1
|
Yonke JA, Seymour KA, El-Kadi SW. Branched-chain amino acid supplementation does not enhance lean tissue accretion in low birth weight neonatal pigs, despite lower Sestrin2 expression in skeletal muscle. Amino Acids 2023; 55:1389-1404. [PMID: 37743429 DOI: 10.1007/s00726-023-03319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Postnatal muscle growth is impaired in low birth weight (L) neonatal pigs. Leucine supplementation has been established as a dietary intervention to enhance muscle growth in growing animals. The aim of this study was to investigate the efficacy of supplementing L neonatal pig formulas with branched-chain amino acids (B) to enhance the rate of protein accretion. Twenty-four 3-day old pigs were divided into two groups low (L) and normal birth weight (N) based on weight at birth. Pigs were assigned to a control (C) or 1% branched-chain amino acids (B) formulas, and fed at 250 mL·kg body weight -1·d-1 for 28 d. Body weight of pigs in the L group was less than those in the N group (P < 0.01). However, fractional body weight was greater for L pigs compared with their N siblings from day 24 to 28 of feeding regardless of formula (P < 0.01). In addition, feed efficiency (P < 0.0001) and efficiently of protein accretion (P < 0.0001) were greater for L than N pigs regardless of supplementation. Pigs fed the B formula had greater plasma leucine, isoleucine, and valine concentrations compared with those fed the C formula (P < 0.05). Longissimus dorsi Sestrin2 protein expression was less for pigs in the L group compared with those in the N group (P < 0.01), but did not result in a corresponding increase in translation initiation signaling. Longissimus dorsi mRNA expression of BCAT2 was less for LB pigs compared with those in the LC group, and was intermediate for NC and NB pigs (P < 0.05). Hepatic mRNA expression of BCKDHA was greater for pigs in the L compared with those in the N groups (P < 0.05). However, plasma branched-chain keto-acid concentration was reduced for C compared with those in the B group (P < 0.05). These data suggest that branched-chain amino acid supplementation does not improve lean tissue accretion of low and normal birth weight pigs, despite a reduction in Sestrin2 expression in skeletal muscle of low birth weight pigs. The modest improvement in fractional growth rate of low birth weight pigs compared with their normal birth weight siblings was likely due to a more efficient dietary protein utilization.
Collapse
Affiliation(s)
- Joseph A Yonke
- School of Animal Sciences, Virginia Tech, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Kacie A Seymour
- School of Animal Sciences, Virginia Tech, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Samer W El-Kadi
- School of Animal Sciences, Virginia Tech, 175 West Campus Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Reiners JN, Steele MA, Vonnahme KA, Maddock Carlin KR, Swanson KC. Effects of Supplemental Leucine on Growth, Nutrient Use, and Muscle and Visceral Tissue Mass in Holstein Bull Calves Fed Milk Replacer. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.817173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of leucine supplementation on body weight (BW), tissue mass, nutrient digestibility, the concentration of serum amino acids (AAs) and metabolites, and protein abundance of elongation initiation factor 4E (eIF4E) in skeletal muscle, 23 Holstein bull calves (43. 3 ± 1.16 kg; 11.3 ± 0.57 days of age) fed milk replacer at 2.5% of body weight (BW; dry matter basis) were used in a randomized complete block design. Leucine was supplemented at 0, 0.4, 0.6, or 0.8 g Leu/kg BW per day for 28 d. Data were analyzed using the MIXED procedure of SAS. Leucine supplementation did not affect calf BW (P = 0.73), and digestibility of nitrogen (P = 0.21), organic matter (P = 0.28), and dry matter (P = 0.28). Masses proportional to BW of the pancreas (P = 0.04), omasum (P < 0.01), and spleen (P = 0.01) were quadratically affected by treatment where tissue mass decreased at 0.4 g Leu/kg BW and increased at 0.6 and 0.8 g Leu/kg BW. Semitendinosus mass proportional to BW tended (P = 0.07) to be quadratically affected, as tissue mass increased at 0.4 g Leu/kg BW, and decreased at 0.6 and 0.8 g Leu/kg BW. Serum Leu concentration increased linearly (P = 0.002; day × time × treatment) across days and after feedings with increased supplemental Leu. Increasing supplemental Leu linearly decreased serum Ala (P < 0.01), Arg (P = 0.04), Ile (P = 0.02), Met (P < 0.01), and Pro (P = 0.05) concentrations, and quadratically affected serum Glu (P = 0.04) and Lys (P = 0.03) concentrations where serum Glu and Lys concentrations were decreased at 0.4 g Leu/kg BW and increased at 0.6 and 0.8 g Leu/kg BW. There was no effect of treatment on protein abundance of eIF4E in semitendinosus or longissimus dorsi. These data indicate that supplemental Leu did not influence ADG and nitrogen retention in calves fed milk replacer. However, changes in serum AA concentrations and tissue masses proportional to BW suggest that supplementation of Leu at lower levels could increase the use of AA for non-visceral tissue growth.
