1
|
Sestak SS, da Motta Lima FG, de Oliveira AP, Barateiro LGRP, Vieira-Frez FC, de Souza SRG, Guarnier FA, Perles JVCM, Zanoni JN. Effects of cancer-induced cachexia and administration of L-glutathione on the intestinal mucosa in rat. Amino Acids 2024; 56:30. [PMID: 38607556 PMCID: PMC11009745 DOI: 10.1007/s00726-024-03391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Walker-256 tumor is an experimental model known to promote cachexia syndrome, oxidative stress, and systemic inflammation. This study evaluated the duodenal mucosa of rats with Walker-256 tumor administered with 1% L-glutathione, intending to evaluate the damage caused by cancer-associated cachexia in the gastrointestinal tract and the effects of antioxidant administration on mucosal protection. Twenty-four 55-day-old male Wistar rats were distributed into four groups: control (C); control administered with 1% L-glutathione (C-GSH); Walker-256 tumor (W) and Walker-256 tumor administered with 1% L-glutathione (W-GSH). After 14 days of treatment, the duodenum was harvested for morphometric analysis of the mucosa, proliferation, apoptosis, immunostaining of varicosities immunoreactive (IR) to vasoactive intestinal peptide (VIP) and 5-HT-IR cells, and quantification of mast cells and goblet cells. Walker-256 tumor-bearing rats showed cachexia syndrome, mucosal atrophy, reduced cell proliferation, reduced 5-HT-IR cells, and increased goblet cells and VIPergic varicosities, which were not reversed by L-glutathione. On the other hand, L-glutathione caused a reduction of cells in apoptosis and mast cell recruitment, demonstrating a partial recovery of the damage detected in the intestinal mucosa.
Collapse
Affiliation(s)
- Sabrina Silva Sestak
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | - Fabiana Galvão da Motta Lima
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | - Ana Paula de Oliveira
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | | | | | | | | | | | - Jacqueline Nelisis Zanoni
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil.
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
2
|
Lima FGDM, Silva MPAD, Sestak SS, Guarnier FA, de Oliveira AP, Kuller JV, Gulbransen BD, Perles JVCM, Zanoni JN. Cancer-induced morphological changes in enteric glial cells in the jejunum of Walker-256 tumor-bearing rats. Acta Histochem 2024; 126:152146. [PMID: 38422841 PMCID: PMC11039380 DOI: 10.1016/j.acthis.2024.152146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Cancer-induced cachexia is associated with systemic inflammation and gastrointestinal dysfunction. How changes to cells of the enteric nervous system contribute to gut dysfunction in tumor development and cancer cachexia is unknown. Here, we tested the hypothesis that changes to enteric glia, a type of peripheral glia that surround enteric neurons and regulate gut homeostasis, are associated with tumor development and that supplementing with the antioxidant L-glutathione is protective against the changes induced. Immunohistochemistry for neurons, enteric glial cells and immune cells was performed in whole-mount preparations and frozen histological sections of the jejunum from 20 Wistar rats, distributed in 4 groups: control, tumor of Walker-256, control administered with 1 % L-glutathione, and tumor of Walker-256 administered with 1 % L-glutathione. Morphoquantitative analyses were made using Image-Pro® Plus 4.5 and ImageJ® 1.43° software. Tumor development significantly reduced neuronal and glial cell populations in the myenteric and submucosal plexuses and enlarged glial cell body area in the submucosal plexus. In contrast, tumors increased glia in the jejunal mucosa and this effect was accompanied by B-lymphocyte recruitment. GSH-supplemented diet was not sufficient to protect against changes to neurons and glia in the submucosal plexus but was partially protective in the myenteric plexus. L-glutathione had no effect on physiological parameters of cachexia but was sufficient to preserve enteric glial cell density in the myenteric plexus. These results suggest that changes to both enteric neurons and glia likely contribute to the gastrointestinal effects of tumor development and that oxidative stress contributes to these effects in the enteric nervous system.
