnut may have a positive effect on lipid parameters, oxidative stress, inflammation markers, and endothelial dysfunction in both healthy people and patients with chronic diseases. Although doxorubicin (Adriamycin, DOX) is an antibiotic that has been widely used in cancer treatment for nearly 30 years, it causes organ toxicity including testicular tissue. Hazelnut may have positive effects on the damage caused by DOX in the reproductive system. However, studies on the effect of hazelnut on male reproductive health are scarce. Therefore, this study provided a basis for the clinical evaluation of the effects of hazelnut on the reproductive system.
Collapse
Affiliation(s)
- Hanife Kara
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Amasya University, Amasya, Turkey.,Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Asım Orem
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Esin Yulug
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Fulya Balaban Yucesan
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gokcen Kerimoglu
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Birgul Vanizor Kural
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Akın Bodur
- Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Sibel Turedi
- Faculty of Medicine, Department of Histology and Embryology, Harran University, Sanlıurfa, Turkey
| | | |
Collapse
|
29
|
Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed Pharmacother 2021; 142:112040. [PMID: 34416630 DOI: 10.1016/j.biopha.2021.112040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
Treatment of cancer in young adults is associated with several side effects, particularly in the reproductive system. Detrimental effects of chemotherapy on the germ cells depend on many factors including primary semen parameters, the way of drug administration, the kind and dose of chemotherapeutic regimens, and the phase of spermatogenesis during the time of drug administration. Lack of appropriate fertility preservation treatments particularly in the affected children necessitates the introduction of methods to amend the harmful effects of chemotherapeutic agents on male germ cells. Several studies have assessed the toxic effects of chemotherapeutic agents in rodent models and tested a number of antioxidants to evaluate their possible impact on the preservation of sperm cells. In the present manuscript, we describe the effects of the mostly investigated chemotherapeutic drugs in this regard i.e., cisplatin, doxorubicin, paclitaxel, 5-fluorouracil, and cyclophosphamide. As several in vivo and in vitro studies have shown the impact of antioxidants on chemotherapy-induced damage of sperms, we also describe the protective effects of antioxidants in this regard.
Collapse
|
30
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep 2021; 24:605. [PMID: 34184084 PMCID: PMC8240184 DOI: 10.3892/mmr.2021.12242] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Taurine is a fundamental mediator of homeostasis that exerts multiple roles to confer protection against oxidant stress. The development of hypertension, muscle/neuro‑associated disorders, hepatic cirrhosis, cardiac dysfunction and ischemia/reperfusion are examples of some injuries that are linked with oxidative stress. The present review gives a comprehensive description of all the underlying mechanisms of taurine, with the aim to explain its anti‑oxidant actions. Taurine is regarded as a cytoprotective molecule due to its ability to sustain normal electron transport chain, maintain glutathione stores, upregulate anti‑oxidant responses, increase membrane stability, eliminate inflammation and prevent calcium accumulation. In parallel, the synergistic effect of taurine with other potential therapeutic modalities in multiple disorders are highlighted. Apart from the results derived from research findings, the current review bridges the gap between bench and bedside, providing mechanistic insights into the biological activity of taurine that supports its potential therapeutic efficacy in clinic. In the future, further clinical studies are required to support the ameliorative effect of taurine against oxidative stress.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Demetrios A. Spandidos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
31
|
Yahyavy S, Valizadeh A, Saki G, Khorsandi L. Taurine ameliorates cytotoxic effects of Di(2-ethylhexyl) phthalate on Leydig cells. Andrologia 2021; 53:e14146. [PMID: 34165216 DOI: 10.1111/and.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
It has been revealed that di(2-ethylhexyl)phthalate (DEHP) has toxic impacts on the male reproductive system. Taurine (TAU) is an amino acid with antioxidant property and beneficial impacts on the male reproductive system. In this study, protective impacts of Taurine (TAU) on DEHP-induced Leydig TM3 cell toxicity were investigated. The cells exposed to DEHP (0.8 µmol) or TAU (100 mg/ml) for 24 hr. Cell viability (MTT assay), apoptosis, oxidative stress and testosterone level were examined. DEHP could significantly decrease the cell viability percentage, reduce testosterone level, increase apoptosis, elevate Bax/ Bcl-2 ratio and enhance caspase-3 and -9 activity in the TM3 cells. Additionally, DEHP significantly elevated malondialdehyde contents and reactive oxygen species levels. It also augmented superoxide dismutase and catalase activity in the Leydig cells. Co-treatment of DEHP with TAU increased viability and testosterone level, while oxidative stress and apoptosis significantly reduced. TAU could decrease Bax/Bcl-2 ratio and caspase-3 and -9 activity in the DEHP-intoxicated cells. Our results have clearly shown that TAU protects TM3 cells against oxidative stress and apoptosis induced by DEHP.