Collapse
|
3
|
Rudar M, Naberhuis JK, Suryawan A, Nguyen HV, Stoll B, Style CC, Verla MA, Olutoye OO, Burrin DG, Fiorotto ML, Davis TA. Intermittent bolus feeding does not enhance protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in a premature piglet model. Am J Physiol Endocrinol Metab 2021; 321:E737-E752. [PMID: 34719946 PMCID: PMC8714968 DOI: 10.1152/ajpendo.00236.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optimizing enteral nutrition for premature infants may help mitigate extrauterine growth restriction and adverse chronic health outcomes. Previously, we showed in neonatal pigs born at term that lean growth is enhanced by intermittent bolus compared with continuous feeding. The objective was to determine if prematurity impacts how body composition, muscle protein synthesis, and myonuclear accretion respond to feeding modality. Following preterm delivery, pigs were fed equivalent amounts of formula delivered either as intermittent boluses (INT; n = 30) or continuously (CONT; n = 14) for 21 days. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and muscle growth was assessed by morphometry, myonuclear accretion, and satellite cell abundance. Tissue anabolic signaling and fractional protein synthesis rates were determined in INT pigs in postabsorptive (INT-PA) and postprandial (INT-PP) states and in CONT pigs. Body weight gain and composition did not differ between INT and CONT pigs. Longissimus dorsi (LD) protein synthesis was 34% greater in INT-PP than INT-PA pigs (P < 0.05) but was not different between INT-PP and CONT pigs. Phosphorylation of 4EBP1 and S6K1 and eIF4E·eIF4G abundance in LD paralleled changes in LD protein synthesis. Satellite cell abundance, myonuclear accretion, and fiber cross-sectional area in LD did not differ between groups. These results suggest that, unlike pigs born at term, intermittent bolus feeding does not enhance lean growth more than continuous feeding in pigs born preterm. Premature birth attenuates the capacity of skeletal muscle to respond to cyclical surges in insulin and amino acids with intermittent feeding in early postnatal life.NEW & NOTEWORTHY Extrauterine growth restriction often occurs in premature infants but may be mitigated by optimizing enteral feeding strategies. We show that intermittent bolus feeding does not increase skeletal muscle protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in preterm pigs. This attenuated anabolic response of muscle to intermittent bolus feeding, compared with previous observations in pigs born at term, may contribute to deficits in lean mass that many premature infants exhibit into adulthood.
Collapse
Affiliation(s)
- Marko Rudar
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Candace C Style
- The Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Mariatu A Verla
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Oluyinka O Olutoye
- The Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Douglas G Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Use of Agriculturally Important Animals as Models in Biomedical Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:315-333. [PMID: 34807449 DOI: 10.1007/978-3-030-85686-1_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Livestock have contributed significantly to advances in biomedicine and offer unique advantages over rodent models. The human is the ideal biomedical model; however, ethical reasons limit the testing of hypotheses and treatments in humans. Rodent models are frequently used as alternatives to humans due to size, low cost, and ease of genetic manipulation, and have contributed tremendously to our understanding of human health and disease. However, the use of rodents in translational research pose challenges for researchers due to physiological differences to humans. The use of livestock species as biomedical models can address these challenges as livestock have several similarities to human anatomy, physiology, genetics, and metabolism and their larger size permits collection of more frequent and often larger samples. Additionally, recent advances in genetics in livestock species allow for studies in genomics, proteomics, and metabolomics, which have the added benefit of applications to both humans in biomedical research and livestock in improving production. In this review, we provide an overview of scientific findings using livestock and benefits of each model to the livestock industry and to biomedical research.