Collapse
Affiliation(s)
| | | | - Sabrina Silva Sestak
- Laboratory of Enteric Neural Plasticity, State University of Maringá, Maringá, PR, Brazil
| | | | | | - João Victor Kuller
- Laboratory of Enteric Neural Plasticity, State University of Maringá, Maringá, PR, Brazil
| | | | | | | |
Collapse
|
3
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
4
|
Sciarretta F, Ceci V, Tiberi M, Zaccaria F, Li H, Zhou ZY, Sun Q, Konja D, Matteocci A, Bhusal A, Verri M, Fresegna D, Balletta S, Ninni A, Di Biagio C, Rosina M, Suk K, Centonze D, Wang Y, Chiurchiù V, Aquilano K, Lettieri-Barbato D. Lipocalin-2 promotes adipose-macrophage interactions to shape peripheral and central inflammatory responses in experimental autoimmune encephalomyelitis. Mol Metab 2023; 76:101783. [PMID: 37517520 PMCID: PMC10448472 DOI: 10.1016/j.molmet.2023.101783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. RESULTS AND METHODS We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. CONCLUSIONS Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS.
Collapse
Affiliation(s)
| | - Veronica Ceci
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Fabio Zaccaria
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiyang Sun
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Alessandro Matteocci
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; PhD program in Immunology, Molecular Medicine and Applied biotechnologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Martina Verri
- Pathology Unit, University Hospital Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Sara Balletta
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Andrea Ninni
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Di Biagio
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Rosina
- Neurology Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniele Lettieri-Barbato
- IRCCS, Fondazione Santa Lucia, 00179 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
5
|
Ruiz BI, Lowman XH, Yang Y, Fan Q, Wang T, Wu H, Hanse EA, Kong M. Alpha-Ketoglutarate Regulates Tnfrsf12a/Fn14 Expression via Histone Modification and Prevents Cancer-Induced Cachexia. Genes (Basel) 2023; 14:1818. [PMID: 37761958 PMCID: PMC10531467 DOI: 10.3390/genes14091818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Previous studies have shown that inhibition of TNF family member FN14 (gene: TNFRSF12A) in colon tumors decreases inflammatory cytokine expression and mitigates cancer-induced cachexia. However, the molecular mechanisms underlying the regulation of FN14 expression remain unclear. Tumor microenvironments are often devoid of nutrients and oxygen, yet how the cachexic response relates to the tumor microenvironment and, importantly, nutrient stress is unknown. Here, we looked at the connections between metabolic stress and FN14 expression. We found that TNFRSF12A expression was transcriptionally induced during glutamine deprivation in cancer cell lines. We also show that the downstream glutaminolysis metabolite, alpha-ketoglutarate (aKG), is sufficient to rescue glutamine-deprivation-promoted TNFRSF12A induction. As aKG is a co-factor for histone de-methylase, we looked at histone methylation and found that histone H3K4me3 at the Tnfrsf12a promoter is increased under glutamine-deprived conditions and rescued via DM-aKG supplementation. Finally, expression of Tnfrsf12a and cachexia-induced weight loss can be inhibited in vivo by DM-aKG in a mouse cancer cachexia model. These findings highlight a connection between metabolic stress and cancer cachexia development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mei Kong
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Uchida Y, Nakano T, Hiyamuta H, Kitamura H, Taniguchi M, Ooboshi H, Tsuruya K, Kitazono T. Association between Serum C-Reactive Protein Concentrations and Risk of Cancer-Related Mortality in Patients Undergoing Hemodialysis: 10-Year Outcomes of the Q-Cohort Study. Blood Purif 2023; 52:694-701. [PMID: 37331339 DOI: 10.1159/000530846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
INTRODUCTION Cancer constitutes a major source of morbidity and mortality among people undergoing hemodialysis (HD). A systemic inflammatory response is associated with the incidence and prognosis of cancer in the general population. However, the effect of systemic inflammation on cancer-related mortality in patients undergoing HD remains unclear. METHODS We analyzed 3,139 patients registered in the Q-Cohort Study, which is a multicenter, observational cohort study of patients on hemodialysis in Japan. The primary outcome was cancer-related mortality during a 10-year follow-up. The covariate of interest was serum C-reactive protein (CRP) concentrations at baseline. The patients were divided into tertiles based on their serum CRP concentrations at baseline (tertile [T] 1: ≤0.07; T2: 0.08-0.24; and T3: ≥0.25). The association between serum CRP concentrations and cancer-related mortality was calculated using the Cox proportional hazards model and the Fine-Gray subdistribution hazards model with non-cancer-related death as a competing risk. RESULTS During the 10-year follow-up, 216 patients died of cancer. In the multivariable analysis, the risk of cancer-related mortality in the highest tertile (T3) of serum CRP concentrations was significantly higher than that in the lowest tertile (T1) (multivariable-adjusted hazard ratio [95% confidence interval]: 1.68 [1.15-2.44]). This association remained consistent in the competing risk model, in which the subdistribution hazard ratio was 1.47 and the 95% confidence interval was 1.00-2.14 for T3 compared with T1. CONCLUSION Higher serum CRP concentrations are associated with an increased risk of cancer-related mortality in patients undergoing maintenance HD.
