1
|
Lavilla CJ, Billacura MP, Khatun S, Cotton DP, Lee VK, Bhattacharya S, Caton PW, Sale C, Wallis JD, Garner AC, Turner MD. Carnosinase inhibition enhances reactive species scavenging in high fat diet. Life Sci 2025; 364:123448. [PMID: 39923839 DOI: 10.1016/j.lfs.2025.123448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
AIMS Life expectancy is typically reduced by 2-4 years in people with a body mass index (BMI) of 30-35 kg/m2 and by 8-10 years in people with a BMI of 40-50 kg/m2. Obesity is also associated with onset, or exacerbation of, multiple chronic diseases. Mechanistically, this, in part, involves formation of advanced glycation and lipidation end-products that directly bond with proteins, lipids, or DNA, thereby perturbing typical cellular function. Here we seek to prevent these damaging adduction events through inhibition of carnosinase enzymes that rapidly degrade the physiological reactive species scavenger, carnosine, in the body. MAIN METHODS Herein we performed in silico computational modelling of a compound library of ∼53,000 molecules to identify carnosine-like molecules with intrinsic resistance to carnosinase turnover. KEY FINDINGS We show that leading candidate molecules reduced reactive species in C2C12 myotubes, and that mice fed N-methyl-[6-(2-furyl)pyrid-3-yl]methylamine alongside a high fat diet had significantly decreased amounts of damaging plasma 4-hydroxynonenal and 3-nitrotyrosine reactive species. Oral administration of N-methyl-[6-(2-furyl)pyrid-3-yl]methylamine to high fat-fed mice also resulted in a modest ∼10 % reduction in weight gain when compared to mice fed only high fat diet. SIGNIFICANCE Our findings suggest that inhibition of carnosinase enzymes can increase the life-span, and thereby enhance the efficacy, of endogenous carnosine in vivo, thereby offering potential therapeutic benefits against obesity and other cardiometabolic diseases characterised by metabolic stress.
Collapse
Affiliation(s)
- Charlie Jr Lavilla
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Merell P Billacura
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Suniya Khatun
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Daniel P Cotton
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Vivian K Lee
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Sreya Bhattacharya
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Paul W Caton
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Craig Sale
- Deparment of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, UK
| | - John D Wallis
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - A Christopher Garner
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Mark D Turner
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK.
| |
Collapse
|
2
|
Nagarajan U, Naha A, Ashok G, Balasubramanian A, Ramaiah S, V Kanth S, Dusthackeer A, Anbarasu A, Natarajan S. Biomolecular Interaction of Carnosine and Anti-TB Drug: Preparation of Functional Biopeptide-Based Nanocomposites and Characterization through In Vitro and In Silico Investigations. ACS OMEGA 2025; 10:567-587. [PMID: 39829512 PMCID: PMC11739970 DOI: 10.1021/acsomega.4c07176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Host-directed therapies (HDTs) resolve excessive inflammation during tuberculosis (TB) disease, which leads to irreversible lung tissue damage. The peptide-based nanostructures possess intrinsic anti-inflammatory and antioxidant properties among HDTs. Native carnosine, a natural dipeptide with superior self-organization and functionalities, was chosen for nanoformulation. In the present work, multiscale self-assembly approaches of carnosine were developed using a solvent-mediated process (hexafluoro-2-propanol) and further linked with first-line anti-TB drugs. The organofluorine compound in a solvent is attributed to the self-assembling process with heteroatom acceptors in carnosine. In the carnosine-anti-TB drug nanocomposite, the functional moieties represent the involvement of hydrogen bonding and the electrostatic force of attraction. The minimum inhibitory concentration of carnosine-anti-TB drug composites represents an antimycobacterial effect on par with standard drugs. The silicon findings complemented the in vitro results through quantum chemical simulations, elucidating the respective binding pockets between putative Mtb drug targets and carnosine-anti-TB composites. These findings confirmed that the carnosine and anti-TB drug nanocomposites prepared through a solvent-mediated process act as a rational design for functional nanodelivery systems for sustainable TB therapeutics.
Collapse
Affiliation(s)
- Usharani Nagarajan
- Department
of Biochemistry, ICMR-National Institute
for Research in Tuberculosis (NIRT), Chennai 600 031, India
| | - Aniket Naha
- Department
of Bio-Medical Sciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
- Medical
Biotechnology and Computational Drug Designing Laboratory, Pushpagiri
Research Centre, Pushpagiri Medical Society, Tiruvalla,Kerala 689 101, India
| | - Gayathri Ashok
- Medical
and Biological Computing Laboratory, SBST, VIT, Vellore, Tamil Nadu 632 014, India
- Department
of Biosciences, SBST, VIT, Vellore, Tamil Nadu 632 014, India
| | | | - Sudha Ramaiah
- Medical
and Biological Computing Laboratory, SBST, VIT, Vellore, Tamil Nadu 632 014, India
- Department
of Biosciences, SBST, VIT, Vellore, Tamil Nadu 632 014, India
| | - Swarna V Kanth
- CHORD, CSIR-Central Leather Research Institute, Chennai 600 020, India
| | - Azger Dusthackeer
- Department
of Bacteriology, ICMR-National Institute
for Research in Tuberculosis (NIRT), Chennai 600 031, India
| | - Anand Anbarasu
- Medical
and Biological Computing Laboratory, SBST, VIT, Vellore, Tamil Nadu 632 014, India
- Department
of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632 014, India
| | - Saravanan Natarajan
- Department
of Biochemistry, ICMR-National Institute
for Research in Tuberculosis (NIRT), Chennai 600 031, India
| |
Collapse
|
3
|
Toviwek B, Koonawootrittriron S, Suwanasopee T, Jattawa D, Pongprayoon P. Why Bestatin Prefers Human Carnosinase 2 (CN2) to Human Carnosinase 1 (CN1). J Phys Chem B 2024; 128:11876-11884. [PMID: 39574306 PMCID: PMC11626516 DOI: 10.1021/acs.jpcb.4c05571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024]
Abstract
Human carnosinases (CNs) are Xaa-His metal-ion-activated aminopeptidases that break down bioactive carnosine and other histidine-containing dipeptides. Carnosine is a bioactive peptide found in meat and prevalently used as a supplement and in functional food formulation. Nonetheless, carnosine is digested by CNs rapidly after ingestion. CNs have two isoforms (carnosinase 1 (CN1) and carnosinase 2 (CN2)), where CN1 is the main player in carnosine digestion. CNs contain a catalytic metal ion pair (Zn2+ for CN1 and Mn2+ for CN2) and two subpockets (S1 and S1' pockets) to accommodate a substrate. Bestatin (BES) has been reported to be active for CN2; however, its inhibition ability for CN1 has remained under debate, because the underlying mechanism remains unclear. This information is important for designing novel CN1-selective inhibitors for proliferating carnosine after ingestion. Thus, molecular dynamics (MD) simulations were performed to explore the binding mechanism of BES to both CN1 and CN2. The binding of BES-CN1 and BES-CN2 was studied in comparison. The results indicated that BES could bind both CNs with different degrees of binding affinity. BES prefers CN2 because: (1) its aryl terminus is trapped by Y197 in an S1 pocket; (ii) the BES polar backbone is firmly bound by catalytic Mn2+ ions; and (iii) the S1' pocket can shrink to accommodate the isopropyl end of BES. In contrast, the high mobility of the aryl end and the complete loss of metal-BES interactions in CN1 cause a loose BES binding. Seemingly, polar termini were required for a good CN1 inhibitor.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Skorn Koonawootrittriron
