1
|
Wilson KA, Zhou Y, Cunningham G, Chapman K, Summar M, Regier D. A novel, high throughput, and low-cost method for the detection of 40 amines relevant to inborn errors of metabolism, in under 60 min, using reverse phase high performance liquid chromatography. Mol Genet Metab Rep 2025; 43:101202. [PMID: 40110492 PMCID: PMC11919291 DOI: 10.1016/j.ymgmr.2025.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Objectives An assessment of amino acid and amine concentrations is important for the diagnosis and management of inherited metabolic disorders (IMDs). Methods exist that measure these biologically important metabolites but are cost-prohibitive and/or time consuming. We therefore sought to develop a novel methodology, applicable to IMDs, that is both high-throughput and low cost. Methods Previously, we developed a methodology for rapid, repeatable, and cost-efficient separation of approximately 20 amines as a proof of concept and now expand it to amines relevant to IMDs. We describe our separation methodology using reverse phase high performance liquid chromatography with ultraviolet-visible spectrum absorbance paired with pre-column derivatization with o-pthalaldehyde. Results We show reproducibility via concentration assessments, in triplicate, for each amine. We assess amines in prepared standard solutions and in biologic samples from patients with IMDs. We also detected and assessed the amino group containing compounds glutathione (oxidized and reduced forms) and ammonia. Validation was established using absolute area under the curve (AUC) and via comparison using a single internal standard. Conclusions We report good separation of 40 primary amino group containing metabolites, in a single, 53 min run. This rapid, low cost, and accurate methodology only requires a small volume of sample and can greatly increase availability and access. Finally, the numerous amines and unique compounds detected in our single run has large utility and can potentially increase clinical efficiency and broaden access to research, both important as the need for analysis of amines grows globally.
Collapse
Affiliation(s)
- Kirkland A Wilson
- Children's National Rare Disease Institute, Children's National, Washington, DC 20012, United States of America
- Genetics and Molecular Biology Branch, NHGRI, NIH, Bethesda, MD 20892, United States of America
| | - Yun Zhou
- Children's National Rare Disease Institute, Children's National, Washington, DC 20012, United States of America
| | - Gary Cunningham
- Children's National Rare Disease Institute, Children's National, Washington, DC 20012, United States of America
| | - Kimberly Chapman
- Children's Hospital Los Angeles, Sunset Blvd., Los Angeles, CA 90027, United States of America
| | - Marshall Summar
- Uncommon Cures, LLC, Chevy Chase, MD 20815, United States of America
| | - Debra Regier
- Children's National Rare Disease Institute, Children's National, Washington, DC 20012, United States of America
| |
Collapse
|
2
|
Xu Z, Li Y, Shen Y, Wang Y, Yu J, Xiang X, Yang L, He D. An Optimized Microwave-Assisted Extraction and Evaluation of Amino Acids Content and Nutritional Value in Chebulae fructus from Different Origins. Foods 2025; 14:1166. [PMID: 40238272 PMCID: PMC11988458 DOI: 10.3390/foods14071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The aim of this study is to establish a rapid and convenient microwave-assisted digestion method for sample pretreatment to evaluate amino acids in Chebulae fructus (CF). The microwave digestion method was optimized to extract amino acids from CF, and the differences in amino acids in CF from different origins and different processing states were analyzed and evaluated. The influences of digestion temperature, digestion time, and liquid-material ratio on extraction effect were investigated by sing factor test and response surface method (RSM), and the extraction conditions were optimized. The contents of 17 amino acids were determined by an automatic amino acid analyzer. The optimal digestion conditions were a digestion temperature of 150 °C, a digestion time of 18 min, and a liquid-material ratio of 65:1 (mL:g). Under these conditions, the total amino acid content of CF could reach 19.72 mg/g. CF from Lincang city of Yunnan province and unprocessed CF were considered to have higher nutritional value. The results of chemometric analysis showed that there were significant differences in the amino acid content in CF between Guangxi province, Dehong prefecture of Yunnan province, and Lincang city of Yunnan province, and six differential amino acids between the three origins were screened out. This study can provide references for the quality evaluation of the producing area, the extraction, and content research of amino acids of CF.