Collapse
Affiliation(s)
- Yushi Uchida
- Division of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroto Hiyamuta
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiromasa Kitamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hiroaki Ooboshi
- Division of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Chakraborty A, Roy G, Fatima F, Swami B, Bhaskar S. Mycobacterium indicus pranii therapy suppresses systemic dissemination of tumor cells in B16F10 murine model of melanoma. Biomed Pharmacother 2023; 160:114307. [PMID: 36739765 DOI: 10.1016/j.biopha.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer associated morbidity is mostly attributed to the dissemination of tumor cells from their primary niche into the circulation known as "metastasis". Mycobacterium indicus pranii (MIP) an approved immunotherapeutic agent against lung cancer (NSCLC) has shown potent anti-tumor activity in prior studies. While evaluating anti-tumor activity of MIP in mouse model, MIP treated animals typically exhibited less metastatic lesions in their pulmonary compartment. To study the role of MIP in metastasis closely, B16F10 melanoma cells were implanted subcutaneously in the mice, and the dissemination of tumor cells from the solid tumor was evaluated over a period of time. When B16F10 melanoma cells were treated with MIP in vitro, downregulation of epithelial mesenchymal transition markers was observed in these cells, which in turn suppressed the invasion, migration and adhesion of tumor cells. Notably, MIP therapy was found to be effectively reducing the metastatic burden in murine model of melanoma. Molecular characterization of MIP treated tumor cells substantiated that MIP upregulates the PPARγ expression within the tumor cells, which attenuates the NFκB/p65 levels within the nucleus, resulting in the suppression of Mmp9 expression in tumor cells. Besides that, MIP also downregulated the surface expression of chemokine receptor CXCR4 in murine melanoma cells, where chromatin immunoprecipitation confirmed the impeded recruitment of p50 and c-Rel factors to the Cxcr4 promoter, resulting in its downregulation transcriptionally. Taken together, MIP suppressed the dissemination of tumor cells in vivo, by regulating the expression of MMP9 and CXCR4 on these cells.
Collapse
Affiliation(s)
- Anush Chakraborty
- Product Development Cell-I, National Institute of Immunology, New Delhi, India
| | - Gargi Roy
- Product Development Cell-I, National Institute of Immunology, New Delhi, India
| | - Farheen Fatima
- Product Development Cell-I, National Institute of Immunology, New Delhi, India
| | - Bharati Swami
- Product Development Cell-I, National Institute of Immunology, New Delhi, India
| | - Sangeeta Bhaskar
- Product Development Cell-I, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
8
|
MISIRLIOĞLU PE, KÖSE B. Kanserde Kaşeksi ve Beslenme. ARŞIV KAYNAK TARAMA DERGISI 2023. [DOI: 10.17827/aktd.1213292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
ABSTRACT
Cachexia results from different combinations of metabolic variables and decreased food intake, including increased energy expenditure, excessive catabolism, and inflammations. Anorexia, asthenia, sarcopenia and anemia are clinical features of cachexia, and are effective in reducing the quality of life. The prevalence of cachexia in cancer patients is estimated to be 35%. There are 2 factors that cause the development of cachexia in cancer. The first is the disruption of the anabolic process. All types of cachexia are associated with anorexia, decreased oral intake, lack of movement, and accompanying endocrine changes. Factors such as early satiety, taste and tissue disorders, pain, psychological reasons, gastrointestinal system disorders, dry mouth are factors that contribute to weight loss by reducing oral intake. Secondly, it is the catabolic process caused by the tumor-derived factors and metabolic changes. Enteral and parenteral nutrition support improves the patient's nutritional status by increasing appetite and energy intake. A multidisciplinary team effort is required in prevention of cancer cachexia. The purpose of this review is to interpret the role of nutrition in cancer cachexia.