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Tropical
Animal Genetic Special Research Unit, Department of Animal Science,
Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Thanathip Suwanasopee
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Tropical
Animal Genetic Special Research Unit, Department of Animal Science,
Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Danai Jattawa
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Tropical
Animal Genetic Special Research Unit, Department of Animal Science,
Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Zhang S, Yang G, Zhang Q, Fan Y, Tang M, Shen L, Zhu D, Zhang G, Yard B. PEGylation renders carnosine resistant to hydrolysis by serum carnosinase and increases renal carnosine levels. Amino Acids 2024; 56:44. [PMID: 38960916 PMCID: PMC11222247 DOI: 10.1007/s00726-024-03405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Carnosine's protective effect in rodent models of glycoxidative stress have provided a rational for translation of these findings in therapeutic concepts in patient with diabetic kidney disease. In contrast to rodents however, carnosine is rapidly degraded by the carnosinase-1 enzyme. To overcome this hurdle, we sought to protect hydrolysis of carnosine by conjugation to Methoxypolyethylene glycol amine (mPEG-NH2). PEGylated carnosine (PEG-car) was used to study the hydrolysis of carnosine by human serum as well as to compare the pharmacokinetics of PEG-car and L-carnosine in mice after intravenous (IV) injection. While L-carnosine was rapidly hydrolyzed in human serum, PEG-car was highly resistant to hydrolysis. Addition of unconjugated PEG to carnosine or PEG-car did not influence hydrolysis of carnosine in serum. In mice PEG-car and L-carnosine exhibited similar pharmacokinetics in serum but differed in half-life time (t1/2) in kidney, with PEG-car showing a significantly higher t1/2 compared to L-carnosine. Hence, PEGylation of carnosine is an effective approach to prevent carnosine degradations and to achieve higher renal carnosine levels. However, further studies are warranted to test if the protective properties of carnosine are preserved after PEGylation.
Collapse
Affiliation(s)
- Shiqi Zhang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China.
| | - Guang Yang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Qinqin Zhang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuying Fan
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingna Tang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Liuhai Shen
- Department of Nuclear Medicine, Provincial Peoplès Hospital, Anhui No. 2, Hefei, 230041, China
| | - Dongchun Zhu
- Department of Pharmacy, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Benito Yard
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| |
Collapse
|
5
|
Qiu J, Yard BA, Krämer BK, Bilo HJG, Kannt A, van Goor H, van Dijk PR. Serum carnosinase 1, an early indicator for incident microalbuminuria in type 1 diabetes. J Diabetes Metab Disord 2024; 23:1271-1277. [PMID: 38932803 PMCID: PMC11196470 DOI: 10.1007/s40200-024-01422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/08/2024] [Indexed: 06/28/2024]
Abstract
Aims Carnosinase (CN1) polymorphisms have been linked to diabetic kidney disease (DKD), as CN1 degrades dipeptides which scavenge oxidative metabolites and prevent the formation of advanced glycation end-products. In this work, we studied the association between serum CN1, the systemic redox status and long-term renal outcome in type 1 diabetes. Methods Serum CN1 was measured in a prospective type 1 diabetes cohort (n = 218) with a 16-year follow-up. A total of 218 patients treated at the Diabetes Outpatient Clinic of the Weezenlanden Hospital (nowadays Isala Hospital, Zwolle, The Netherlands) were included in this analysis. We assessed whether serum CN1 was associated with renal function and development of DKD as well as other diabetic complications. Results At baseline, age, systemic redox status and N-terminal pro brain-natriuretic peptide (NT-proBNP) were associated with serum CN1 concentration (p < 0.05). During follow-up, CN1 concentration in the middle tertile was associated with less incident microalbuminuria (odds ratio = 0.194, 95% C.I.: 0.049-0.772, p = 0.02) after adjustment for age, systemic redox status, NT-proBNP and sex. Discussion Serum CN1 could predict incident microalbuminuria and may be used as a novel parameter to identify patients at risk for DKD.
Collapse
Affiliation(s)
- Jiedong Qiu
- 5Th Medical Department, University Hospital Mannheim, Heidelberg University, E68167 Mannheim, Germany
- Department of Pathology and Medical Biology, University Medical Centre Groningen and University of Groningen, NL-9713 GZ Groningen, the Netherlands
| | - Benito A. Yard
- 5Th Medical Department, University Hospital Mannheim, Heidelberg University, E68167 Mannheim, Germany
| | - Bernhard K. Krämer
- 5Th Medical Department, University Hospital Mannheim, Heidelberg University, E68167 Mannheim, Germany
| | - Henk J. G. Bilo
- Department of Internal Medicine, University Medical Centre Groningen and University of Groningen, NL-9713 GZ Groningen, the Netherlands
- Isala Diabetes Centre, NL-8025 AB Zwolle, the Netherlands
| | - Aimo Kannt
- 5Th Medical Department, University Hospital Mannheim, Heidelberg University, E68167 Mannheim, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, E60596 Frankfurt, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen and University of Groningen, NL-9713 GZ Groningen, the Netherlands
| | - Peter R. van Dijk
- Department of Internal Medicine, University Medical Centre Groningen and University of Groningen, NL-9713 GZ Groningen, the Netherlands
- Isala Diabetes Centre, NL-8025 AB Zwolle, the Netherlands
| |
Collapse
|
6
|
Regazzoni L. State of the Art in the Development of Human Serum Carnosinase Inhibitors. Molecules 2024; 29:2488. [PMID: 38893364 PMCID: PMC11173852 DOI: 10.3390/molecules29112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Human serum carnosinase is an enzyme that operates the preferential hydrolysis of dipeptides with a C-terminus histidine. Only higher primates excrete such an enzyme in serum and cerebrospinal fluid. In humans, the serum hydrolytic rate has high interindividual variability owing to gene polymorphism, although age, gender, diet, and also diseases and surgical interventions can modify serum activity. Human genetic diseases with altered carnosinase activity have been identified and associated with neurological disorders and age-related cognitive decline. On the contrary, low peripheral carnosinase activity has been associated with kidney protection, especially in diabetic nephropathy. Therefore, serum carnosinase is a druggable target for the development of selective inhibitors. However, only one molecule (i.e., carnostatine) has been discovered with the purpose of developing serum carnosinase inhibitors. Bestatin is the only inhibitor reported other than carnostatine, although its activity is not selective towards serum carnosinase. Herein, we present a review of the most critical findings on human serum carnosinase, including enzyme expression, localization and substrate selectivity, along with factors affecting the hydrolytic activity, its implication in human diseases and the properties of known inhibitors of the enzyme.