Collapse
|
5
|
Fu L, Zhang L, Liu L, Yang H, Zhou P, Song F, Dong G, Chen J, Wang G, Dong X. Effect of Heat Stress on Bovine Mammary Cellular Metabolites and Gene Transcription Related to Amino Acid Metabolism, Amino Acid Transportation and Mammalian Target of Rapamycin (mTOR) Signaling. Animals (Basel) 2021; 11:ani11113153. [PMID: 34827885 PMCID: PMC8614368 DOI: 10.3390/ani11113153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study mainly employed metabolomics technology to determine changes of intracellular metabolite concentrations related to milk protein synthesis induced by heat stress (HS) in bovine mammary epithelial cells. HS was associated with significant differences in intracellular amino acid metabolism resulting in an increase in the intracellular amino acid concentrations. Moreover, HS promoted amino acid transportation and the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which plays an important role as a central regulator of cell metabolism, growth, proliferation and survival. Greater expression of the alpha-S2-casein gene (CSN1S2) was also observed during HS. Overall, our study indicated that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS. Abstract Heat stress (HS) is one of the most serious factors to negatively affect the lactation performance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was demonstrated that HS decreases the lactation performance of dairy cows, partly through altering gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mechanisms under HS remains largely unknown. The objective of this study was to determine whether HS induced changes in intracellular metabolites and gene transcription related to amino acid metabolism, amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary epithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 °C (Control group) and 42 °C (HS group). Relative to the control group, HS led to a greater mRNA expression of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the control group, metabolomics using liquid chromatography tandem–mass spectrometry identified 417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0 in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline, cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR, AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative to the control group. Compared with the control group, HS also led to greater mRNA expression of the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Li Liu
- Faculty of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401228, China;
| | - Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Fan Song
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (G.D.); (J.C.)
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (G.D.); (J.C.)
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
- Correspondence: (G.W.); (X.D.)
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
- Correspondence: (G.W.); (X.D.)
| |
Collapse
|
6
|
Ferguson DP, Leszczynski EC, McPeek AC, Pendergrast LA, Visker JR, Triplett AN. Physical Activity Engagement Worsens Health Outcomes and Limits Exercise Capacity in Growth-restricted Mice. Med Sci Sports Exerc 2021; 53:1561-1571. [PMID: 34261989 PMCID: PMC10797723 DOI: 10.1249/mss.0000000000002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION A total of 161 million children a year are growth restricted, leading to a 47% increased risk of chronic disease in adulthood. Physical activity (PA) reduces the risk of mortality from chronic disease. The purpose of the present investigation was to determine the effect of a PA intervention (wheel running) on cardiac and skeletal muscle capacities in gestational (GUN) and postnatal (PUN) growth-restricted mice as compared with nonrestricted controls (CON). METHODS A low-protein cross-fostering FVB mouse model was used to induce growth restriction during gestation and the first 21 d of postnatal life. Mouse pups were recovered on a healthy diet until mature and provided wheel access for 3 wk. At completion of the PA intervention, mice underwent maximal exercise testing on a treadmill, echocardiography, and skeletal muscle histology. RESULTS After the PA intervention, CON mice had a 45% improvement in maximal exercise capacity (P = 0.0390) because of cardiac and skeletal muscle adaptations, but GUN and PUN mice did not. Alarmingly, PUN female mice exposed to wheels had 11.45% lower left ventricular volume (P = 0.0540) and 18% lower left ventricle area (P = 0.0585), with blood flow velocities indicative of cardiac fibrosis (GUN had elevated isovolumetric contraction time P = 0.0374; GUN females and PUN males had longer isovolumetric relaxation time P = 0.0703). PUN male mice had mixed skeletal muscle responses with an oxidative shift in the diaphragm (P = 0.0162) but a glycolytic shift in the extensor digitorum longus (P = 0.0647). PUN female mice had a glycolytic shift in the soleus after wheel running. CONCLUSIONS Unexpectedly, growth-restricted mice were nonresponders to a PA intervention and displayed negative cardiac outcomes.