Collapse
Affiliation(s)
- Shokoufeh Yahyavy
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Laka K, Mapheto K, Mbita Z. Selective in vitro cytotoxicity effect of Drimia calcarata bulb extracts against p53 mutant HT-29 and p53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol Rep 2021; 8:1265-1279. [PMID: 34195018 PMCID: PMC8233163 DOI: 10.1016/j.toxrep.2021.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is the fourth leading cause of oncological-related deaths and the third most diagnosed malignancy, worldwide. The emergence of chemoresistance is a fundamental drawback of colorectal cancer therapies and there is an urgent need for novel plant-derived therapeutics. In this regard, other compounds are needed to improve the efficacy of treatment against colorectal cancer. Medicinal plants have been effectively used by traditional doctors for decades to treat various ailments with little to no side effects. Drimia calcarata (D. calcarata) is one of the plants used by Pedi people in South Africa to treat a plethora of ailments. However, the anticancer therapeutic use of D. calcarata is less understood. Thus, this study was aimed at evaluating the potential anticancer activities of D. calcarata extracts against human colorectal cancer cells. The phytochemical analysis and antioxidant activity were analysed using LC-MS, DPPH, and FRAP. The inhibitory effects and IC50 values of D. calcarata extracts were determined using the MTT assay. Induction of cellular apoptosis was assessed using fluorescence microscopy, the Muse® Cell Analyser, and gene expression analysis by Polymerase Chain Reaction (PCR). Water extract (WE) demonstrated high phenolic, tannin, and flavonoid contents than the methanol extract (ME). LC-MS data demonstrated strong differences between the ME and WE. Moreover, WE showed the best antioxidant activity than ME. The MTT data showed that both ME and WE had no significant activity against human embryonic kidney Hek 293 cell line that served as non-cancer control cells. Caco-2 cells demonstrated high sensitivity to the ME and demonstrated resistance toward the WE, while HT-29 cells exhibited sensitivity to both D. calcarata extracts. The expression of apoptosis regulatory genes assessed by PCR revealed an upregulation of p53 by ME, accompanied by downregulation of Bcl-2 and high expression of Bax after treatment with curcumin. The Bax gene was undetected in HT-29 cells. The methanol extract induced mitochondrial-mediated apoptosis in colorectal Caco-2 and HT-29 cells and WE induced the extrinsic apoptotic pathway in HT-29 cells. ME downregulated STAT1, 3, and 5B in HT-29 cells. The D. calcarata bulb extracts, therefore, contain potential anticancer agents that can be further targeted for cancer therapeutics.
Collapse
Affiliation(s)
- K. Laka
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - K.B.F. Mapheto
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - Z. Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| |
Collapse
|
33
|
Ijaz MU, Anwar H, Iqbal S, Ismail H, Ashraf A, Mustafa S, Samad A. Protective effect of myricetin on nonylphenol-induced testicular toxicity: biochemical, steroidogenic, hormonal, spermatogenic, and histological-based evidences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22742-22757. [PMID: 33423203 DOI: 10.1007/s11356-020-12296-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is an environmental contaminant, which induces testicular toxicity through oxidative stress. Myricetin (MYR) is a naturally occurring flavonol having powerful antioxidant activity. The current research was planned to examine the ameliorative role of MYR against NP-induced testicular damage. A total of 24 adult male Sprague-Dawley rats were randomly divided into 4 equivalent groups: control (0.1% DMSO), NP group (50 mg kg-1), NP + MYR group (50 mg kg-1; 100 mg kg-1), and MYR-treated group (100 mg kg-1). NP administration significantly (p < 0.05) decreased the activity of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), and protein content while significantly (p < 0.05) elevating the thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) levels. Additionally, NP significantly (p < 0.05) reduced the sperm motility, gene expression of testicular steroidogenic enzymes (3β-HSD, 3β-hydroxysteroid dehydrogenase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; StAR, steroidogenic-acute regulatory protein), level of luteinizing hormone (LH), follicle-stimulating hormone (FSH), plasma testosterone, and daily sperm production (DSP). On the other hand, it raised the testicular cholesterol, dead sperms, and head, midpiece, and tail abnormalities along with abnormal histomorphometry. However, MYR remarkably abrogated NP-induced damages. In conclusion, the outcomes of the study suggest that MYR can effectively alleviate the NP-induced oxidative stress and testicular damages.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Samad
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
34
|
Owumi SE, Adeniyi G, Oyelere AK. The modulatory effect of taurine on benzo (a) pyrene-induced hepatorenal toxicity. Toxicol Res (Camb) 2021; 10:389-398. [PMID: 34141152 DOI: 10.1093/toxres/tfab016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/03/2023] Open
Abstract
Toxicities linked with Benzo (a) pyrene B[a]P exposure, particularly in liver and kidney have been reported in both animals and humans. Taurine (2-aminoethane sulfonic acid) is an intracellular β-amino acid reported to elicit hepatorenal protective functions. However, the modulatory effect of taurine on hepatorenal toxicity associated with exposure to B[a]P has not been reported. This study evaluated the effects of taurine on the hepatorenal toxicities induced in cohorts of rats exposed to B[a]P. Experimental rats were treated as follows: B[a]P (10 mg/kg); co-treated cohorts -B[a]P (10 mg/kg) plus taurine (100 or 200 mg/kg) for 4 successive weeks. Results show that co-dosing with taurine significantly (P < 0.05) improved B[a]P-induced distortion of oxidative stress markers (catalase, superoxide dismutase, glutathione S-transferase, glutathione peroxidase, total sulphydryl, reduced glutathione, lipid peroxidation and xanthine oxidase), renal function (urea and creatinine) and liver function marker enzymes (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase and gamma glutamyl transferase). Moreover, taurine effectively mitigated increase in myeloperoxidase activity, levels of reactive oxygen and nitrogen species, nitric oxide and interleukin-1β in kidney and liver of rats treated with B[a]P. In conclusion, taurine modulates hepatorenal toxicity in B[a]P-exposed rats by suppressing hepatic and renal damage indices, oxidative injury and inflammatory stress.