Collapse
Affiliation(s)
- Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
7
|
Sunagawa Y, Tsukabe R, Irokawa Y, Funamoto M, Suzuki Y, Yamada M, Shimizu S, Katanasaka Y, Hamabe-Horiike T, Kawase Y, Naruta R, Shimizu K, Mori K, Hosomi R, Komiyama M, Hasegawa K, Morimoto T. Anserine, a Histidine-Containing Dipeptide, Suppresses Pressure Overload-Induced Systolic Dysfunction by Inhibiting Histone Acetyltransferase Activity of p300 in Mice. Int J Mol Sci 2024; 25:2344. [PMID: 38397020 PMCID: PMC10889817 DOI: 10.3390/ijms25042344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Ryosuke Tsukabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Yudai Irokawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuto Suzuki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Miho Yamada
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Ryuya Naruta
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kiyoshi Mori
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
- Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan;
| | - Maki Komiyama
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| |
Collapse
|
8
|
Chmielewska K, Vittorio S, Gervasoni S, Dzierzbicka K, Inkielewicz-Stepniak I, Vistoli G. Human carnosinases: A brief history, medicinal relevance, and in silico analyses. Drug Discov Today 2024; 29:103860. [PMID: 38128717 DOI: 10.1016/j.drudis.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Carnosine, an endogenous dipeptide, has been found to have a plethora of medicinal properties, such as antioxidant, antiageing, and chelating effects, but with one downside: a short half-life. Carnosinases and two hydrolytic enzymes, which remain enigmatic, are responsible for these features. Hence, here we emphasize why research is valuable for better understanding crucial concepts like ageing, neurodegradation, and cancerogenesis, given that inhibition of carnosinases might significantly prolong carnosine bioavailability and allow its further use in medicine. Herein, we explore the literature regarding carnosinases and present a short in silico analysis aimed at elucidating the possible recognition pattern between CN1 and its ligands.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy; Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
9
|
Toviwek B, Suwanasopee T, Koonawootrittriron S, Jattawa D, Pongprayoon P. Binding Modes of Carnostatine, Homocarnosine, and Ophidine to Human Carnosinase 1. ACS OMEGA 2023; 8:42966-42975. [PMID: 38024708 PMCID: PMC10653059 DOI: 10.1021/acsomega.3c06139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Carnosine (CAR), anserine (ANS), homocarnosine (H-CAR), and ophidine (OPH) are histidine-containing dipeptides that show a wide range of therapeutic properties. With their potential physiological effects, these bioactive dipeptides are considered as bioactive food components. However, such dipeptides display low stability due to their rapid degradation by human serum carnosinase 1 (CN1). A dimeric CN1 hydrolyzes such histidine-containing compounds with different degrees of reactivities. A selective CN inhibitor, carnostatine (CARN), was reported to effectively inhibit CN's activity. To date, the binding mechanisms of CAR and ANS have been recently reported, while no clear information about H-CAR, OPH, and CARN binding is available. Thus, in this work, molecular dynamics simulations were employed to elucidate the binding mechanism of H-CAR, OPH, and CARN. Among all, the amine end and imidazole ring are the main players for trapping all of the ligands in a pocket. OPH shows the poorest binding affinity, while CARN displays the tightest binding. Such firm binding is due to the longer amine chain and the additional hydroxyl (-OH) group of CARN. H-CAR and CARN are analogous, but the absence of the -OH moiety in H-CAR significantly enhances its mobility, resulting in the reduction in binding affinity. For OPH which is an ANS analogue, the methylated imidazole ring destroys the OPH-CN1 interaction network at this region, consequentially leading to the poor binding ability. An insight into how CN recognizes and binds its substrates obtained here will be useful for designing an effective strategy to prolong the lifetime of CAR and its analogues after ingestion.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Thanathip Suwanasopee
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Skorn Koonawootrittriron
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Danai Jattawa
- Department
of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Bonaccorso A, Privitera A, Grasso M, Salamone S, Carbone C, Pignatello R, Musumeci T, Caraci F, Caruso G. The Therapeutic Potential of Novel Carnosine Formulations: Perspectives for Drug Development. Pharmaceuticals (Basel) 2023; 16:778. [PMID: 37375726 PMCID: PMC10300694 DOI: 10.3390/ph16060778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Carnosine (beta-alanyl-L-histidine) is an endogenous dipeptide synthesized via the activity of the ATP-dependent enzyme carnosine synthetase 1 and can be found at a very high concentration in tissues with a high metabolic rate, including muscles (up to 20 mM) and brain (up to 5 mM). Because of its well-demonstrated multimodal pharmacodynamic profile, which includes anti-aggregant, antioxidant, and anti-inflammatory activities, as well as its ability to modulate the energy metabolism status in immune cells, this dipeptide has been investigated in numerous experimental models of diseases, including Alzheimer's disease, and at a clinical level. The main limit for the therapeutic use of carnosine is related to its rapid hydrolysis exerted by carnosinases, especially at the plasma level, reason why the development of new strategies, including the chemical modification of carnosine or its vehiculation into innovative drug delivery systems (DDS), aiming at increasing its bioavailability and/or at facilitating the site-specific transport to different tissues, is of utmost importance. In the present review, after a description of carnosine structure, biological activities, administration routes, and metabolism, we focused on different DDS, including vesicular systems and metallic nanoparticles, as well as on possible chemical derivatization strategies related to carnosine. In particular, a basic description of the DDS employed or the derivatization/conjugation applied to obtain carnosine formulations, followed by the possible mechanism of action, is given. To the best of our knowledge, this is the first review that includes all the new formulations of carnosine (DDS and derivatives), allowing a decrease or complete prevention of the hydrolysis of this dipeptide exerted by carnosinases, the simultaneous blood-brain barrier crossing, the maintenance or enhancement of carnosine biological activity, and the site-specific transport to different tissues, which then offers perspectives for the development of new drugs.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Margherita Grasso
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Sonya Salamone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
11
|