Collapse
Affiliation(s)
- Zhiqi Xu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Z.X.); (Y.S.); (Y.W.); (J.Y.); (X.X.)
| | - Yan Li
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Yuan Shen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Z.X.); (Y.S.); (Y.W.); (J.Y.); (X.X.)
| | - Yiwu Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Z.X.); (Y.S.); (Y.W.); (J.Y.); (X.X.)
| | - Jialing Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Z.X.); (Y.S.); (Y.W.); (J.Y.); (X.X.)
| | - Xinxin Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Z.X.); (Y.S.); (Y.W.); (J.Y.); (X.X.)
| | - Lin Yang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Dan He
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Z.X.); (Y.S.); (Y.W.); (J.Y.); (X.X.)
| |
Collapse
|
3
|
Niu M, Shan C, Xue C, Xu X, Zhang A, Xiao Y, Wei J, Zou D, Chen GJ, Kyaw AKK, Shum PP. High-Stability Printable Perovskite SERS Substrates in an Aqueous Environment via Plasmon-Induced Resonance Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39991923 DOI: 10.1021/acsami.4c21069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The excellent photoelectric conversion efficiency and tunable bandgap of metal halide perovskites make them highly suitable for SERS applications. However, the low stability of perovskites in water and oxygen greatly hinders their use in SERS detection, particularly in biomolecule detection applications, which often require water-based test solutions. Herein, we report a gold (Au)/perovskite-polyvinylidene difluoride (PVDF) nanocomposite/ZnO nanoflower (GPPZ) SERS substrate capable of functioning in aqueous solutions. Its enhancement ability is attributed to plasmon-induced resonance energy transfer (PIRET) and an electromagnetic mechanism. The surface plasmon resonance created by ultrathin Au and ZnO nanoflowers induces resonance energy transfers to the perovskite via PIRET, facilitating a quasi-matched charge transfer between the perovskite and the probe molecule. The PVDF coating protects the perovskite from water and oxygen without affecting the resonance energy-transfer process. As a result, an enhancement factor (EF) approaching 1 × 106 was achieved for the crystal violet molecule. Additionally, we fabricated a flexible GPPZ substrate using silk screen printing, enabling mass production of an SERS array substrate. The printed flexible GPPZ substrates demonstrated micromole-level cysteine detection with an EF of 6.8 × 105, showing potential for application in hyperhomocysteinemia diagnosis.
Collapse
Affiliation(s)
- Minghui Niu
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengwei Shan
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenlong Xue
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaowei Xu
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aoyan Zhang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yihong Xiao
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junyu Wei
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Defeng Zou
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gina Jinna Chen
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aung Ko Ko Kyaw
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
- Pengcheng Laboratory, Shenzhen 518000, China
| |
Collapse
|
4
|
Wang M, Guo J, Lin H, Zou D, Zhu J, Yang Z, Huang Y, He F. UHPLC-QQQ-MS/MS method for the simultaneous quantification of 18 amino acids in various meats. Front Nutr 2024; 11:1467149. [PMID: 39539371 PMCID: PMC11559428 DOI: 10.3389/fnut.2024.1467149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Amino acids are an essential source of human protein, and their content and composition are the main factors determining food protein utilization rate. Determining amino acids is essential in the component analysis of food. Therefore, a groundbreaking technique was developed utilizing ultra-high performance liquid chromatography interfaced with a triple quadrupole mass spectrometer (UHPLC-QQQ-MS/MS) for concurrently quantifying 18 amino acids across various types of meat. According to the test results, it can be known that the average content of glutamate (2.03 × 104 ± 3.94 × 103 μg/g in pig feet) was the highest in all meat samples, and the content of aspartate (0.0945 ± 0.0950 μg/g in pork) was the lowest, which was not detected in some samples such as beef and lean meat. Orthogonal partial least-squares discrimination analysis (OPLS-DA) showed: (1) 13 amino acids (arginine, valine, serine, alanine, lysine, glycine, asparagine, methionine, proline, threonine, glutamate, phenylalanine, and leucine, VIP > 1) were used as characteristic amino acids between pork and pig feet; (2) serine, threonine, alanine, histidine, asparagine, and arginine (VIP > 1) were used as signature amino acids in different components of pork (lean meat, fat, and pigskin); (3) asparagine, glutamate, histidine, tyrosine, and valine (VIP > 1) were considered as signature amino acids in different types of meats (pork, mutton, beef, and chicken). This study provides a new UHPLC-QQQ-MS/MS method for the determination of amino acid content in meat and also provides data support for the comprehensive evaluation of the nutritional value of foods containing amino acids.