Keywords: Cancer, cachexia, nutrition
ÖZET
Kaşeksi, artan enerji harcaması, aşırı katabolizma ve inflamasyonlar dahil olmak üzere, metabolik değişkenler ve azalan gıda alımının farklı kombinasyonları sonucu olarak ortaya çıkmaktadır. Anoreksiya, asteni, sarkopeni ve anemi kaşeksinin klinik özelliklerinden olup yaşam kalitesinin azalmasında etkili olmaktadır. Kanser hastalarında kaşeksi prevalansının %35 olduğu tahmin edilmektir. Kanserde kaşeksi gelişimine sebep olan 2 faktör bulunmaktadır; Birincisi anabolik sürecin bozulmasıdır. Bütün kaşeksi türlerinde anoreksiyle oral alımda azalma, hareket eksikliği ve eşlik eden endokrin değişimler mevcuttur. Erken doyma, tat ve doku rahatsızlıkları, ağrı, psikolojik sebepler, gastrointestinal sistem bozukluları, ağız kuruluğu gibi etmenler oral alımı azaltarak kilo kaybına katkı sağlayan faktörlerdir. İkinci olarak da tümör kaynaklı faktörler ve metabolik değişimlerin sebep olduğu katabolik süreçtir. Enteral ve parenteral beslenme desteği, iştah ve enerji alımında artış sağlayarak hastanın beslenme durumunda gelişme sağlamaktadır. Kanser kaşeksisinin önlenmesinde multidisipliner bir ekip çalışması gereklidir. Bu derlemenin amacı kanser kaşeksisinde beslenmenin rolünü yorumlamaktır.
Anahtar kelimeler: Kanser, kaşeksi, beslenme
Collapse
|
9
|
Cernackova A, Tillinger A, Bizik J, Mravec B, Horvathova L. Dynamics of cachexia-associated inflammatory changes in the brain accompanying intra-abdominal fibrosarcoma growth in Wistar rats. J Neuroimmunol 2023; 376:578033. [PMID: 36738563 DOI: 10.1016/j.jneuroim.2023.578033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Accumulated data indicate that inflammation affecting brain structures participates in the development of cancer-related cachexia. However, the mechanisms responsible for the induction and progression of cancer-related neuroinflammation are still not fully understood. Therefore, we studied the time-course of neuroinflammation in selected brain structures and cachexia development in tumor-bearing rats. After tumor cells inoculation, specifically on the 7th, 14th, 21st, and 28th day of tumor growth, we assessed the presence of cancer-associated cachexia in rats. Changes in gene expression of inflammatory factors were studied in selected regions of the hypothalamus, brain stem, and circumventricular organs. We showed that the initial stages of cancer growth (7th and 14th day after tumor cells inoculation), are not associated with cachexia, or increased expression of inflammatory molecules in the brain. Even when we did not detect cachexia in tumor-bearing rats by the 21st day of the experiment, the inflammatory brain reaction had already started, as we found elevated levels of interleukin 1 beta, interleukin 6, tumor necrosis factor alpha, and glial fibrillary acidic protein mRNA levels in the nucleus of the solitary tract. Furthermore, we found increased interleukin 1 beta expression in the locus coeruleus and higher allograft inflammatory factor 1 expression in the vascular organ of lamina terminalis. Ultimately, the most pronounced manifestations of tumor growth were present on the 28th day post-inoculation of tumor cells. In these animals, we detected cancer-related cachexia and significant increases in interleukin 1 beta expression in all brain areas studied. We also observed significantly decreased expression of the glial cell activation markers allograft inflammatory factor 1 and glial fibrillary acidic protein in most brain areas of cachectic rats. In addition, we showed increased expression of cluster of differentiation 163 and cyclooxygenase 2 mRNA in the hypothalamic paraventricular nucleus, A1/C1 neurons, and area postrema of cachectic rats. Our data indicate that cancer-related cachexia is associated with complex neuroinflammatory changes in the brain. These changes can be found in both hypothalamic as well as extrahypothalamic structures, while their extent and character depend on the stage of tumor growth.