Qiu J, Yard BA, Krämer BK, van Goor H, van Dijk P, Kannt A. Association Between Serum Carnosinase Concentration and Activity and Renal Function Impairment in a Type-2 Diabetes Cohort. Front Pharmacol 2022; 13:899057. [PMID: 35873562 PMCID: PMC9304884 DOI: 10.3389/fphar.2022.899057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction: Genetic studies have identified associations of carnosinase 1 (CN1) polymorphisms with diabetic kidney disease (DKD). However, CN1 levels and activities have not been assessed as diagnostic or prognostic markers of DKD in cohorts of patients with type 2 diabetes (T2D). Methods: We established high-throughput, automated CN1 activity and concentration assays using robotic systems. Using these methods, we determined baseline serum CN1 levels and activity in a T2D cohort with 970 patients with no or only mild renal impairment. The patients were followed for a mean of 1.2 years. Baseline serum CN1 concentration and activity were assessed as predictors of renal function impairment and incident albuminuria during follow up. Results: CN1 concentration was significantly associated with age, gender and estimated glomerular filtration rate (eGFR) at baseline. CN1 activity was significantly associated with glycated hemoglobin A1c (HbA1c) and eGFR. Serum CN1 at baseline was associated with eGFR decline and predicted renal function impairment and incident albuminuria during the follow-up. Discussion: Baseline serum CN1 levels were associated with presence and progression of renal function decline in a cohort of T2D patients. Confirmation in larger cohorts with longer follow-up observation periods will be required to fully establish CN1 as a biomarker of DKD.
Collapse
Affiliation(s)
- Jiedong Qiu
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- Department of Pathology and Medical Biology, University Medical Centre Groningen and University of Groningen, Groningen, Netherlands
| | - Benito A. Yard
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Bernhard K. Krämer
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen and University of Groningen, Groningen, Netherlands
| | - Peter van Dijk
- Department of Endocrinology, University Medical Centre Groningen and University of Groningen, Groningen, Netherlands
- Isala, Diabetes Centre, Zwolle, Netherlands
- *Correspondence: Peter van Dijk, ; Aimo Kannt,
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Institute of Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- *Correspondence: Peter van Dijk, ; Aimo Kannt,
| |
Collapse
|
12
|
Viability of Glioblastoma Cells and Fibroblasts in the Presence of Imidazole-Containing Compounds. Int J Mol Sci 2022; 23:ijms23105834. [PMID: 35628643 PMCID: PMC9146156 DOI: 10.3390/ijms23105834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-L-histidine) specifically attenuates tumor growth. Here, we ask whether other small imidazole-containing compounds also affect the viability of tumor cells without affecting non-malignant cells and whether the formation of histamine is involved. Patient-derived fibroblasts and glioblastoma cells were treated with carnosine, L-alanyl-L-histidine (LA-LH), β-alanyl-L-alanine, L-histidine, histamine, imidazole, β-alanine, and L-alanine. Cell viability was assessed by cell-based assays and microscopy. The intracellular release of L-histidine and formation of histamine was investigated by high-performance liquid chromatography coupled to mass spectrometry. Carnosine and LA-LH inhibited tumor cell growth with minor effects on fibroblasts, and L-histidine, histamine, and imidazole affected viability in both cell types. Compounds without the imidazole moiety did not diminish viability. In the presence of LA-LH but not in the presence of carnosine, a significant rise in intracellular amounts of histidine was detected in all cells. The formation of histamine was not detectable in the presence of carnosine, LA-LH, or histidine. In conclusion, the imidazole moiety of carnosine contributes to its anti-neoplastic effect, which is also seen in the presence of histidine and LA-LH. Despite the fact that histamine has a strong effect on cell viability, the formation of histamine is not responsible for the effects on the cell viability of carnosine, LA-LH, and histidine.
Collapse
|
13
|
Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103303. [PMID: 35630780 PMCID: PMC9143376 DOI: 10.3390/molecules27103303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous dipeptide and an over-the-counter food supplement with a well-demonstrated multimodal mechanism of action that includes the detoxification of reactive oxygen and nitrogen species, the down-regulation of the production of pro-inflammatory mediators, the inhibition of aberrant protein formation, and the modulation of cells in the peripheral (macrophages) and brain (microglia) immune systems. Since its discovery more than 100 years ago, a plethora of in vivo preclinical studies have been carried out; however, there is still substantial heterogeneity regarding the route of administration, the dosage, the duration of the treatment, and the animal model selected, underlining the urgent need for "coordinated/aligned" preclinical studies laying the foundations for well-defined future clinical trials. The main aim of the present position paper is to critically and concisely consider these key points and open a discussion on the possible "alignment" for future studies, with the goal of validating the full therapeutic potential of this intriguing molecule.
Collapse
|
14
|
Wang-Eckhardt L, Becker I, Wang Y, Yuan J, Eckhardt M. Absence of endogenous carnosine synthesis does not increase protein carbonylation and advanced lipoxidation end products in brain, kidney or muscle. Amino Acids 2022; 54:1013-1023. [PMID: 35294673 PMCID: PMC9217836 DOI: 10.1007/s00726-022-03150-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
Carnosine and other histidine-containing dipeptides are expected to be important anti-oxidants in vertebrates based on various in vitro and in vivo studies with exogenously administered carnosine or its precursor β-alanine. To examine a possible anti-oxidant role of endogenous carnosine, mice lacking carnosine synthase (Carns1−/−) had been generated and were examined further in the present study. Protein carbonylation increased significantly between old (18 months) and aged (24 months) mice in brain and kidney but this was independent of the Carns1 genotype. Lipoxidation end products were not increased in 18-month-old Carns1−/− mice compared to controls. We also found no evidence for compensatory increase of anti-oxidant enzymes in Carns1−/− mice. To explore the effect of carnosine deficiency in a mouse model known to suffer from increased oxidative stress, Carns1 also was deleted in the type II diabetes model Leprdb/db mouse. In line with previous studies, malondialdehyde adducts were elevated in Leprdb/db mouse kidney, but there was no further increase by additional deficiency in Carns1. Furthermore, Leprdb/db mice lacking Carns1 were indistinguishable from conventional Leprdb/db mice with respect to fasting blood glucose and insulin levels. Taken together, Carns1 deficiency appears not to reinforce oxidative stress in old mice and there was no evidence for a compensatory upregulation of anti-oxidant enzymes. We conclude that the significance of the anti-oxidant activity of endogenously synthesized HCDs is limited in mice, suggesting that other functions of HCDs play a more important role.