Collapse
Affiliation(s)
- Solomon E Owumi
- CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo State, 200004, Nigeria
| | - Gideon Adeniyi
- CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo State, 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
35
|
Shi Y, Bai J, Dang Y, Bai Q, Zheng R, Chen J, Li Z. Protection of apigenin against acrylonitrile-induced sperm and testis injury in rats: involvement of activation of ASK1-JNK/p38 signaling pathway. Toxicol Res (Camb) 2021; 10:159-168. [PMID: 33884167 DOI: 10.1093/toxres/tfab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 11/14/2022] Open
Abstract
This study aims to clarify if apigenin (AP) could play a pivotal role in attenuating acrylonitrile (ACN)-induced sperm and testis injury by inhibiting ASK1-JNK/p38 signaling pathway. Male Sprague-Dawley rats were randomly divided into five groups: a control group (corn oil), an ACN group (ACN 46 mg kg-1), an ACN + AP1 group (ACN + AP 117 mg kg-1), an ACN + AP2 group (ACN + AP 234 mg kg-1) and an ACN + AP3 group (ACN + AP 351 mg kg-1). The ACN + AP groups were given ACN by gavage after a pretreatment with different dosages of AP for 30 min, whereas the rats in the control group received an equivalent volume of corn oil. The gavage was conducted for 6 days per week in 4 weeks. The results showed that AP reduced sperm deformity rate and DNA fragment index and attenuated the testicular injury induced by ACN. AP could also alleviate oxidative stress, downregulate ASK1-JNK/p38 signaling pathway and eventually inhibit mitochondria-mediated testicular apoptosis. In brief, AP could dampen oxidative stress thereby inhibiting testicular apoptosis mediated by ASK1-JNK/p38 signaling pathway, alleviating ACN-induced sperm and testis injury and exerting a protective effect on male reproductive system.
Collapse
Affiliation(s)
- Ying Shi
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou 730030, China
| | - Jin Bai
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingli Bai
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rong Zheng
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jia Chen
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
36
|
Ujah GA, Nna VU, Suleiman JB, Eleazu C, Nwokocha C, Rebene JA, Imowo MU, Obi EO, Amachree C, Udechukwu EC, Mohamed M. Tert-butylhydroquinone attenuates doxorubicin-induced dysregulation of testicular cytoprotective and steroidogenic genes, and improves spermatogenesis in rats. Sci Rep 2021; 11:5522. [PMID: 33750916 PMCID: PMC7970903 DOI: 10.1038/s41598-021-85026-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum chemotherapeutic drug used in the treatment of cancers. It acts by generating reactive oxygen species in target cells. The actions are, however, not limited to cancerous cells as it attacks healthy cells, killing them. This study investigated the benefits of the antioxidant, tert-butylhydroquinone (tBHQ), on testicular toxicity following DOX therapy. Twenty-four adult male albino rats were assigned randomly into four groups (n = 6), namely: normal control (NC), tBHQ, DOX and tBHQ + DOX groups. tBHQ (50 mg/kg body weight in 1% DMSO) was administered orally for 14 consecutive days, while a single DOX dose (7 mg/kg body weight) was administered intraperitoneally on Day 8. DOX decreased sperm count, motility and viability, and decreased the levels of steroidogenesis-related proteins, and reproductive hormones. Furthermore, DOX decreased the expression of antioxidant cytoprotective genes, and decreased the protein level of proliferating cell nuclear antigen in the testis. Conversely, DOX increased the expression of pro-inflammatory and pro-apoptotic genes in the testis. These negative effects were ameliorated following the intervention with tBHQ. Our results suggest that tBHQ protects the testis and preserves both steroidogenesis and spermatogenesis in DOX-treated rats through the suppression of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Godwin Adakole Ujah
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria.
| | - Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana, Afikpo, Ebonyi State, Nigeria
| | - Chinedum Eleazu
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences (Physiology Section), The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Joy Assima Rebene
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Michael Umana Imowo
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Emmanuel Ochui Obi
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Charlette Amachree
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Evarest Chigozie Udechukwu
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
37
|
Erdem Guzel E, Kaya Tektemur N, Tektemur A. Alpha-lipoic acid may ameliorate testicular damage by targeting dox-induced altered antioxidant parameters, mitofusin-2 and apoptotic gene expression. Andrologia 2021; 53:e13990. [PMID: 33529370 DOI: 10.1111/and.13990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
In the study, the ameliorating effects of alfa lipoic acid (ALA) against doxorubicin-induced testicular apoptosis, oxidative stress and disrupted mitochondrial fusion were investigated in male rats. Rats were divided into four groups as control, doxorubicin (DOX), DOX + ALA and ALA. A single dose of 15 mg/kg DOX was administered i.p to the DOX and DOX + ALA groups. 50 mg/kg ALA was given to the DOX + ALA and ALA groups by oral gavage every other day. After 28 days, rat testes and serum samples were collected and analysed. Administration of DOX alone caused a decrease in body and relative testicular weights, seminiferous tubule diameter and germinal epithelium thickness, Johnsen's score and serum testosterone levels. DOX treatment led to severe testicular damage such as tubular degeneration, and atrophic tubules. Also, the activities of superoxide dismutase and glutathione peroxidase were reduced, while the level of malondialdehyde was increased in the testis. The mRNA levels of apoptotic-related genes (CASP3, TP53, BAX, BCL2) and apoptotic index were increased, while mitofusin-2 decreased. DOX caused an increase in CASP3 and a decrease in mitofusin-2 immunoreactivities. Treatment with ALA markedly improved all of DOX-induced biochemical, histochemical and molecular alterations in rat testis. Consequently, ALA has a therapeutic role in ameliorating DOX-induced testicular damage in rats.
Collapse
Affiliation(s)
- Elif Erdem Guzel
- Department of Midwifery, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
38
|
Baliou S, Goulielmaki M, Ioannou P, Cheimonidi C, Trougakos IP, Nagl M, Kyriakopoulos AM, Zoumpourlis V. Bromamine T (BAT) Exerts Stronger Anti-Cancer Properties than Taurine (Tau). Cancers (Basel) 2021; 13:E182. [PMID: 33430276 PMCID: PMC7825693 DOI: 10.3390/cancers13020182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Taurine (Tau) ameliorates cancer pathogenesis. Researchers have focused on the functional properties of bromamine T (BAT), a stable active bromine molecule. Both N-bromotaurine (TauNHBr) and BAT exert potent anti-inflammatory properties, but the landscape remains obscure concerning the anti-cancer effect of BAT. METHODS We used Crystal Violet, colony formation, flow cytometry and Western blot experiments to evaluate the effect of BAT and Tau on the apoptosis and autophagy of cancer cells. Xenograft experiments were used to determine the in vivo cytotoxicity of either agent. RESULTS We demonstrated that both BAT and Tau inhibited the growth of human colon, breast, cervical and skin cancer cell lines. Among them, BAT exerted the greatest cytotoxic effect on both RKO and MDA-MB-468 cells. In particular, BAT increased the phosphorylation of c-Jun N-terminal kinases (JNK½), p38 mitogen-activated protein kinase (MAPK), and extracellular-signal-regulated kinases (ERK½), thereby inducing mitochondrial apoptosis and autophagy in RKO cells. In contrast, Tau exerted its cytotoxic effect by upregulating JNK½ forms, thus triggering mitochondrial apoptosis in RKO cells. Accordingly, colon cancer growth was impaired in vivo. CONCLUSIONS BAT and Tau exerted their anti-tumor properties through the induction of (i) mitochondrial apoptosis, (ii) the MAPK family, and iii) autophagy, providing novel anti-cancer therapeutic modalities.
Collapse
Affiliation(s)
- Stella Baliou
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| | - Maria Goulielmaki
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Crete, Greece;
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.C.); (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.C.); (I.P.T.)
| | - Markus Nagl
- Department of Hygiene, Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Anthony M. Kyriakopoulos
- Department of Research and Development, Nasco AD Biotechnology Laboratory, 11 Sachtouri Str, 18536 Piraeus, Greece;
| | - Vassilis Zoumpourlis
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| |
Collapse
|
39
|
Kaur S, Maan KS, Sadwal S, Aniqa A. Studies on the ameliorative potential of dietary supplemented selenium on doxorubicin-induced testicular damage in mice. Andrologia 2020; 52:e13855. [PMID: 33113284 DOI: 10.1111/and.13855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin, a chemotherapeutic drug, is known to disrupt the normal spermatogenesis by excess oxidative stress. The present study describes the curative effects of dietary supplemented selenium on doxorubicin-induced testicular damage in mice. Four groups were included in the study: Group I(C), Group II (Se-0.5 ppm/kg diet), Group III (Dox-3mg/kg body weight i.p.) and Group IV (Se + Dox). We analysed microscopic sperm parameters, histopathology, testicular germ cell kinetics, oxidative stress levels, antioxidant levels and mRNA expression studies of apoptotic and stress response markers. Sperm parameters were significantly reduced in doxorubicin-treated group. Moreover, mice treated with doxorubicin showed an elevation in oxidative stress markers as well as decreased redox ratio, and antioxidant levels were observed in Group III (Dox). However, selenium supplementation ameliorated the damage incurred by doxorubicin, by improving sperm parameters, antioxidant levels and histoarchitecture of mice testes, and decreased the oxidative stress levels. Selenium administration also reduced the levels of apoptotic caspases and stress-activated kinases in Group IV (Se + Dox) when compared to Group III (Dox). In conclusion, selenium exhibits the curative effect against doxorubicin-induced testicular damage in mice by attenuating stress conditions and associated apoptosis.