Collapse
Affiliation(s)
- Alena Cernackova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia; Department of Biological and Medical Sciences, Faculty of Physical Education and Sports, Comenius University in Bratislava, Slovakia
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Bizik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022; 14:5691. [PMID: 36428783 PMCID: PMC9688864 DOI: 10.3390/cancers14225691] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rapid tumor growth requires elevated biosynthetic activity, supported by metabolic rewiring occurring both intrinsically in cancer cells and extrinsically in the cancer host. The Warburg effect is one such example, burning glucose to produce a continuous flux of biomass substrates in cancer cells at the cost of energy wasting metabolic cycles in the host to maintain stable glycemia. Amino acid (AA) metabolism is profoundly altered in cancer cells, which use AAs for energy production and for supporting cell proliferation. The peculiarities in cancer AA metabolism allow the identification of specific vulnerabilities as targets of anti-cancer treatments. In the current review, specific approaches targeting AAs in terms of either deprivation or supplementation are discussed. Although based on opposed strategies, both show, in vitro and in vivo, positive effects. Any AA-targeted intervention will inevitably impact the cancer host, who frequently already has cachexia. Cancer cachexia is a wasting syndrome, also due to malnutrition, that compromises the effectiveness of anti-cancer drugs and eventually causes the patient's death. AA deprivation may exacerbate malnutrition and cachexia, while AA supplementation may improve the nutritional status, counteract cachexia, and predispose the patient to a more effective anti-cancer treatment. Here is provided an attempt to describe the AA-based therapeutic approaches that integrate currently distant points of view on cancer-centered and host-centered research, providing a glimpse of several potential investigations that approach cachexia as a unique cancer disease.
Collapse
Affiliation(s)
- Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| |
Collapse
|
11
|
Review of Mechanisms and Treatment of Cancer-Induced Cardiac Cachexia. Cells 2022; 11:cells11061040. [PMID: 35326491 PMCID: PMC8947347 DOI: 10.3390/cells11061040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cachexia is a multifactorial, paraneoplastic syndrome that impacts roughly half of all cancer patients. It can negatively impact patient quality of life and prognosis by causing physical impairment, reducing chemotherapy tolerance, and precluding them as surgical candidates. While there is substantial research on cancer-induced skeletal muscle cachexia, there are comparatively fewer studies and therapies regarding cardiac cachexia in the setting of malignancy. A literature review was performed using the PubMed database to identify original articles pertaining to cancer-induced cardiac cachexia, including its mechanisms and potential therapeutic modalities. Seventy studies were identified by two independent reviewers based on inclusion and exclusion criteria. While there are multiple studies addressing the pathophysiology of cardiac-induced cancer cachexia, there are no studies evaluating therapeutic options in the clinical setting. Many treatment modalities including nutrition, heart failure medication, cancer drugs, exercise, and gene therapy have been explored in in vitro and mice models with varying degrees of success. While these may be beneficial in cancer patients, further prospective studies specifically focusing on the assessment and treatment of the cardiac component of cachexia are needed.
Collapse
|
12
|
Shojaei-Zarghani S, Rafraf M, Yari-Khosroushahi A. Theanine and cancer: A systematic review of the literature. Phytother Res 2021; 35:4782-4794. [PMID: 33891786 DOI: 10.1002/ptr.7110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/23/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
A growing literature indicates several health benefits of theanine, a major nonprotein derivative amino acid special to tea, and a nonedible mushroom. This study aimed to systematically review the scientific evidence regarding the anticarcinogen and anticancer effects of natural theanine. A systematic search for the relevant articles published until January 2021 on MEDLINE, Scopus, and Web of Knowledge was conducted. Out of 377 initial records, 14 in vitro, ex vivo, and in vivo studies met our inclusion criteria. Most of the included in vitro and ex vivo studies reported beneficial effects of theanine on the proliferation, apoptosis, metastasis, migration, and invasion in various cancer cell lines. The in vivo studies also supported the potential impacts of theanine on cancer incidence or progression. Theanine exerted its anticancer function by inhibiting EGFR, VEGFR, Met, and Akt/mTOR, JAK2/STAT3, and ERK/NFκB pathways, as well as activating the intrinsic apoptosis pathway and caspase-independent programmed cell death. In conclusion, the results indicated moderate apoptotic, antimetastatic, antimigration, and anti-invasion effects, along with the mild antiproliferative influence of theanine on cancer. Further studies are necessary to ascertain the effectiveness of theanine on the prevention and suppression of cancer and shed light upon the attributable mechanisms in the in vivo condition.