Collapse
Affiliation(s)
- Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Yong Wang
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Shandong Xinchuang Biotechnology Co., LTD, Jinan, China
| | - Jing Yuan
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
15
|
Erythrocytes Prevent Degradation of Carnosine by Human Serum Carnosinase. Int J Mol Sci 2021; 22:ijms222312802. [PMID: 34884603 PMCID: PMC8657436 DOI: 10.3390/ijms222312802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-l-histidine) has beneficial effects in different diseases. It is also frequently used as a food supplement to improve exercise performance and because of its anti-aging effects. Nevertheless, after oral ingestion, the dipeptide is not detectable in human serum because of rapid degradation by serum carnosinase. At the same time, intact carnosine is excreted in urine up to five hours after intake. Therefore, an unknown compartment protecting the dipeptide from degradation has long been hypothesized. Considering that erythrocytes may constitute this compartment, we investigated the uptake and intracellular amounts of carnosine in human erythrocytes cultivated in the presence of the dipeptide and human serum using liquid chromatography–mass spectrometry. In addition, we studied carnosine’s effect on ATP production in red blood cells and on their response to oxidative stress. Our experiments revealed uptake of carnosine into erythrocytes and protection from carnosinase degradation. In addition, no negative effect on ATP production or defense against oxidative stress was observed. In conclusion, our results for the first time demonstrate that erythrocytes can take up carnosine, and, most importantly, thereby prevent its degradation by human serum carnosinase.
Collapse
|
16
|
Anti-cancer actions of carnosine and the restoration of normal cellular homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119117. [PMID: 34384791 DOI: 10.1016/j.bbamcr.2021.119117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Carnosine is a naturally occurring dipeptide found in meat. Alternatively it can be formed through synthesis from the amino acids, β-alanine and L-histidine. Carnosine has long been advocated for use as an anti-oxidant and anti-glycating agent to facilitate healthy ageing, and there have also been reports of it having anti-proliferative effects that have beneficial actions against the development of a number of different cancers. Carnosine is able to undertake multiple molecular processes, and it's mechanism of action therefore remains controversial - both in healthy tissues and those associated with cancer or metabolic diseases. Here we review current understanding of its mechanistic role in different physiological contexts, and how this relates to cancer. Carnosine turns over rapidly in the body due to the presence of both serum and tissue carnosinase enzymes however, so its use as a dietary supplement would require ingestion of multiple daily doses. Strategies are therefore being developed that are based upon either resistance of carnosine analogs to enzymatic turnover, or else β-alanine supplementation, and the development of these potential therapeutic agents is discussed.
Collapse
|
17
|
Urinary Carnosinase-1 Excretion is Associated with Urinary Carnosine Depletion and Risk of Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Cohort Study. Antioxidants (Basel) 2021; 10:antiox10071102. [PMID: 34356335 PMCID: PMC8301129 DOI: 10.3390/antiox10071102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4–33.3] µmol/24 h versus 34.8 [IQR 25.6–46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06–1.45]; p = 0.007). During median follow-up for 5.3 [4.5–6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44–2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted.
Collapse
|
18
|
Grasso M, Caruso G, Godos J, Bonaccorso A, Carbone C, Castellano S, Currenti W, Grosso G, Musumeci T, Caraci F. Improving Cognition with Nutraceuticals Targeting TGF-β1 Signaling. Antioxidants (Basel) 2021; 10:1075. [PMID: 34356309 PMCID: PMC8301008 DOI: 10.3390/antiox10071075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Rescue of cognitive function represents an unmet need in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Nutraceuticals deliver a concentrated form of a presumed bioactive(s) agent(s) that can improve cognitive function alone or in combination with current approved drugs for the treatment of cognitive disorders. Nutraceuticals include different natural compounds such as flavonoids and their subclasses (flavan-3-ols, catechins, anthocyanins, and flavonols), omega-3, and carnosine that can improve synaptic plasticity and rescue cognitive deficits through multiple molecular mechanisms. A deficit of transforming growth factor-β1 (TGF-β1) pathway is an early event in the pathophysiology of cognitive impairment in different neuropsychiatric disorders, from depression to AD. In the present review, we provide evidence that different nutraceuticals, such as Hypericum perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and carnosine, can target TGF-β1 signaling and increase TGF-β1 production in the central nervous system as well as cognitive function. The bioavailability of these nutraceuticals, in particular carnosine, can be significantly improved with novel formulations (nanoparticulate systems, nanoliposomes) that increase the efficacy and stability of this peptide. Overall, these studies suggest that the synergism between nutraceuticals targeting the TGF-β1 pathway and current approved drugs might represent a novel pharmacological approach for reverting cognitive deficits in AD patients.
Collapse
Affiliation(s)
- Margherita Grasso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
19
|
Fang YJ, Wu M, Chen HN, Wen TT, Lyu JX, Shen Y. Carnosine suppresses human glioma cells under normoxic and hypoxic conditions partly via inhibiting glutamine metabolism. Acta Pharmacol Sin 2021; 42:767-779. [PMID: 32782394 PMCID: PMC8115031 DOI: 10.1038/s41401-020-0488-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/19/2020] [Indexed: 12/28/2022]
Abstract
L-Carnosine (β-alanyl-L-histidine) is a naturally occurring dipeptide, which has shown broad-spectrum anticancer activity. But the anticancer mechanisms and regulators remain unknown. In this study, we investigated the effects of carnosine on human glioma U87 and U251 cell lines under normoxia (21% O2) and hypoxia (1% O2). We showed that carnosine (25-75 mM) dose-dependently inhibited the proliferation of the glioma cells; carnosine (50 mM) inhibited their colony formation, migration, and invasion capacity. But there was no significant difference in the inhibitory effects of carnosine under normoxia and hypoxia. Treatment with carnosine (50 mM) significantly decreased the expression of glutamine synthetase (GS) at the translation level rather than the transcription level in U87 and U251 cells, both under normoxia and hypoxia. Furthermore, the silencing of GS gene with shRNA and glutamine (Gln) deprivation significantly suppressed the growth, migratory, and invasive potential of the glioma cells. The inhibitory effect of carnosine on U87 and U251 cells was partly achieved by inhibiting the Gln metabolism pathway. Carnosine reduced the expression of GS in U87 and U251 cells by promoting the degradation of GS through the proteasome pathway, shortening the protein half-life, and reducing its stability. Given that targeting tumor metabolism is a proven efficient therapeutic tactic, our results may present new treatment strategies and drugs for improving the prognosis of gliomas.