Collapse
Affiliation(s)
- David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | | | - Ashley C McPeek
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | | | | | - Ashley N Triplett
- Department of Kinesiology, Michigan State University, East Lansing, MI
| |
Collapse
|
7
|
Dietary amylose:amylopectin ratio influences the expression of amino acid transporters and enzyme activities for amino acid metabolism in the gastrointestinal tract of goats. Br J Nutr 2021; 127:1121-1131. [PMID: 34121640 PMCID: PMC8980728 DOI: 10.1017/s0007114521002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was designed to investigate the effects of dietary starch structure on muscle protein synthesis and gastrointestinal amino acid (AA) transport and metabolism of goats. Twenty-seven Xiangdong black female goats (average body weight = 9·00 ± 1·12 kg) were randomly assigned to three treatments, i.e., fed a T1 (normal maize 100 %, high amylose maize 0 %), T2 (normal maize 50 %, high amylose maize 50 %) and T3 (normal maize 0 %, high amylose maize 100 %) diet for 35 d. All AA in the ileal mucosa were decreased linearly as amylose:amylopectin increased in diets (P < 0·05). The plasma valine (linear, P = 0·03), leucine (linear, P = 0·04) and total AA content (linear, P = 0·03) increased linearly with the increase in the ratio of amylose in the diet. The relative mRNA levels of solute carrier family 38 member 1 (linear, P = 0·01), solute carrier family 3 member 2 (linear, P = 0·02) and solute carrier family 38 member 9 (linear, P = 0·02) in the ileum increased linearly with the increase in the ratio of amylose in the diet. With the increase in the ratio of amylose:amylopectin in the diet, the mRNA levels of acetyl-CoA dehydrogenase B (linear, P = 0·04), branched-chain amino acid transferase 1 (linear, P = 0·02) and branched-chain α-keto acid dehydrogenase complex B (linear, P = 0·01) in the ileum decreased linearly. Our results revealed that the protein abundances of phosphorylated mammalian target of rapamycin (p-mTOR) (P < 0·001), phosphorylated 4E-binding protein 1 (P < 0·001) and phosphorylated ribosomal protein S6 kinases 1 (P < 0·001) of T2 and T3 were significantly higher than that of T1. In general, a diet with a high amylose ratio could reduce the consumption of AA in the intestine, allowing more AA to enter the blood to maintain higher muscle protein synthesis through the mTOR pathway.
Collapse
|
8
|
Leal LN, Doelman J, Keppler BR, Steele MA, Martín-Tereso J. Preweaning nutrient supply alters serum metabolomics profiles related to protein and energy metabolism and hepatic function in Holstein heifer calves. J Dairy Sci 2021; 104:7711-7724. [PMID: 33896629 DOI: 10.3168/jds.2020-19867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/20/2021] [Indexed: 01/26/2023]
Abstract
Lifting the preweaning milk restriction in dairy calves has been causally associated with beneficial effects on growth and future lactation performance. However, the biological mechanisms linking early-life nutrient supply and future performance remain insufficiently understood. Thus, the objective of this study was to characterize growth and the metabolic profiles of calves fed a restricted (RES) and an elevated (ELE) milk supply preweaning. A total of 86 female Holstein Friesian calves were blocked in pairs by maternal parity and received identical colostrum supply within block. Treatments randomized within block consisted of a milk replacer (MR; 24% crude protein, 18% crude fat, and 45% lactose) supplied at either 5.41 Mcal of ME in 8 L of MR/d (ELE) or 2.71 Mcal of ME in 4 L of MR/d (RES) from d 2 after birth until they were stepped down by 50% during wk 7 and fully weaned at wk 8. All calves had ad libitum access to pelleted calf starter (17.3% crude protein, 24.4% neutral detergent fiber, 2.0% crude fat, and 18.2% starch), chopped wheat straw, and water. At 2 and 49 d of age, blood samples were taken for metabolomics analysis. The ELE group by design consumed more milk replacer, resulting in a lower starter intake and a greater body weight and average daily gain. The ELE calves consumed 20.7% more ME and 9.7% more crude protein. However, efficiency of growth was not different between groups. Metabolomic profiling using 908 identified metabolites served to characterize treatment-dependent biochemical differences. Principal component analysis revealed clearly distinct metabolic profiles at 49 d of age in response to preweaning milk supply. Changes in energy (fatty acid metabolism and tricarboxylic acid metabolites), protein (free AA, dipeptides, and urea cycle), and liver metabolism (bile acid and heme metabolism) were the main effects associated with the dietary differences. The ELE group consumed proportionately more glucogenic nutrients via milk replacer, whereas the RES group consumed proportionately more ketogenic nutrients from the digestion of the calf starter, comprising a larger portion of total intake. Associated with the higher growth rate of the ELE group, hepatic changes were expressed as differences in bile acid and heme metabolism. Furthermore, energy metabolism differences were noted in fatty acid and AA metabolism and the urea cycle. The metabolic profile differences between the ELE and RES groups reflect the broad differences in nutrient intake and diet composition and might point to which metabolic processes are responsible for greater dairy performance for cows fed a greater milk supply preweaning.