Collapse
Affiliation(s)
- Sara Shojaei-Zarghani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari-Khosroushahi
- Drug Applied Research Center, Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Wu QJ, Liu ZH, Jiao C, Cheng BY, Li SW, Ma Y, Wang YQ, Wang Y. Effects of Glutamine on Lymphocyte Proliferation and Intestinal Mucosal Immune Response in Heat-Stressed Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2019-1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- QJ Wu
- Henan University of Science and Technology, PR China
| | - ZH Liu
- Henan University of Science and Technology, PR China
| | - C Jiao
- Henan University of Science and Technology, PR China
| | - BY Cheng
- Henan University of Science and Technology, PR China
| | - SW Li
- Henan University of Science and Technology, PR China
| | - Y Ma
- Henan University of Science and Technology, PR China
| | - YQ Wang
- Henan University of Science and Technology, PR China
| | - Y Wang
- Henan University of Science and Technology, PR China
| |
Collapse
|
14
|
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Front Nutr 2020; 7:601329. [PMID: 33415123 PMCID: PMC7783418 DOI: 10.3389/fnut.2020.601329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
15
|
Guillaumond F, Vasseur S. Nutriments et cancer : alliés ou ennemis ? CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2020; 55:276-294. [DOI: 10.1016/j.cnd.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
16
|
Ren W, Bin P, Yin Y, Wu G. Impacts of Amino Acids on the Intestinal Defensive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:133-151. [PMID: 32761574 DOI: 10.1007/978-3-030-45328-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestine interacts with a diverse community of antigens and bacteria. To keep its homeostasis, the gut has evolved with a complex defense system, including intestinal microbiota, epithelial layer and lamina propria. Various factors (e.g., nutrients) affect the intestinal defensive system and progression of intestinal diseases. This review highlights the current understanding about the role of amino acids (AAs) in protecting the intestine from harm. Amino acids (e.g., arginine, glutamine and tryptophan) are essential for the function of intestinal microbiota, epithelial cells, tight junction, goblet cells, Paneth cells and immune cells (e.g., macrophages, B cells and T cells). Through the modulation of the intestinal defensive system, AAs maintain the integrity and function of the intestinal mucosa and inhibit the progression of various intestinal diseases (e.g., intestinal infection and intestinal colitis). Thus, adequate intake of functional AAs is crucial for intestinal and whole-body health in humans and other animals.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
17
|
Liu Z, Wu Q, Jiao C, Cheng B, Zhu D, Ma Y, Li Y, Li W. Effects of Glutamine on the Mucosal Structure and Immune Cells in the Intestines of Broiler Chickens Challenged with Salmonella Enteritidis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2020-1270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Z Liu
- Henan University of Science and Technology, PR China
| | - Q Wu
- Henan University of Science and Technology, PR China
| | - C Jiao
- Henan University of Science and Technology, PR China
| | - B Cheng
- Henan University of Science and Technology, PR China
| | - D Zhu
- Henan University of Science and Technology, PR China
| | - Y Ma
- Henan University of Science and Technology, PR China
| | - Y Li
- Henan University of Science and Technology, PR China
| | - W Li
- Henan University of Science and Technology, PR China
| |
Collapse
|
18
|
Horvathova L, Tillinger A, Padova A, Bizik J, Mravec B. Changes in gene expression in brain structures related to visceral sensation, autonomic functions, food intake, and cognition in melanoma-bearing mice. Eur J Neurosci 2019; 51:2376-2393. [PMID: 31883212 DOI: 10.1111/ejn.14661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
The brain exerts complex effects on the initiation and progression of cancer in the body. However, the influence of cancer localized in peripheral tissues on the brain has been only partially described. Therefore, we investigated gene expression in brain structures that participate in transmitting viscerosensory signals, regulating autonomic functions and food intake, as well as cognition in C57Bl/6J mice with B16-F10 melanoma. In addition, we investigated the relationship between peripheral inflammation and neuroinflammation. We found increased neuronal activity in the nucleus of the solitary tract of tumor-bearing mice, whereas neuronal activity in the A1/C1 catecholaminergic cell group, parabrachial nucleus, lateral hypothalamic area, ventromedial nucleus of the hypothalamus, paraventricular nucleus of the hypothalamus, and hippocampus was decreased. In the majority of investigated brain structures, we found increased gene expression of IL-1β, whereas gene expression of IL-6 and NF-κB was reduced or unchanged compared with controls. Melanoma-bearing mice also showed increased gene expression of tyrosine hydroxylase in the A1/C1 catecholaminergic cell group, nucleus of the solitary tract, and locus coeruleus, as well as reduced mRNA levels of hypocretin neuropeptide precursor protein in the lateral hypothalamic area, and proopiomelanocortin in the arcuate nucleus. In addition, we found reduced mRNA levels of Bcl-2, brain-derived neurotrophic factor, and doublecortin in the hippocampus. Our data indicate that skin melanoma induces complex changes in the brain, and these changes are most probably caused by cancer-related signals mediated by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Padova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Bizik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