Collapse
Affiliation(s)
| | | | - Shilpa Sadwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Aniqa Aniqa
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
40
|
Baliou S, Kyriakopoulos AM, Spandidos DA, Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 2020; 57:631-664. [PMID: 32705269 PMCID: PMC7384849 DOI: 10.3892/ijo.2020.5100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
Collapse
Affiliation(s)
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | |
Collapse
|
41
|
Alyahya AAI, Asad M. Repeated 28-DAY oral dose study on Boswellia sacra oleo gum resin extract for testicular toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112890. [PMID: 32330512 DOI: 10.1016/j.jep.2020.112890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Frankincense (Boswellia sacra Fluck.,) is a widely used herbal drug and household medicine for treatment of several diseases. Earlier toxicological studies revealed its proulcerogenic effect and no significant hepatotoxic or nephrotoxic effects in rats. However, some other members of Boswellia species such as Boswellia papyrifera (Caill. ex Delile) Hochst and Boswellia carterii have been reported for testicular toxicity in rats. AIM OF THE STUDY Testicular toxicity of standardized methanolic extract of B. sacra oleo gum resin was determined through repeated oral dose administration for 28 days. Biochemical, histological and genetic changes in rat testes were evaluated. MATERIALS AND METHODS B. sacra extract was analyzed for its boswellic acid content by high performance liquid chromatography (HPLC) method. The extract was administered at three different doses to rats. Effect on behavior, weight, food and water consumption along with changes in serum testosterone levels and cytoarchitecture of testis, epididymis and adrenal gland were determined. Gene expression of GSTPi, IGFBP3 and HSP70 in testis was also studied. RESULTS Boswellic acids (α and β) were present in highest concentration whereas acetyl-11-keto beta boswellic acid was present in relatively smaller amounts. The extract did not produce any significant change in the behavior of the animals, food/water consumption or weight gain. Serum testosterone levels were significantly decreased only by highest tested dose of Boswellia extract (1000 mg/kg, p.o). Histological examination did not reveal any variation in the structure of testis, adrenal gland and epididymis after administration of the extract while the expression of all three studied genes was significantly decreased. CONCLUSION The results indicate that B. sacra extract does not possess any toxic effect on testis. On the contrary, decrease in gene expression of GSTPi, IGFBP3 and HSP70 revealed its antioxidant potential that may protect testes against effect of toxicants. However, a significant reduction in serum testosterone levels point to mechanisms other than direct testicular toxicity.
Collapse
Affiliation(s)
| | - Mohammed Asad
- College of Applied Medical Sciences, Shaqra University, Saudi Arabia.
| |
Collapse
|
42
|
Belhan S, Özkaraca M, Özdek U, Kömüroğlu AU. Protective role of chrysin on doxorubicin-induced oxidative stress and DNA damage in rat testes. Andrologia 2020; 52:e13747. [PMID: 32672853 DOI: 10.1111/and.13747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
This study investigated the role of chrysin (CR) in DNA damage likely to occur in the testicle and oxidative stress caused by doxorubicin (DXR). Twenty-eight rats were divided into four groups as control, DXR, DXR + CR and CR groups. Sperm parameters, oxidative status, testicular biopsy score, DNA damage and plasma testosterone levels were analysed. Noticeable reductions in sperm count, motility and testosterone were detected in the DXR group compared to controls. In addition, significant increases in malondialdehyde (MDA), catalase (CAT) and glutathione (GSH) levels, and in abnormal sperm rates were detected. Severe degenerative changes occurred in the tubules of DXR rat testes; the inter-tubular areas were oedematous. Immunofluorescence staining was conducted with 8-OhDG (8 oxo-2'-deoxyguanosine) to evaluate DNA damage, and severe positivity was found in tubular gaps in the DXR rat testes. When the DXR + CR group was compared with the DXR group, the abnormal sperm rate was found to have decreased significantly. Positivity in the tubular space and degenerative changes in the seminiferous tubules were also diminished. We recommend the administration of CR with DXR to reduce the possible adverse effects of DXR, a medicine preferred in cancer therapy.