Collapse
Affiliation(s)
- L N Leal
- Trouw Nutrition Research and Development, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands.
| | - J Doelman
- Trouw Nutrition Research and Development, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - B R Keppler
- Department of Discovery and Translational Sciences, Metabolon Inc., Morrisville, NC 27560
| | - M A Steele
- Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
9
|
Manjarín R, Boutry-Regard C, Suryawan A, Canovas A, Piccolo BD, Maj M, Abo-Ismail M, Nguyen HV, Fiorotto ML, Davis TA. Intermittent leucine pulses during continuous feeding alters novel components involved in skeletal muscle growth of neonatal pigs. Amino Acids 2020; 52:1319-1335. [PMID: 32974749 DOI: 10.1007/s00726-020-02894-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
When neonatal pigs continuously fed formula are supplemented with leucine pulses, muscle protein synthesis and body weight gain are enhanced. To identify the responsible mechanisms, we combined plasma metabolomic analysis with transcriptome expression of the transcriptome and protein catabolic pathways in skeletal muscle. Piglets (n = 23, 7-day-old) were fed continuously a milk replacement formula via orogastric tube for 21 days with an additional parenteral infusion (800 μmol kg-1 h-1) of either leucine (LEU) or alanine (CON) for 1 h every 4 h. Plasma metabolites were measured by liquid chromatography-mass spectrometry. Gene and protein expression analyses of longissimus dorsi muscle were performed by RNA-seq and Western blot, respectively. Compared with CON, LEU pigs had increased plasma levels of leucine-derived metabolites, including 4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, β-hydroxyisovalerylcarnitine, and 3-methylglutaconate (P ≤ 0.05). Leucine pulses downregulated transcripts enriched in the Kyoto Encyclopedia of Genes and Genomes terms "spliceosome," "GAP junction," "endocytosis," "ECM-receptor interaction," and "DNA replication". Significant correlations were identified between metabolites derived from leucine catabolism and muscle genes involved in protein degradation, transcription and translation, and muscle maintenance and development (P ≤ 0.05). Further, leucine pulses decreased protein expression of autophagic markers and serine/threonine kinase 4, involved in muscle atrophy (P ≤ 0.01). In conclusion, results from our studies support the notion that leucine pulses during continuous enteral feeding enhance muscle mass gain in neonatal pigs by increasing protein synthetic activity and downregulating protein catabolic pathways through concerted responses in the transcriptome and metabolome.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA.
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA.
| | - Claire Boutry-Regard
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Agus Suryawan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Angela Canovas
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, U.S. Department of Agriculture/Agricultural Research Service, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Magdalena Maj
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mohammed Abo-Ismail
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA
| | - Hanh V Nguyen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Teresa A Davis
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| |
Collapse
|
10
|
Rodrigues LA, Wellington MO, Sands JM, Weber LP, Olver TD, Ferguson DP, Columbus DA. Characterization of a Swine Model of Birth Weight and Neonatal Nutrient Restriction. Curr Dev Nutr 2020. [DOI: 10.1093/cdn/nzaa116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Background
Evidence indicates that birth weight and neonatal nutrition have lifelong effects. Animal models are required to improve our understanding of these factors.
Objectives
We aimed to develop and validate a swine model of birth weight and neonatal undernutrition.
Methods
At birth, a total of 112 piglets were identified as low (LBW; 1.22 ± 0.28 kg SEM) or normal birth weight (NBW; 1.70 ± 0.27 kg). From day 3 to weaning (day 28), piglets received normal nutrition (NN) or restricted nutrition (RN) via intermittent suckling, where piglets were isolated from the sow for 6 h/d. After weaning, pigs were fed a common diet for 28 d. Body weight (BW) was determined for the duration of the study. On days 28 and 56, empty carcass, viscera, and individual organ weights were determined in 8 pigs/treatment.