19
|
Claudino MM, Lopes JR, Rodrigues VD, de Pinho NB, Martucci RB. Postoperative complication rate and survival of patients with gastric cancer undergoing immunonutrition: A retrospective study. Nutrition 2019; 70:110590. [PMID: 31739174 DOI: 10.1016/j.nut.2019.110590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of preoperative immunonutrition on the rate of postoperative complication and survival of patients with gastric cancer. METHODS A retrospective cohort was formed after data collection of patients hospitalized with gastric cancer. Postoperative complications classified according to the Clavien-Dindo classification system, length of hospital stay, readmissions, and rates of survival at 6 mo, 1 y, and 5 y were analyzed. A χ2 or Fisher's exact test, Student or Mann-Whitney t test, and Kaplan-Meier and Cox regressions were used in the statistical analysis. RESULTS A total of 164 patients were included in the study, with 56 patients assigned to the immunonutrition group and 108 to the conventional group. There were no significant differences in postoperative complications between the immunonutrition and conventional groups (51.8% versus 58.3%; P = 0.423). The most frequent complications were fistula and surgical wound infection. Length of hospital stay did not differ between the groups (median of 7.0 d: P = 0.615) and the presence of readmissions did not differ either (12.5% versus 15.7%; P = 0.648). In the multivariate Cox regression, in a pooled model for group, age, sex, body mass index, Charlson comorbidity index, staging, neoadjuvant chemotherapy, and type of surgery, there was a significant difference in survival rates at 6 mo (P = 0.011), 1 y (P = 0.006), and 5 y (P < 0.001). CONCLUSIONS Preoperative immunonutrition in patients with gastric cancer did not reduce postoperative complications or length of hospital stay. More studies are needed to confirm the benefit of immunonutriton supplementation for overall survival when associated with other protective factors.
Collapse
Affiliation(s)
| | | | - Viviane Dias Rodrigues
- National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil; Brazilian Society of Oncology Nutrition, Rio de Janeiro, Brazil
| | - Nivaldo Barroso de Pinho
- National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil; Brazilian Society of Oncology Nutrition, Rio de Janeiro, Brazil
| | - Renata Brum Martucci
- National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil; Brazilian Society of Oncology Nutrition, Rio de Janeiro, Brazil; Nutrition Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Vicentini GE, Martins HA, Fracaro L, de Souza SRG, da Silva Zanoni KP, Silva TNX, Blegniski FP, Guarnier FA, Zanoni JN. Does l -glutamine-supplemented diet extenuate NO-mediated damage on myenteric plexus of Walker 256 tumor-bearing rats? Food Res Int 2017; 101:24-34. [DOI: 10.1016/j.foodres.2017.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023]
|
21
|
Wu J, Guo Z, Gao Y. Dynamic changes of urine proteome in a Walker 256 tumor-bearing rat model. Cancer Med 2017; 6:2713-2722. [PMID: 28980450 PMCID: PMC5673914 DOI: 10.1002/cam4.1225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 01/11/2023] Open
Abstract
Despite advances in cancer treatments, early diagnosis of cancer is still the most promising way to improve outcomes. Without homeostatic control, urine reflects systemic changes in the body and can potentially be used for early detection of cancer. In this study, a tumor-bearing rat model was established by subcutaneous injection of Walker 256 cells. Urine samples from tumor-bearing rats were collected at five time points during cancer development. Dynamic urine proteomes were profiled using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Several urine proteins that changed at multiple time points were selected as candidate cancer biomarkers and were further validated by multiple reaction monitoring (MRM) analysis. It was found that the urinary protein patterns changed significantly with cancer development in a tumor-bearing rat model. A total of 10 urinary proteins (HPT, APOA4, CO4, B2MG, A1AG, CATC, VCAM1, CALB1, CSPG4, and VTDB) changed significantly even before a tumor mass was palpable, and these early changes in urine could also be identified with differential abundance at late stages of cancer. Our results indicate that urine proteins could enable early detection of cancer at an early onset of tumor growth and monitoring of cancer progression.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Youhe Gao
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
22
|