Collapse
Affiliation(s)
- Saadet Belhan
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Uğur Özdek
- Vocational School of Health Services, Van Yuzuncu Yıl University, Van, Turkey
| | | |
Collapse
|
43
|
Yahyavy S, Valizadeh A, Saki G, Khorsandi L. Taurine induces autophagy and inhibits oxidative stress in mice Leydig cells. JBRA Assist Reprod 2020; 24:250-256. [PMID: 32155016 PMCID: PMC7365531 DOI: 10.5935/1518-0557.20190079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES This study evaluated taurine (TAU) effects on autophagy, apoptosis and oxidative stress in mice Leydig TM3 cells. METHODS We treated TM3 cells with TAU (100 µg/mL) or 3-Methyladenine (3-MA, an autophagy inhibitor) for 24 h, and assessed cell viability, testosterone level, oxidative stress, apoptosis, and autophagy. RESULTS The results showed that TAU markedly increased cell viability, testosterone levels, expression of autophagy-related genes and percentage of LC3-II-positive cells. TAU significantly reduced malondialdehyde (MDA) contents and reactive oxygen species (ROS) levels and increased the activities of SOD (superoxide dismutase) and CAT (Catalase) enzymes in the TM3 cells. TAU in the presence of autophagy inhibitor (3-MA) increased oxidative stress and decreased testosterone levels. CONCLUSION The results showed that autophagy might be involved in TAU-increased testosterone levels in mice Leydig TM3 cells.
Collapse
Affiliation(s)
- Shokofeh Yahyavy
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Ni G, Zhang X, Afedo SY, Rui R. Evaluation of the protective effects of icariin on nicotine-induced reproductive toxicity in male mouse -a pilot study. Reprod Biol Endocrinol 2020; 18:65. [PMID: 32552695 PMCID: PMC7302363 DOI: 10.1186/s12958-020-00620-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nicotine, a pharmacologically active component of tobacco adversely affects the male reproductive system and fertility whereas icariin (ICA), the main active ingredient in Epimedium herba has been used in the treatment of several male reproductive problems. This study aimed at evaluating the protective or ameliorative effect of ICA against reproductive toxicity induced by intraperitoneal injection of nicotine in mice. METHODS Using simple random allocation, forty male mice were randomly divided into 4 groups: control (received 0.35 mL physiological saline via gastric gavage), nicotine (0.75 mg/kg BW/day intraperitoneally), ICA (75 mg/kg BW/day gastric gavage), and nicotine plus ICA (nicotine, 0.75 mg/kg BW/day intraperitoneally + ICA, 75 mg/kg BW/day gastric gavage) group. After 35 days of treatment, the mice were weighed, sacrificed, and their reproductive organs (testis and epididymis) were collected and examined for further studies. RESULTS The nicotine-treated group showed significantly decreased epididymal sperm density and serum testosterone concentration relative to the control group. Nicotine also caused oxidative damage shown by significant reduction in the activities of antioxidant enzymes and elevation in Malondialdehyde (MDA) levels. ICA on the other hand, improved the reduction in sperm density, hormone levels, and activities of antioxidant enzymes altered in the nicotine treated mice. CONCLUSIONS These findings indicate that nicotine-induced reproductive toxicity and oxidative damage on male reproductive tissues could be attenuated by ICA.
Collapse
Affiliation(s)
- Guochao Ni
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xuhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Seth Yaw Afedo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rong Rui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
45
|
Mohamed MZ, Zenhom NM. Mechanisms underlying the protective effect of leukotriene receptor antagonist montelukast against doxorubicin induced testicular injury in rats. Prostaglandins Other Lipid Mediat 2020; 149:106447. [PMID: 32173485 DOI: 10.1016/j.prostaglandins.2020.106447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023]
Abstract
The obligatory use of cytotoxic drugs to face the malignant tumors results in survivors that suffer from long term health problems. Fertility problems, especially in young boys, exert one of the major consequences of chemotherapy treatment that needs resolution. We investigate the potential effect of the cysteinyl leukotriene receptor antagonist montelukast on doxorubicin-induced testicular damage. Five groups of adult Wistar male rats were subjected to the following treatment; vehicle for the control group, montelukast (20 mg/kg orally daily for 10 days) for the drug control, doxorubicin (12 mg/kg intraperitoneal injection once at 5th day) for the toxic group, montelukast at 10 mg/kg + doxorubicin, montelukast at 20 mg/kg + doxorubicin. The period of the experiment was 10 days administration of montelukast, while doxorubicin was injected at the 5th day. Results of serum testosterone, testicular lipid peroxidation, antioxidant status, and histopathology revealed protection of montelukast against doxorubicin-induced testicular damage. The pro-apoptotic caspase 3 and the pro-inflammatory tumor necrosis factor-alpha were examined immunohistochemically and showed a significant decrease with montelukast treatment as compared to doxorubicin group. Doxorubicin increased gene expression of matrix metalloproteinase 9 and decreased peroxisome proliferator activated receptor gamma. Montelukast treatment restored their expressions to normal values. In conclusion, montelukast administration can ameliorate the testicular damage induced by doxorubicin based on its anti-inflammatory, antioxidant and anti-apoptotic effects as well as by of modulation of important genes expression.