Collapse
Affiliation(s)
- Mengxian Wang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Junxiu Guo
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Huimin Lin
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Dawei Zou
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jiaxuan Zhu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhenyuan Yang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yufeng Huang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Fan He
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
5
|
Kong S, Wang S, He Y, Wang N, Wang Z, Weng L, Liu D, Zhao X, Chen J, Xu J, Cai Y, Ying H. Three-Stage Solid-State Fermentation Technology for Distillers’ Grain Feed Protein Based on Different Microorganisms Considering Oxygen Requirements. FERMENTATION-BASEL 2024; 10:550. [DOI: 10.3390/fermentation10110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The shortage of feed protein has plagued the development of the animal husbandry industry in China. In this study, a new three-stage fermentation technology for producing distillers’ grain feed protein was developed by introducing Aspergillus niger, yeast, and lactic acid bacteria. During the aerobic stage, there was a negative correlation between the reducing sugar content in the distillers’ grains and the amount of Aspergillus niger. The maximum reducing sugar concentration (36.89 mg g−1) was obtained when the oxygen supply was 30 mL min−1 and the fermentation time was two days. During the microaerophilic stage, the natural exchange of oxygen achieved optimal true protein enhancement (from 10.8% to 16.4%) among the three oxygen supply modes (natural exchange, forced ventilation, and filling supplement). During the anaerobic stage, lactic acid bacteria were inoculated for feed protein preservation and flavor enhancement. Our results provided insight and practical guidance for the high-value use of distillers’ grains.
Collapse
Affiliation(s)
- Songlin Kong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yun He
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Nan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Longfei Weng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jinmeng Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
6
|
Naik M, Patil A. Development of an ultra-sensitive laser stimulated fluorescence system for simultaneous detection of amino acids. RSC Adv 2024; 14:34279-34287. [PMID: 39469014 PMCID: PMC11514131 DOI: 10.1039/d4ra04845h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
An ultra-sensitive, high-performance liquid chromatography-based laser-stimulated fluorescence detection system was developed and validated for the simultaneous detection of 20 derivatized amino acids. Dansyl chloride was used as a derivatizing agent, and key derivatization parameters, such as reaction time and temperature, were optimized to enhance sensitivity and reproducibility. The majority of amino acids showed a relative standard deviation of less than 5%, indicating the reliability of the approach. The method demonstrated excellent sensitivity for all 20 amino acids, with detection limits ranging from 4.32 to 85.34 femtomoles. It also exhibited good linearity, with regression (R 2) values greater than 0.98 for the amino acids. The system's performance was tested on human serum, and the eluted amino acids were identified. This method has great potential for analyzing amino acids in various body fluids and can be used in various clinical applications. It is ultra-sensitive, reliable, user-friendly, and cost-effective, offering a valuable tool for diagnosing and managing amino acid-related disorders.
Collapse
Affiliation(s)
- Megha Naik
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education (MAHE) Manipal India-576 104
| | - Ajeetkumar Patil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education (MAHE) Manipal India-576 104
| |
Collapse
|
7
|
Wei Z, Zhang Y, Duan X, Fan Y. Enhancing L-Asparagine Bioproduction Efficiency Through L-Asparagine Synthetase and Polyphosphate Kinase-Coupled Conversion and ATP Regeneration. Appl Biochem Biotechnol 2024; 196:6342-6362. [PMID: 38358456 DOI: 10.1007/s12010-024-04856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
L-Asparagine, a crucial amino acid widely used in both food and medicine, presents pollution-related and side reaction challenges when prepared using chemical synthesis method. Although biotransformation methods offer significant advantages such as high efficiency and mild reaction conditions, they also entail increased costs due to the need for ATP supplementation. This study aimed to address the challenges associated with biopreparation of L-asparagine. Firstly, the functionality and characteristics of recombinant L-asparagine synthetase enzymes derived from Escherichia coli and Lactobacillus salivarius were evaluated to determine their practical applicability. Subsequently, recombinant expression of polyphosphate kinase from Erysipelotrichaceae bacterium was conducted. A reaction system for L-asparagine synthesis was established using a dual enzyme-coupled conversion approach. Under the optimal reaction conditions, a maximum yield of 11.67 g/L of L-asparagine was achieved, with an 88.43% conversion rate, representing a 5.03-fold increase compared to the initial conversion conditions. Notably, the initial addition of ATP was reduced to only 5.66% of the theoretical demand, indicating the effectiveness of our ATP regeneration system. These findings highlight the potential of our approach in enhancing the efficiency of L-asparagine preparation, offering promising prospects for the food and medical industries.