Voltarelli FA, Frajacomo FT, Padilha CDS, Testa MTJ, Cella PS, Ribeiro DF, de Oliveira DX, Veronez LC, Bisson GS, Moura FA, Deminice R. Syngeneic B16F10 Melanoma Causes Cachexia and Impaired Skeletal Muscle Strength and Locomotor Activity in Mice. Front Physiol 2017; 8:715. [PMID: 29033844 PMCID: PMC5626871 DOI: 10.3389/fphys.2017.00715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
Muscle wasting has been emerging as one of the principal components of cancer cachexia, leading to progressive impairment of work capacity. Despite early stages melanomas rarely promotes weight loss, the appearance of metastatic and/or solid tumor melanoma can leads to cachexia development. Here, we investigated the B16F10 tumor-induced cachexia and its contribution to muscle strength and locomotor-like activity impairment. C57BL/6 mice were subcutaneously injected with 5 × 104 B16F10 melanoma cells or PBS as a Sham negative control. Tumor growth was monitored during a period of 28 days. Compared to Sham mice, tumor group depicts a loss of skeletal muscle, as well as significantly reduced muscle grip strength and epididymal fat mass. This data are in agreement with mild to severe catabolic host response promoted by elevated serum tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and lactate dehydrogenase (LDH) activity. Tumor implantation has also compromised general locomotor activity and decreased exploratory behavior. Likewise, muscle loss, and elevated inflammatory interleukin were associated to muscle strength loss and locomotor activity impairment. In conclusion, our data demonstrated that subcutaneous B16F10 melanoma tumor-driven catabolic state in response to a pro-inflammatory environment that is associated with impaired skeletal muscle strength and decreased locomotor activity in tumor-bearing mice.
Collapse
Affiliation(s)
- Fabrício A Voltarelli
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil.,Department of Physical Education, Faculty of Physical Education, Federal University of Mato GrossoCuiabá, Brazil
| | - Fernando T Frajacomo
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil.,Program of Molecular Carcinogenesis, Brazilian National Institute of CancerRio de Janeiro, Brazil
| | - Camila de Souza Padilha
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Mayra T J Testa
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Paola S Cella
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Diogo F Ribeiro
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Donizete X de Oliveira
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Luciana C Veronez
- Department of Maternal-Infant Nursing and Public Health, Ribeirao Preto College of Nursing, University of São PauloSão Paulo, Brazil
| | - Gabriela S Bisson
- Department of Maternal-Infant Nursing and Public Health, Ribeirao Preto College of Nursing, University of São PauloSão Paulo, Brazil
| | - Felipe A Moura
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| | - Rafael Deminice
- Department of Physical Education, Faculty of Physical Education and Sport, State University of LondrinaLondrina, Brazil
| |
Collapse
|
23
|
Martins HA, Bazotte RB, Vicentini GE, Lima MM, Guarnier FA, Hermes-Uliana C, Frez FCV, Bossolani GDP, Fracaro L, Fávaro LDS, Manzano MI, Zanoni JN. l-Glutamine supplementation promotes an improved energetic balance in Walker-256 tumor-bearing rats. Tumour Biol 2017; 39:1010428317695960. [PMID: 28345452 DOI: 10.1177/1010428317695960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We evaluated the effects of supplementation with oral l-glutamine in Walker-256 tumor-bearing rats. A total of 32 male Wistar rats aged 54 days were randomly divided into four groups: rats without Walker-256 tumor, that is, control rats (C group); control rats supplemented with l-glutamine (CG group); Walker-256 tumor rats without l-glutamine supplementation (WT group); and WT rats supplemented with l-glutamine (WTG group). l-Glutamine was incorporated into standard food at a proportion of 2 g/100 g (2%). After 10 days of the experimental period, the jejunum and duodenum were removed and processed. Protein expression levels of key enzymes of gluconeogenesis, that is, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, were analyzed by western blot and immunohistochemical techniques. In addition, plasma corticosterone, glucose, insulin, and urea levels were evaluated. The WTG group showed significantly increased plasma glucose and insulin levels ( p < 0.05); however, plasma corticosterone and urea remained unchanged. Moreover, the WTG group showed increased immunoreactive staining for jejunal phosphoenolpyruvate carboxykinase and increased expression of duodenal glucose-6-phosphatase. Furthermore, the WTG group presented with less intense cancer cachexia and slower tumor growth. These results could be attributed, at least partly, to increased intestinal gluconeogenesis and insulinemia, and better glycemia maintenance during fasting in Walker-256 tumor rats on a diet supplemented with l-glutamine.
Collapse
Affiliation(s)
- Heber Amilcar Martins
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Roberto Barbosa Bazotte
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Mariana Machado Lima
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Catchia Hermes-Uliana
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | - Luciane Fracaro
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|