Results
LBW pigs remained smaller than NBW pigs, regardless of nutrient restriction (P < 0.05). Within birth weight category, RN reduced BW by day 7 after birth, which was maintained until weaning (P < 0.05); however, at 7 d postweaning there was no difference in BW due to RN (P > 0.05). At weaning, empty carcass, viscera, heart, liver, and lung weights were lower in LBW than in NBW pigs, whereas empty carcass, heart, small intestine, liver, kidneys, lung, and spleen weights were lower in RN than in NN pigs (P < 0.05). Brain weight was highest in NBW-NN and lowest in NBW-RN, with LBW intermediate, regardless of nutrient restriction (P < 0.05). Postweaning, LBW had lower empty carcass, viscera, heart, stomach, large intestine, liver, and kidney weights than NBW, whereas RN had a higher small intestine weight than NN (P < 0.05).
Conclusions
Intermittent suckling is an effective means of inducing nutrient restriction in a swine model.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael O Wellington
- Prairie Swine Centre, Inc., Saskatoon, SK, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jade M Sands
- Prairie Swine Centre, Inc., Saskatoon, SK, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Zhang F, Zheng W, Xue Y, Yao W. Suhuai suckling piglet hindgut microbiome-metabolome responses to different dietary copper levels. Appl Microbiol Biotechnol 2018; 103:853-868. [PMID: 30535578 PMCID: PMC6373200 DOI: 10.1007/s00253-018-9533-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 01/19/2023]
Abstract
Unabsorbed copper accumulates in the hindgut of pigs that consume high levels of dietary copper, which enhances the coselection of antibiotic-resistant bacteria and is considered detrimental to the environment and to porcine health. In our study, a combination of 16S rRNA pyrosequencing and nontargeted metabolomics was used to investigate the microbiome-metabolome responses to dietary copper levels in the hindgut of suckling piglets. The results showed that the dietary copper level affected the abundance of several Clostridia genera and that the relative abundance of butyrate-producing bacteria, such as Coprococcus, Roseburia, and Acidaminococcus, was reduced in the 300 mg kg−1 (high) Cu group. Metabolomic analysis revealed that dietary copper levels affected protein and carbohydrate metabolites, protein biosynthesis, the urea cycle, galactose metabolism, gluconeogenesis, and amino acid metabolism (including the metabolism of arginine, proline, β-alanine, phenylalanine, tyrosine, and methionine). Furthermore, Pearson’s correlation analysis showed that the abundance levels of Coprococcus (family Lachnospiraceae) and operational taxonomic unit (OTU) 18 (family Ruminococcaceae) were positively correlated with energy metabolism pathways (gluconeogenesis, glycolysis, and the pentose phosphate pathway). The abundance of Streptococcus was negatively correlated with amino acid metabolism pathways (protein biosynthesis, glycine, serine, threonine, methionine, phenylalanine, and tyrosine metabolism), and OTU583 and OTU1067 (family Rikenellaceae) were positively correlated with amino acid metabolism pathways. These results suggest that the copper levels consumed by LC (low-copper group) versus HC (high-copper group) animals alter the composition of the gut microbiota and modulate microbial metabolic pathways, which may further affect the health of suckling piglets.