Collapse
Affiliation(s)
- Yu-Jia Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ming Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hai-Ni Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tian-Tian Wen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian-Xin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yao Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
20
|
Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants (Basel) 2020; 9:antiox9121303. [PMID: 33353117 PMCID: PMC7767317 DOI: 10.3390/antiox9121303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| |
Collapse
|
21
|
Development of a direct LC-ESI-MS method for the measurement of human serum carnosinase activity. J Pharm Biomed Anal 2020; 189:113440. [PMID: 32645617 DOI: 10.1016/j.jpba.2020.113440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/05/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a natural peptide that have been described as a potential pharmacological agent owing to some positive outcomes from several pharmacological tests in animal models of human diseases. However, carnosine has limited activity in humans since the peptide upon absorption is rapidly hydrolyzed in the serum by the enzyme carnosinase (i.e. CN1; E.C. 3.4.13.20). Over the years the main approaches aimed at limiting carnosine hydrolysis have been focused on obtaining CN1-stable derivatives with an increased bioavailability and unmodified or enhanced activity. Only recently the hypothesis of co-administration of carnosine and selective inhibitors of CN1 have been proposed. Such an approach requires reliable methods for screening the effect on carnosine hydrolysis rate operated by CN1 in a throughput scale allowing to test from few compounds up to whole compound libraries. The only assay with such features available in literature relies on ortho-phtalaldehyde (OPA) derivatization of the hydrolysis product (i.e. histidine), followed by a fluorimetric read. Herein, we propose an alternative method based on a direct measurement of the residual substrate by liquid chromatography-mass spectrometry (LC-MS). The assay demonstrated to be reliable since gave results comparable to literature data concerning the hydrolysis rate of carnosine as determined into human serum. Moreover, the method was quite flexible and easily adaptable to a substrate change, as demonstrated by the measurement of the hydrolysis rate of all the natural analogs of carnosine. In this context the data collected for anserine suggest that our method looked more reliable and substrate change can undergo an underestimation of hydrolytic activity in OPA -based assays.
Collapse
|
22
|
Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR Ob/Ob mice. J Mol Med (Berl) 2020; 98:1333-1346. [PMID: 32803273 PMCID: PMC7447680 DOI: 10.1007/s00109-020-01957-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Objective To assess the influence of serum carnosinase (CN1) on the course of diabetic kidney disease (DKD). Methods hCN1 transgenic (TG) mice were generated in a BTBROb/Ob genetic background to allow the spontaneous development of DKD in the presence of serum carnosinase. The influence of serum CN1 expression on obesity, hyperglycemia, and renal impairment was assessed. We also studied if aggravation of renal impairment in hCN1 TG BTBROb/Ob mice leads to changes in the renal transcriptome as compared with wild-type BTBROb/Ob mice. Results hCN1 was detected in the serum and urine of mice from two different hCN1 TG lines. The transgene was expressed in the liver but not in the kidney. High CN1 expression was associated with low plasma and renal carnosine concentrations, even after oral carnosine supplementation. Obese hCN1 transgenic BTBROb/Ob mice displayed significantly higher levels of glycated hemoglobin, glycosuria, proteinuria, and increased albumin-creatinine ratios (1104 ± 696 vs 492.1 ± 282.2 μg/mg) accompanied by an increased glomerular tuft area and renal corpuscle size. Gene-expression profiling of renal tissue disclosed hierarchical clustering between BTBROb/Wt, BTBROb/Ob, and hCN1 BTBROb/Ob mice. Along with aggravation of the DKD phenotype, 26 altered genes have been found in obese hCN1 transgenic mice; among them claudin-1, thrombospondin-1, nephronectin, and peroxisome proliferator–activated receptor-alpha have been reported to play essential roles in DKD. Conclusions Our data support a role for serum carnosinase 1 in the progression of DKD. Whether this is mainly attributed to the changes in renal carnosine concentrations warrants further studies. Key messages Increased carnosinase 1 (CN1) is associated with diabetic kidney disease (DKD). BTBROb/Ob mice with human CN1 develop a more aggravated DKD phenotype. Microarray revealed alterations by CN1 which are not altered by hyperglycemia. These genes have been described to play essential roles in DKD. Inhibiting CN1 could be beneficial in DKD.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01957-0) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Kilis-Pstrusinska K. Carnosine and Kidney Diseases: What We Currently Know? Curr Med Chem 2020; 27:1764-1781. [PMID: 31362685 DOI: 10.2174/0929867326666190730130024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/01/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023]
Abstract
Carnosine (beta-alanyl-L-histidine) is an endogenously synthesised dipeptide which is present in different human tissues e.g. in the kidney. Carnosine is degraded by enzyme serum carnosinase, encoding by CNDP1 gene. Carnosine is engaged in different metabolic pathways in the kidney. It reduces the level of proinflammatory and profibrotic cytokines, inhibits advanced glycation end products' formation, moreover, it also decreases the mesangial cell proliferation. Carnosine may also serve as a scavenger of peroxyl and hydroxyl radicals and a natural angiotensin-converting enzyme inhibitor. This review summarizes the results of experimental and human studies concerning the role of carnosine in kidney diseases, particularly in chronic kidney disease, ischemia/reperfusion-induced acute renal failure, diabetic nephropathy and also drug-induced nephrotoxicity. The interplay between serum carnosine concentration and serum carnosinase activity and polymorphism in the CNDP1 gene is discussed. Carnosine has renoprotective properties. It has a promising potential for the treatment and prevention of different kidney diseases, particularly chronic kidney disease which is a global public health issue. Further studies of the role of carnosine in the kidney may offer innovative and effective strategies for the management of kidney diseases.