Collapse
Affiliation(s)
- Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt.
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
46
|
Yu XH, Wu JX, Chen L, Gu YD. Inflammation and apoptosis accelerate progression to irreversible atrophy in denervated intrinsic muscles of the hand compared with biceps: proteomic analysis of a rat model of obstetric brachial plexus palsy. Neural Regen Res 2020; 15:1326-1332. [PMID: 31960820 PMCID: PMC7047792 DOI: 10.4103/1673-5374.272619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In treating patients with obstetric brachial plexus palsy, we noticed that denervated intrinsic muscles of the hand become irreversibly atrophic at a faster than denervated biceps. In a rat model of obstetric brachial plexus palsy, denervated intrinsic musculature of the forepaw entered the irreversible atrophy far earlier than denervated biceps. In this study, isobaric tags for relative and absolute quantitation were examined in the intrinsic musculature of forepaw and biceps on denervated and normal sides at 3 and 5 weeks to identify dysregulated proteins. Enrichment of pathways mapped by those proteins was analyzed by Kyoto Encyclopedia of Genes and Genomes analysis. At 3 weeks, 119 dysregulated proteins in denervated intrinsic musculature of the forepaw were mapped to nine pathways for muscle regulation, while 67 dysregulated proteins were mapped to three such pathways at 5 weeks. At 3 weeks, 27 upregulated proteins were mapped to five pathways involving inflammation and apoptosis, while two upregulated proteins were mapped to one such pathway at 5 weeks. At 3 and 5 weeks, 53 proteins from pathways involving regrowth and differentiation were downregulated. At 3 weeks, 64 dysregulated proteins in denervated biceps were mapped to five pathways involving muscle regulation, while, five dysregulated proteins were mapped to three such pathways at 5 weeks. One protein mapped to inflammation and apoptotic pathways was upregulated from one pathway at 3 weeks, while three proteins were downregulated from two other pathways at 5 weeks. Four proteins mapped to regrowth and differentiation pathways were upregulated from three pathways at 3 weeks, while two proteins were downregulated in another pathway at 5 weeks. These results implicated inflammation and apoptosis as critical factors aggravating atrophy of denervated intrinsic muscles of the hand during obstetric brachial plexus palsy. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Fudan University, China (approval No. DF-325) in January 2015.
Collapse
Affiliation(s)
- Xiao-Heng Yu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Ji-Xin Wu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Liang Chen
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yu-Dong Gu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
47
|
Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother 2019; 122:109547. [PMID: 31918264 DOI: 10.1016/j.biopha.2019.109547] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
The clinical application of doxorubicin (DOX) for cancer treatment is limited due to its cardiotoxicity. However, the basic pathophysiological molecular mechanisms underlying DOX-induced cardiomyopathy have not yet been completely clarified, and the disease-specific therapeutic strategies are lacking. The aim of the present study was to investigate the potential cardioprotective effect of cardamonin (CAR), a flavone found in Alpinia plant, on DOX-induced cardiotoxicity in a mouse model. At first, in DOX-treated mouse cardiomyocytes, CAR showed significantly cytoprotective effects through elevating nuclear factor erythroid-2 related factor 2 (Nrf2) signaling, and reducing the degradation of Nrf2. This process then improved the anti-oxidant system, as evidenced by the up-regulated expression levels of haem oxygenase-1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase modifier subunit (GCLM), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT). In contrast, DOX-induced increases in malondialdehyde (MDA) and reactive oxygen species (ROS) were highly inhibited by CAR treatments. Additionally, DOX-induced apoptosis and inflammatory response in cardiomyocytes were diminished by CAR through reducing the Caspase-3 and nuclear factor-κB (NF-κB) signaling pathways, respectively. Then, in the DOX-induced animal model with cardiotoxicity, we confirmed that through improving Nrf2 signaling, CAR markedly suppressed oxidative stress, apoptosis and inflammatory response in hearts of mice, improving cardiac function eventually. Together, our findings demonstrated that CAR activated Nrf2-related cytoprotective system, and protected the heart from oxidative damage, apoptosis and inflammatory injury, suggesting that CAR might be a potential therapeutic strategy in the prevention of DOX-associated myocardiopathy.
Collapse
Affiliation(s)
- Wang Qi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Boliang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China
| | - Tian Xiaoxi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Fu Guoqiang
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Xiao Jianbo
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Gang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
48
|
Parisi C, Guerriero G. Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming. Antioxidants (Basel) 2019; 8:E622. [PMID: 31817462 PMCID: PMC6943697 DOI: 10.3390/antiox8120622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
The objective of this review is to briefly summarize the recent progress in studies done on the assessment of reprotoxicity risk posed by global warming for the foundation of strategic tool in ecosystem-based adaptation. The selected animal data analysis that was used in this paper focuses on antioxidative markers and fertility rate estimated over the period 2000-2019. We followed a phylogenetic methodology in order to report data on a panel of selected organisms that show dangerous effects. The oxidative damage studies related to temperature fluctuation occurring in biosentinels of different invertebrate and vertebrate classes show a consistently maintained physiological defense. Furthermore, the results from homeothermic and poikilothermic species in our study highlight the influence of temperature rise on reprotoxicity.