Collapse
Affiliation(s)
- Zijia Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yuhua Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Yucheng Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
8
|
Dai L, Yang L, Wang Y, Li Y, Zhao J, Pan S, Li Y, Yang D, He D. An Optimized Microwave-Assisted Digestion Method to Analyze the Amino Acids Profile of Quisqualis Fructus from Different Planted Origins. Foods 2024; 13:1645. [PMID: 38890873 PMCID: PMC11172225 DOI: 10.3390/foods13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
This study aims to establish a rapid and convenient microwave-assisted digestion method for sample pretreatment to determine amino acid profiles in natural products. This method was applied to analyze the amino acid profiles of Quisqualis Fructus (QF) from different planted origins. The microwave-assisted digestion conditions were optimized by a response surface methodology (RSM), and 17 amino acids in different planted origins of QF were determined by an automatic amino acid analyzer according to the optimized digestion conditions. The contents of 17 amino acids in QF from different planted origins were further analyzed by fingerprint and chemometric analysis. The temperature of microwave digestion at 167 °C, time of microwave digestion at 24 min, and a solid-liquid ratio of 46.5 g/mL was selected as the optimal digestion conditions. The total content of 17 amino acids in QF from different planted origins ranged from 71.88 to 91.03 mg/g. Amino acid composition and nutritional evaluation indicated that the content of medicinal amino acids was higher than aromatic amino acids. The results of fingerprint analysis reflected that the similarity between the 16 batches of QF ranged from 0.889 to 0.999, while chemometrics analysis indicated amino acid content in QF varied from different planted origins, and six important differential amino acids were screened. Compared with the traditional extraction method, microwave-assisted digestion with response surface optimized has the advantages of rapidity, convenience, and reliability, which could be used to study the amino acid profiles in natural products. The amino acid profile of QF indicated that it has a rich medicinal nutritional value. Different planted origins of QF have a high degree of similarity and could be effectively distinguished by chemometric analysis.
Collapse
Affiliation(s)
- Lei Dai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.D.); (J.Z.); (S.P.); (Y.L.); (D.Y.)
| | - Lin Yang
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (L.Y.); (Y.L.)
| | - Yiwu Wang
- Experimental teaching center, Chongqing Medical University, Chongqing 400016, China;
| | - Yan Li
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (L.Y.); (Y.L.)
| | - Jianing Zhao
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.D.); (J.Z.); (S.P.); (Y.L.); (D.Y.)
| | - Shuxiang Pan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.D.); (J.Z.); (S.P.); (Y.L.); (D.Y.)
| | - Yaxuan Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.D.); (J.Z.); (S.P.); (Y.L.); (D.Y.)
| | - Dan Yang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.D.); (J.Z.); (S.P.); (Y.L.); (D.Y.)
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.D.); (J.Z.); (S.P.); (Y.L.); (D.Y.)
| |
Collapse
|
9
|
Song J, Luo C, Lim L, Cheong KL, Farhadi A, Tan K. Protein quality of commercially important edible bivalves. Crit Rev Food Sci Nutr 2024; 65:1950-1961. [PMID: 38329037 DOI: 10.1080/10408398.2024.2315446] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bivalves are a high-quality source of animal protein for human consumption. In recent years, the demand for bivalve proteins has increased dramatically, leading to a sharp increase in global production of marine bivalves. To date, although the amino acid profiles of many bivalves have been reported, such information has not been well organized. Therefore, there is an urgent need for a comprehensive scientific review of the protein quality of bivalves, especially commercially important edible bivalves. In this context, this study was conducted to evaluate the protein quality of commercially important edible bivalves. In general, most bivalves are rich in protein (> 50% of their dry weight) and amino acids (> 30 g/100g protein). Although most species of bivalves are rich in essential amino acids (EAA) (up to 50 g/100g protein), some species of edible bivalves have very low levels of EAA (< 5 g/100g protein). Based on the AA score, almost all bivalves have at least two limiting AAs. Most bivalve proteins provides delicious flavors with unami, sweetness and a hint of bitterness. The findings of this study not only serve as a a guide for selecting appropriate bivalves based on consumer preferences for specific AAs or AA scores, but also provide information on potential bivalve species for aquaculture to produce higher protein quality to meet the growing demand for high quality animal protein.