Collapse
Affiliation(s)
- Feng Zhang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Weijiang Zheng
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongqiang Xue
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen Yao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China. .,Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
12
|
Rudar M, Fiorotto ML, Davis TA. Regulation of Muscle Growth in Early Postnatal Life in a Swine Model. Annu Rev Anim Biosci 2018; 7:309-335. [PMID: 30388025 DOI: 10.1146/annurev-animal-020518-115130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth during the early postnatal period is rapid in the pig and dependent on the capacity of muscle to respond to anabolic and catabolic stimuli. Muscle mass is driven by the balance between protein synthesis and degradation. Among these processes, muscle protein synthesis in the piglet is exceptionally sensitive to the feeding-induced postprandial changes in insulin and amino acids, whereas muscle protein degradation is affected only during specific catabolic states. The developmental decline in the response of muscle to feeding is associated with changes in the signaling pathways located upstream and downstream of the mechanistic target of rapamycin protein complex. Additionally, muscle growth is supported by an accretion of nuclei derived from satellite cells. Activated satellite cells undergo proliferation, differentiation, and fusion with adjacent growing muscle fibers. Enhancing early muscle growth through modifying protein synthesis, degradation, and satellite cell activity is key to maximizing performance, productivity, and lifelong pig health.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| |
Collapse
|
13
|
Mann S, Sipka A, Leal Yepes F, Nydam D, Overton T, Wakshlag J. Nutrient-sensing kinase signaling in bovine immune cells is altered during the postpartum nutrient deficit: A possible role in transition cow inflammatory response. J Dairy Sci 2018; 101:9360-9370. [DOI: 10.3168/jds.2018-14549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
|
14
|
Growth Responses of Preterm Pigs Fed Formulas with Different Protein Levels and Supplemented with Leucine or β-Hydroxyl β-Methylbutyrate. Nutrients 2018; 10:nu10050636. [PMID: 29783624 PMCID: PMC5986515 DOI: 10.3390/nu10050636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 11/30/2022] Open
Abstract
Growth after preterm birth is an important determinant of long-term outcomes. Yet, many preterm infants suffer ex utero growth retardation. We evaluated effects of leucine and the metabolite, β-hydroxy β-methylbutyrate (HMB) on growth of preterm pigs, a previously-validated translational model for preterm infants. After 48 h of parenteral nutrition preterm pigs were fed for 6 to 7 days isocaloric formulas with different levels of protein (50 or 100 g/L) with leucine (10 g/L, 76 mM) or HMB (at 1.1 g/L, 4 mM) added to stimulate protein synthesis or with alanine (6.8 g/L; 76 mM) as the control. Rates of growth of pigs fed the low protein formula with alanine (3.4 ± 0.2% gain per day) or leucine (3.7 ± 0.2) exceeded that of pigs fed the high protein formula (2.8 ± 0.2, p = 0.02 for comparison with both low protein formulas; p = 0.01 compared with low protein + leucine). Supplementing the high protein formula with leucine or HMB did not increase growth relative to alanine (2.72 ± 0.20, 2.74 ± 0.27, and 2.52 ± 0.20, respectively). Small pigs (<700 g birth weight) grew slower during parenteral nutrition and had a more pronounced response to leucine. Females fed the high protein formulas grew faster than males, and particularly for small pigs (p < 0.05). Blood urea nitrogen values were lower for pigs fed the low versus the high protein formulas (p < 0.05). Leucine and HMB improved growth of preterm pigs fed low, but not high protein formulas, even after controlling for birth weight and sex, which independently correlated with growth rates. They offer an option to improve growth without increasing the amino acid load, with its attendant metabolic disadvantages.
Collapse
|
15
|
Manjarín R, Columbus DA, Solis J, Hernandez-García AD, Suryawan A, Nguyen HV, McGuckin MM, Jimenez RT, Fiorotto ML, Davis TA. Short- and long-term effects of leucine and branched-chain amino acid supplementation of a protein- and energy-reduced diet on muscle protein metabolism in neonatal pigs. Amino Acids 2018; 50:943-959. [PMID: 29728917 DOI: 10.1007/s00726-018-2572-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The objective of this study was to determine if enteral leucine or branched-chain amino acid (BCAA) supplementation increases muscle protein synthesis in neonates who consume less than their protein and energy requirements, and whether this increase is mediated via the upregulation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway or the decrease in muscle protein degradation signaling. Neonatal pigs were fed milk replacement diets containing reduced energy and protein (R), R supplemented with BCAA (RBCAA), R supplemented with leucine (RL), or complete protein and energy (CON) at 4-h intervals for 9 (n = 24) or 21 days (n = 22). On days 9 and 21, post-prandial plasma amino acids and insulin were measured at intervals for 4 h; muscle protein synthesis rate and activation of mTOR-related proteins were determined at 120 min post-feeding in muscle. For all parameters measured, the effects of diet were not different between day 9 or day 21. Compared to CON and R, plasma leucine and BCAA were higher (P ≤ 0.01) in RL- and RBCAA-fed pigs, respectively. Body weight gain, protein synthesis, and activation of S6 kinase (S6K1), 4E-binding protein (4EBP1), and eukaryotic initiation factor 4 complex (eIF4E·eIF4G) were decreased in RBCAA, RL, and R relative to CON (P < 0.01). RBCAA and RL upregulated (P ≤ 0.01) S6K1, 4EBP1, and eIF4E·eIF4G compared to R. In conclusion, when protein and energy are restricted, both leucine and BCAA supplementation increase mTOR activation, but do not enhance skeletal muscle protein synthesis and muscle growth in neonatal pigs.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Department of Pediatrics, U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Suite 9070, Houston, TX, 77030, USA.,Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Daniel A Columbus
- Department of Pediatrics, U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Suite 9070, Houston, TX, 77030, USA.,Prairie Swine Centre, Inc., Saskatoon, SK, S7H 5N9, Canada
| | - Jessica Solis
- Department of Pediatrics, U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Suite 9070, Houston, TX, 77030, USA
| | - Adriana D Hernandez-García
- Department of Pediatrics, U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Suite 9070, Houston, TX, 77030, USA
| | - Agus Suryawan
- Department of Pediatrics, U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Suite 9070, Houston, TX, 77030, USA
| | - Hanh V Nguyen
- Department of Pediatrics, U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Suite 9070, Houston, TX, 77030, USA
| | - Molly M McGuckin
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Rafael T Jimenez
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Marta L Fiorotto
- Department of Pediatrics, U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Suite 9070, Houston, TX, 77030, USA
| | - Teresa A Davis
- Department of Pediatrics, U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Suite 9070, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs. Br J Nutr 2017; 117:911-922. [PMID: 28446262 DOI: 10.1017/s0007114517000757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.