Collapse
|
24
|
Peters V, Yard B, Schmitt CP. Carnosine and Diabetic Nephropathy. Curr Med Chem 2020; 27:1801-1812. [PMID: 30914013 DOI: 10.2174/0929867326666190326111851] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/25/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
Abstract
Diabetic Nephropathy (DN) is a major complication in patients with type 1 or type 2 diabetes
and represents the leading cause of end-stage renal disease. Novel therapeutic approaches are
warranted. In view of a polymorphism in the carnosinase 1 gene CNDP1, resulting in reduced
carnosine degradation activity and a significant DN risk reduction, carnosine (β-alanyl-L-histidine)
has gained attention as a potential therapeutic target. Carnosine has anti-inflammatory, antioxidant,
anti-glycation and reactive carbonyl quenching properties. In diabetic rodents, carnosine supplementation
consistently improved renal histology and function and in most studies, also glucose metabolism.
Even though plasma half-life of carnosine in humans is short, first intervention studies in (pre-)
diabetic patients yielded promising results. The precise molecular mechanisms of carnosine mediated
protective action, however, are still incompletely understood. This review highlights the recent
knowledge on the role of the carnosine metabolism in DN.
Collapse
Affiliation(s)
- Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Benito Yard
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, Przybyłowska M. Therapeutic Potential of Carnosine and Its Derivatives in the Treatment of Human Diseases. Chem Res Toxicol 2020; 33:1561-1578. [PMID: 32202758 DOI: 10.1021/acs.chemrestox.0c00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant progress in the pathogenesis, diagnosis, treatment, and prevention of cancer and neurodegenerative diseases, their occurrence and mortality are still high around the world. The resistance of cancer cells to the drugs remains a significant problem in oncology today, while in the case of neuro-degenerative diseases, therapies reversing the process are still yet to be found. Furthermore, it is important to seek new chemotherapeutics reversing side effects of currently used drugs or helping them perform their function to inhibit progression of the disease. Carnosine, a dipeptide constisting of β-alanine and l-histidine, has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states. The aim of this paper was to find if carnosine and its derivatives can be helpful in treating various diseases. Literature search presented in this review includes review and original papers found in SciFinder, PubMed, and Google Scholar. Searches were based on substantial keywords concerning therapeutic usage of carnosine and its derivatives in several diseases including neurodegenerative disorders and cancer. In this paper, we review articles and find that carnosine and its derivatives are potential therapeutic agents in many diseases including cancer, neurodegenerative diseases, diabetes, and schizophrenia. Carnosine and its derivatives can be used in treating neurodegenerative diseases, cancer, diabetes, or schizophrenia, although their usage is limited. Therefore, there's an urge to synthesize and analyze new substances, overcoming the limitation of carnosine itself.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Iwona Inkielewicz-Stępniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
26
|
Everaert I, He J, Hanssens M, Stautemas J, Bakker K, Albrecht T, Zhang S, Van der Stede T, Vanhove K, Hoetker D, Howsam M, Tessier FJ, Yard B, Baba SP, Baelde HJ, Derave W. Carnosinase-1 overexpression, but not aerobic exercise training, affects the development of diabetic nephropathy in BTBR ob/ob mice. Am J Physiol Renal Physiol 2020; 318:F1030-F1040. [PMID: 32150446 DOI: 10.1152/ajprenal.00329.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Manipulation of circulating histidine-containing dipeptides (HCD) has been shown to affect the development of diabetes and early-stage diabetic nephropathy (DN). The aim of the present study was to investigate whether such interventions, which potentially alter levels of circulating HCD, also affect the development of advanced-stage DN. Two interventions, aerobic exercise training and overexpression of the human carnosinase-1 (hCN1) enzyme, were tested. BTBR ob/ob mice were either subjected to aerobic exercise training (20 wk) or genetically manipulated to overexpress hCN1, and different diabetes- and DN-related markers were compared with control ob/ob and healthy (wild-type) mice. An acute exercise study was performed to elucidate the effect of obesity, acute running, and hCN1 overexpression on plasma HCD levels. Chronic aerobic exercise training did not affect the development of diabetes or DN, but hCN1 overexpression accelerated hyperlipidemia and aggravated the development of albuminuria, mesangial matrix expansion, and glomerular hypertrophy of ob/ob mice. In line, plasma, kidney, and muscle HCD were markedly lower in ob/ob versus wild-type mice, and plasma and kidney HCD in particular were lower in ob/ob hCN1 versus ob/ob mice but were unaffected by aerobic exercise. In conclusion, advanced glomerular damage is accelerated in mice overexpressing the hCN1 enzyme but not protected by chronic exercise training. Interestingly, we showed, for the first time, that the development of DN is closely linked to renal HCD availability. Further research will have to elucidate whether the stimulation of renal HCD levels can be a therapeutic strategy to reduce the risk for developing DN.
Collapse
Affiliation(s)
- Inge Everaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Junling He
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maxime Hanssens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Bakker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Albrecht
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Shiqi Zhang
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | | | - Kenneth Vanhove
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Michael Howsam
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Frédéric J Tessier
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Benito Yard
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Oppermann H, Birkemeyer C, Meixensberger J, Gaunitz F. Non-enzymatic reaction of carnosine and glyceraldehyde-3-phosphate accompanies metabolic changes of the pentose phosphate pathway. Cell Prolif 2020; 53:e12702. [PMID: 31628715 PMCID: PMC7046307 DOI: 10.1111/cpr.12702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Carnosine (β-alanyl-l-histidine) is a naturally occurring dipeptide that selectively inhibits cancer cell growth, possibly by influencing glucose metabolism. As its precise mode of action and its primary targets are unknown, we analysed carnosine's effect on metabolites and pathways in glioblastoma cells. MATERIALS AND METHODS Glioblastoma cells, U87, T98G and LN229, were treated with carnosine, and metabolites were analysed by gas chromatography coupled with mass spectrometry. Furthermore, mitochondrial ATP production was determined by extracellular flux analysis and reaction products of carnosine were investigated using mass spectrometry. RESULTS Carnosine decreased the intracellular abundance of several metabolites indicating a reduced activity of the pentose phosphate pathway, the malate-aspartate shuttle and the glycerol phosphate shuttle. Mitochondrial respiration was reduced in U87 and T98G but not in LN229 cells, independent of whether glucose or pyruvate was used as substrate. Finally, we demonstrate non-enzymatic reaction of carnosine with dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. However, glycolytic flux from glucose to l-lactate appeared not to be affected by the reaction of carnosine with the metabolites. CONCLUSIONS Carnosine reacts non-enzymatically with glycolytic intermediates reducing the activity of the pentose phosphate pathway which is required for cell proliferation. Although the activity of the malate-aspartate and the glycerol phosphate shuttle appear to be affected, reduced mitochondrial ATP production under the influence of the dipeptide is cell-specific and appears to be independent of the effect on the shuttles.