Collapse
Affiliation(s)
- Jingjing Song
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Cong Luo
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leongseng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
10
|
Zhou B, Utjapimuk S, Yan K, Dubey R, Kikuchi T, Mitsuhashi T, Fujita M. Rapid Analysis of Trace Amounts of Amino Acid Derivatives by a Formyl Group-Installed Crystalline Sponge. Chem Asian J 2023:e202300969. [PMID: 38059774 DOI: 10.1002/asia.202300969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
The Industries need techniques for the rapid structure analysis of amino acid derivatives. The amino acid derivatives are sometimes produced as impurities in the industrial production processes, and cause toxicity problems. Herein, we report the crystalline sponge (CS) method analysis of variety of amino acids using a formyl group installed CS crystal. Most amino acids possess a primary amino group, which can form Schiff-base with the formyl group under mild conditions. Thus, the formyl group installed CS crystal can efficiently capture the amino acids via Schiff-base formation. We successfully analyzed derivatives of 18 proteogenic amino acids, 6 non-proteogenic amino acids, and 4 dipeptides using the formyl group installed CS. We thus believe that the protocols shown in this study would serve the need of the industries.
Collapse
Affiliation(s)
- Boyu Zhou
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Soravit Utjapimuk
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - KaKing Yan
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Ritesh Dubey
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Takaaki Mitsuhashi
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Tokyo College, U-Tokyo Institutes for Advanced Study, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|
11
|
Tsikas D, Beckmann B. Quality Control in Targeted GC-MS for Amino Acid-OMICS. Metabolites 2023; 13:986. [PMID: 37755266 PMCID: PMC10536693 DOI: 10.3390/metabo13090986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Gas chromatography-mass spectrometry (GC-MS) is suitable for the analysis of non-polar analytes. Free amino acids (AA) are polar, zwitterionic, non-volatile and thermally labile analytes. Chemical derivatization of AA is indispensable for their measurement by GC-MS. Specific conversion of AA to their unlabeled methyl esters (d0Me) using 2 M HCl in methanol (CH3OH) is a suitable derivatization procedure (60 min, 80 °C). Performance of this reaction in 2 M HCl in tetradeutero-methanol (CD3OD) generates deuterated methyl esters (d3Me) of AA, which can be used as internal standards in GC-MS. d0Me-AA and d3Me-AA require subsequent conversion to their pentafluoropropionyl (PFP) derivatives for GC-MS analysis using pentafluoropropionic anhydride (PFPA) in ethyl acetate (30 min, 65 °C). d0Me-AA-PFP and d3Me-AA-PFP derivatives of AA are readily extractable into water-immiscible, GC-compatible organic solvents such as toluene. d0Me-AA-PFP and d3Me-AA-PFP derivatives are stable in toluene extracts for several weeks, thus enabling high throughput quantitative measurement of biological AA by GC-MS using in situ prepared d3Me-AA as internal standards in OMICS format. Here, we describe the development of a novel OMICS-compatible QC system and demonstrate its utility for the quality control of quantitative analysis of 21 free AA and metabolites in human plasma samples by GC-MS as Me-PFP derivatives. The QC system involves cross-standardization of the concentrations of the AA in their aqueous solutions at four concentration levels and a quantitative control of AA at the same four concentration levels in pooled human plasma samples. The retention time (tR)-based isotope effects (IE) and the difference (δ(H/D) of the retention times of the d0Me-AA-PFP derivatives (tR(H)) and the d3Me-AA-PFP derivatives (tR(D)) were determined in study human plasma samples of a nutritional study (n = 353) and in co-processed QC human plasma samples (n = 64). In total, more than 400 plasma samples were measured in eight runs in seven working days performed by a single person. The proposed QC system provides information about the quantitative performance of the GC-MS analysis of AA in human plasma. IE, δ(H/D) and a massive drop of the peak area values of the d3Me-AA-PFP derivatives may be suitable as additional parameters of qualitative analysis in targeted GC-MS amino acid-OMICS.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30623 Hannover, Germany
| | | |
Collapse
|
12
|
Ding Y, Bi Q, Huang D, Liao J, Yang L, Luo X, Yang P, Li Y, Yao C, Wei W, Zhang J, Li J, Huang Y, Guo DA. A novel integrated automatic strategy for amino acid composition analysis of seeds from 67 species. Food Chem 2023; 426:136670. [PMID: 37354578 DOI: 10.1016/j.foodchem.2023.136670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
The composition and quantity of amino acids (AAs) in seeds are complicated due to the various origins and modifications of different species. In this study, a novel automatic neutral loss filtering (ANLF) strategy based on accurate mass searching by Python was developed to analyze the free and hydrolyzed AA-phenyl isothiocyanate (PITC) derivatives from seeds of Gymnosperm and Angiosperm phyla. Compared with traditional strategies, ANLF showed much higher accuracy in screening AA derivatives by filtering nitrogen-containing non-AA compounds and efficiency in processing large datasets. Meanwhile, the content phenotype of 20 proteinogenic AAs from seeds of these two families was characterized by a 35-min HPLC method combined with an automated peak-matching strategy. AA profiles of 232 batches of seeds from 67 species, consisting of 19 proteinogenic AAs, 21 modified AAs, and 77 unknown AAs, would be a good reference for their application in food and medicine.