Collapse
|
17
|
Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol 2017; 8:10. [PMID: 28127425 PMCID: PMC5260006 DOI: 10.1186/s40104-016-0139-z] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.
Collapse
Affiliation(s)
- Shihai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China.,College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 People's Republic of China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China
| | - Man Ren
- College of Animal Science, Anhui Science & Technology University, No. 9 Donghua Road, Fengyang, 233100 Anhui Province People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-ResistanceNutrition,Ministry of Education, Sichuan AgriculturalUniversity, Ya'an, Sichuan China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China
| |
Collapse
|
18
|
Zheng L, Wei H, He P, Zhao S, Xiang Q, Pang J, Peng J. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model. Nutrients 2016; 9:nu9010017. [PMID: 28036018 PMCID: PMC5295061 DOI: 10.3390/nu9010017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022] Open
Abstract
Supplementation of branched-chain amino acids (BCAA) has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses–fed gains) in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1) and 28-day-old (Experiment 2) piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH13CO3 for 2 h, followed by a 6-h infusion of [1-13C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC) and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle mass in piglets. The effect of BCAA supplementation on muscle protein synthesis is associated with the increase in protein degradation and KIC production in the fed state.
Collapse
Affiliation(s)
- Liufeng Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100094, China.
| | - Shengjun Zhao
- Department of Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Quanhang Xiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaman Pang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
19
|
Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, Ordiz MI, Ferrucci L, Manary MJ. Perspective: The Potential Role of Essential Amino Acids and the Mechanistic Target of Rapamycin Complex 1 (mTORC1) Pathway in the Pathogenesis of Child Stunting. Adv Nutr 2016; 7:853-65. [PMID: 27633102 PMCID: PMC5015042 DOI: 10.3945/an.116.013276] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stunting is the best summary measure of chronic malnutrition in children. Approximately one-quarter of children under age 5 worldwide are stunted. Lipid-based or micronutrient supplementation has little to no impact in reducing stunting, which suggests that other critical dietary nutrients are missing. A dietary pattern of poor-quality protein is associated with stunting. Stunted children have significantly lower circulating essential amino acids than do nonstunted children. Inadequate dietary intakes of essential amino acids could adversely affect growth, because amino acids are required for synthesis of proteins. The master growth regulation pathway, the mechanistic target of rapamycin complex 1 (mTORC1) pathway, is exquisitely sensitive to amino acid availability. mTORC1 integrates cues such as nutrients, growth factors, oxygen, and energy to regulate growth of bone, skeletal muscle, nervous system, gastrointestinal tract, hematopoietic cells, immune effector cells, organ size, and whole-body energy balance. mTORC1 represses protein and lipid synthesis and cell and organismal growth when amino acids are deficient. Over the past 4 decades, the main paradigm for child nutrition in developing countries has been micronutrient malnutrition, with relatively less attention paid to protein. In this Perspective, we present the view that essential amino acids and the mTORC1 pathway play a key role in child growth. The current assumption that total dietary protein intake is adequate for growth among most children in developing countries needs re-evaluation.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|