Collapse
Affiliation(s)
- Costantino Parisi
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Interdepartmental Research Centre for Environment, University of Naples Federico II, 80134 Naples, Italy
| |
Collapse
|
49
|
Boussada M, Ali RB, Chahbi A, Abdelkarim M, Fradj MKB, Dziri C, Bokri K, Akacha AB, El May MV. A new Thiocyanoacetamide protects rat sperm cells from Doxorubicin-triggered cytotoxicity whereas Selenium shows low efficacy: In vitro approach. Toxicol In Vitro 2019; 61:104587. [PMID: 31271807 DOI: 10.1016/j.tiv.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/29/2019] [Accepted: 06/29/2019] [Indexed: 11/26/2022]
Abstract
Doxorubicin (DOX) exhibits a wide-ranging spectrum of antitumor activities which maintain its clinical use despite its devastating impact on highly proliferating cells. The present work was designed to develop a new approach which aims to protect male germ cells from DOX cytotoxicity. Thus, an assessment of the protective potential of a new thioamide analog (thiocyanoacetamide; TA) compared to selenium (Se) was performed in rat sperms exposed to DOX in vitro. Oxygen consumption rate (OCR) was measured after exposure to three different doses (0.5, 1, 1.5 and 2 μM) of DOX, Se or TA, and the suitable concentrations were selected for further studies afterwards. Motility, OCR in a time-dependent manner, glucose extracellular concentration and lipid peroxidation (LPO) were measured. Fatty acid (FA) content was assessed by gas chromatography (GC-FID). Cell death, superoxide anion (O2-), mitochondrial membrane potential (MMP), and DNA damage were evaluated by flow cytometry. TA association with DOX increased OCR and glucose uptake, improved cell survival and decreased DNA damage. The co-administration of DOX with Se increased OCR, significantly prevented O2- overproduction, and decreased LPO. Collected data brought new insights regarding this transformed TA, which showed better efficiency than Se in reducing DOX cytotoxic stress in sperms.
Collapse
Affiliation(s)
- Marwa Boussada
- UR17/ES/13 Laboratory of Histology and Embryology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia.
| | - Ridha Ben Ali
- UR17/ES/13 Laboratory of Histology and Embryology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia; Unity of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| | - Ahlem Chahbi
- Laboratory of Hematology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia.
| | - Mohamed Abdelkarim
- Laboratory of Hematology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| | - Mohamed Kacem Ben Fradj
- UR05/08-08, LR99/ES/11, Department of Biochemistry, Rabta Hospital, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| | - Chadli Dziri
- Unity of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| | - Khouloud Bokri
- Laboratory of Organic Synthesis and Heterocyclic Chemistry Department, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Azaiez Ben Akacha
- Laboratory of Organic Synthesis and Heterocyclic Chemistry Department, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Michèle Véronique El May
- UR17/ES/13 Laboratory of Histology and Embryology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| |
Collapse
|
50
|
Aly H. Testicular toxicity of gentamicin in adult rats: Ameliorative effect of lycopene. Hum Exp Toxicol 2019; 38:1302-1313. [PMID: 31319718 DOI: 10.1177/0960327119864160] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The current study was aimed to investigate the ameliorative effect of lycopene against gentamicin-induced testicular toxicity in adult rat testes. Pretreatment with lycopene (4 mg/kg/day) significantly prevented the decrease in the absolute testes weight and relative testes weight and the reduction in sperm count, motility, viability, and daily sperm production in gentamicin (100 mg/kg/day)-treated rats. Gentamicin significantly decreased the level of serum testosterone and testicular lactate dehydrogenase-X and G6PDH activities but a marked increase was observed upon pretreatment with lycopene. Testicular caspase-3 and -9 activities were significantly increased but lycopene showed significant protection from gentamicin-induced apoptosis. Oxidative stress was induced by gentamicin treatment as evidenced by increased hydrogen peroxide level and lipid peroxidation and decreased the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities and glutathione content. These alterations were effectively prevented by lycopene pretreatment. Histopathological examination showed loss of spermatogenesis and morphological abnormalities of the testis after treatment with gentamycin. These abnormalities were effectively normalized by pretreatment with lycopene. In conclusion, gentamicin decreases rat testes weight and inhibits spermatogenesis. It induces oxidative stress and apoptosis by possible mitochondrial dysfunction. These data provide insight into the mode of action of gentamicin-induced testicular toxicity and the beneficial role provided by lycopene to restore the suppressed spermatogenesis.
Collapse
Affiliation(s)
- Haa Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|