Collapse
Affiliation(s)
- Yelin Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dongdong Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingmei Liao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoxiao Luo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peilei Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiayuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-An Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
13
|
Zhao R, Huang B, Lu G, Fu S, Ying J, Zhao Y. A Practical Method for Amino Acid Analysis by LC-MS Using Precolumn Derivatization with Urea. Int J Mol Sci 2023; 24:ijms24087332. [PMID: 37108497 PMCID: PMC10138926 DOI: 10.3390/ijms24087332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Amino acid (AA) analysis is important in biochemistry, food science, and clinical medicine. However, due to intrinsic limitations, AAs usually require derivatization to improve their separation and determination. Here, we present a liquid chromatography-mass spectrometry (LC-MS) method for the derivatization of AAs using the simple agent urea. The reactions proceed quantitatively under a wide range of conditions without any pretreatment steps. Urea-derivatized products (carbamoyl amino acids) of 20 AAs exhibit better separation on reversed-phase columns and increased response in a UV detector compared to underivatized ones. We applied this approach to AA analysis in complex samples using a cell culture media as a model, and it showed potential for the determination of oligopeptides. This fast, simple, and inexpensive method should be useful for AA analysis in complex samples.
Collapse
Affiliation(s)
- Runjin Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Gang Lu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Wang FX, Chen Y, Liang YM, Yang M, Kang C. Interference-free quantitation of aromatic amino acids in two complex systems by three-way calibration with ultraviolet-visible spectrophotometer: Exploration of trilinear decomposition of spectrum-pH data. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122293. [PMID: 36608519 DOI: 10.1016/j.saa.2022.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Aromatic amino acids play an extremely important role in life activities and participate in many biological processes. Their concentration levels are associated with a variety of diseases, such as phenylketonuria and colorectal cancer. Therefore, the quantification of aromatic amino acids is an important task. In the present work, a novel and rapid three-way analytical method was proposed to detect the levels of aromatic amino acids in prostate cancer cells (PC3 cells) and Dulbecco's modified minimal essential medium (DMEM cell culture), by using the affordable ultraviolet-visible spectrophotometer. First, spectrum-pH second-order data were designed per sample; Second, properties of the resulted spectrum-pH-sample three-way data were investigated by utilizing the parallel factor analysis (PARAFAC), alternating trilinear decomposition (ATLD), and constrained alternating trilinear decomposition (CATLD) algorithms, and a flexible scanning approach for determining the constraint parameters of CATLD was proposed; Third, a three-way calibration method based on the CATLD algorithm with the proposed scanning approach was developed for interference-free quantification of aromatic amino acids in these systems. The average relative predictive errors of validation (ARPEV) for phenylalanine, tyrosine, and tryptophan were 1.4%, 3.0%, and 0.7% in prostate cancer cells, and ARPEV for phenylalanine, tyrosine, and tryptophan were 4.1%, 1.2%, and 0.7% in DMEM cell culture. The predicted contents of tyrosine and tryptophan in DMEM cell culture were 64.2 ± 2.9 μg mL-1, 5.6 ± 0.3 μg mL-1, there are no significant differences in the concentrations between the developed analytical method and high performance liquid chromatography method. The proposed spectrum-pH-sample three-way calibration method based on CATLD algorithm can provide an interesting analytical strategy with high selectivity and accuracy for ultraviolet-visible spectrophotometer.