Collapse
Affiliation(s)
- Henry Oppermann
- Klinik und Poliklinik für NeurochirurgieUniversitätsklinikum Leipzig AöRLeipzigGermany
| | | | - Jürgen Meixensberger
- Klinik und Poliklinik für NeurochirurgieUniversitätsklinikum Leipzig AöRLeipzigGermany
| | - Frank Gaunitz
- Klinik und Poliklinik für NeurochirurgieUniversitätsklinikum Leipzig AöRLeipzigGermany
| |
Collapse
|
28
|
Schmöhl F, Peters V, Schmitt CP, Poschet G, Büttner M, Li X, Weigand T, Poth T, Volk N, Morgenstern J, Fleming T, Nawroth PP, Kroll J. CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications. Cell Mol Life Sci 2019; 76:4551-4568. [PMID: 31073745 PMCID: PMC11105213 DOI: 10.1007/s00018-019-03127-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
The gene CNDP1 was associated with the development of diabetic nephropathy. Its enzyme carnosinase 1 (CN1) primarily hydrolyzes the histidine-containing dipeptide carnosine but other organ and metabolic functions are mainly unknown. In our study we generated CNDP1 knockout zebrafish, which showed strongly decreased CN1 activity and increased intracellular carnosine levels. Vasculature and kidneys of CNDP1-/- zebrafish were not affected, except for a transient glomerular alteration. Amino acid profiling showed a decrease of certain amino acids in CNDP1-/- zebrafish, suggesting a specific function for CN1 in the amino acid metabolisms. Indeed, we identified a CN1 activity for Ala-His and Ser-His. Under diabetic conditions increased carnosine levels in CNDP1-/- embryos could not protect from respective organ alterations. Although, weight gain through overfeeding was restrained by CNDP1 loss. Together, zebrafish exhibits CN1 functions, while CNDP1 knockout alters the amino acid metabolism, attenuates weight gain but cannot protect organs from diabetic complications.
Collapse
Affiliation(s)
- Felix Schmöhl
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Verena Peters
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Claus Peter Schmitt
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Michael Büttner
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Xiaogang Li
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Tim Weigand
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Tanja Poth
- CMCP-Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Im Neuenheimer Feld 410, F02 Room 02.414-02.434, 69120, Heidelberg, Germany
| | - Jens Kroll
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
29
|
Dietterle J, Oppermann H, Glasow A, Neumann K, Meixensberger J, Gaunitz F. Carnosine increases efficiency of temozolomide and irradiation treatment of isocitrate dehydrogenase-wildtype glioblastoma cells in culture. Future Oncol 2019; 15:3683-3691. [PMID: 31664860 DOI: 10.2217/fon-2019-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The naturally occurring dipeptide carnosine (CAR) has been considered for glioblastoma therapy. As CAR also protects against ionizing irradiation (IR), we investigated whether it may counteract standard therapy consisting of postsurgery IR and treatment with temozolomide (TMZ). Materials & methods: Four isocitrate dehydrogenase-wildtype primary cell cultures were exposed to different doses of IR and different concentrations of TMZ and CAR. After exposure, viability under the different conditions and combinations of them was determined. Results: All cultures responded to treatment with TMZ and IR with reduced viability. CAR further decreased viability when TMZ and IR were combined. Conclusion: Treatment with CAR does not counteract glioblastoma standard therapy. As the dipeptide also protects nontumor cells from IR, it may reduce deleterious side effects of treatment.
Collapse
Affiliation(s)
- Johannes Dietterle
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Henry Oppermann
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiooncology, University of Leipzig, Leipzig, Germany
| | | | | | - Frank Gaunitz
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
30
|
Pirone L, Di Gaetano S, Rizzarelli E, Bellia F, Pedone E. Focusing on the functional characterization of the anserinase from Oreochromis niloticus. Int J Biol Macromol 2019; 130:158-165. [PMID: 30797810 DOI: 10.1016/j.ijbiomac.2019.02.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
Carnosine, anserine and homocarnosine are the three most representative compounds of the histidine dipeptides family, widely distributed in mammals in different amounts depending on the species and the tissue considered. Histidine dipeptides are mainly degraded by two different carnosinase homologues: a highly specific metal-ion dependent carnosinase (CN1) located in serum and brain and a non-specific cytosolic form (CN2). The hydrolysis of such dipeptides in prokaryotes and eukaryotes is also catalyzed by the anserinase (ANSN). Such naturally occurring dipeptides represent an interesting topic because they seem to have numerous biological roles such as potential neuroprotective and neurotransmitter functions in the brain and therefore ANSN results to be a very interesting target of study. We here report, for the first time, cloning, expression of ANSN from the fish Oreochromis niloticus both in a mammalian and in a prokaryotic system, in order to perform deep functional studies by enzymatic assays in the presence of different metals and substrates. Furthermore, by means of a mass spectrometry-based proteomic approach, we analysed protein sequence and the potential presence of post-translational modifications in the mammalian recombinant protein. Finally, a preliminary structural characterization was carried out on ANSN produced in Escherichia coli.
Collapse
Affiliation(s)
- L Pirone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - S Di Gaetano
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - E Rizzarelli
- Institute of Biostructure and Bioimaging, CNR, Catania, Italy; Department of Chemical Sciences, University of Catania, Catania, Italy
| | - F Bellia
- Institute of Biostructure and Bioimaging, CNR, Catania, Italy.
| | - E Pedone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy.
| |
Collapse
|
31
|
An update on carnosine and anserine research. Amino Acids 2019; 51:1-4. [PMID: 30617755 DOI: 10.1007/s00726-018-02689-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023]
|
32
|
Haus JM, Thyfault JP. Therapeutic potential of carbonyl-scavenging carnosine derivative in metabolic disorders. J Clin Invest 2018; 128:5198-5200. [PMID: 30352430 PMCID: PMC6264722 DOI: 10.1172/jci124304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Obesity and overnutrition increase levels of reactive sugar- and lipid-derived aldehydes called reactive carbonyl species (RCS). Increased tissue and circulating RCS levels have been tied to insulin resistance and inflammation, but previous pharmacological approaches to target RCS have had equivocal outcomes. In this issue of the JCI, Anderson et al. present evidence for the development and implementation of carnisonol, a compound that is biologically stable in vivo and shows impressive effects on improving metabolism and inflammation in rodent models of diet-induced obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - John P. Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical School, Kansas City, Kansas, USA
| |
Collapse
|