Collapse
Affiliation(s)
- Fu-Xin Wang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yan-Mei Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Min Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
15
|
Wang H, Ni X, Dong W, Qin W, Xu L, Jiang Y. Accurately quantified plasma free glycine concentration as a biomarker in patients with acute ischemic stroke. Amino Acids 2023; 55:385-402. [PMID: 36697969 DOI: 10.1007/s00726-023-03236-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
We developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method to study the change of plasma levels of free glycine (Gly) in patients with acute ischemic stroke (AIS). Twenty-four patients with AIS confirmed by diffusion-weighted imaging (DWI) were enrolled. During the study period, the patients did not receive any supplemental amino acids therapy that could affect the obtained results. Our results showed that although AIS patients adopted different methods of treatment (thrombolytic and non-thrombolytic), the clinical NIHSS score of AIS showed a downward trend whereas Gly concentration showed increased trend. Moreover, plasma free Gly concentration was positively correlated with ASPECTS score. The correlation between Gly levels and infarct volume showed a statistical significance. That is to say, higher Gly level predicted smaller infarct size. Thus, the change of free Gly level in plasma could be considered as a potential biomarker of AIS.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaoyu Ni
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Weichong Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Weiman Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Lei Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| | - Ye Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
16
|
Use of some amino acid potentiometric biosensors as detectors in ion chromatography. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
17
|
Ng DHJ, Chan LY, Fitzner L, Keppler JK, Ismail SM, Hird S, Hancock P, Karin S, Tobias D. A novel screening method for free non-standard amino acids in human plasma samples using AccQ·Tag reagents and LC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:445-454. [PMID: 36602091 DOI: 10.1039/d2ay01588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There are at least 500 naturally occurring amino acids, of which only 20 standard proteinogenic amino acids are used universally across all organisms in the synthesis of peptides and proteins. Non-standard amino acids can be incorporated into proteins or are intermediates and products of metabolic pathways. While the analysis of standard amino acids is well-defined, the analysis of non-standard amino acids can be challenging due to the wide range of physicochemical properties, and the lack of both reference standards and information in curated databases to aid compound identification. It has been shown that the use of an AccQ·Tag™ derivatization kit along with LC-MS/MS is an attractive option for the analysis of free standard amino acids in complex samples because it is fast, sensitive, reproducible, and selective. It has been demonstrated that the most abundant quantitative transition for MS/MS analysis of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatized amino acids corresponds to the fragmentation of the molecule at the 6-aminoquinoline carbonyl group producing a common m/z 171 fragment ion and occurs at similar mass spectrometry collision energy and cone voltages. In this study, the unique properties of AQC derivatized amino acids producing high intensity common fragment ions, along with chromatographic separation of amino acids under generic chromatography conditions, were used to develop a novel screening method for the detection of trace levels of non-standard amino acids in complex matrices. Structural elucidation was carried out by comparing the MS/MS fragment ion mass spectra generated with in silico predicted fragmentation spectra to enable a putative identification, which was confirmed using an appropriate analytical standard. This workflow was applied to screen human plasma samples for bioactive thiol-group modified cysteine amino acids and S-allylmercaptocysteine (SAMC), S-allylcysteine sulfoxide (SACS or alliin) and S-propenylcysteine (S1PC) are reported for the first time to be present in human plasma samples after the administration of garlic supplements.
Collapse
Affiliation(s)
- Daniel H J Ng
- International Food and Water Research Centre, Waters Pacific Pte Ltd, 1 Science Park Road #01-10, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore.
| | - Li Yan Chan
- International Food and Water Research Centre, Waters Pacific Pte Ltd, 1 Science Park Road #01-10, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore.
| | - Laura Fitzner
- Division of Food Technology, Kiel University, Heinrich-Hecht Platz 10, Kiel, 24118, Germany
| | - Julia Katharina Keppler
- Division of Food Technology, Kiel University, Heinrich-Hecht Platz 10, Kiel, 24118, Germany
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Shareef M Ismail
- Global Service Education, Waters Pacific Pte Ltd, 1 Science Park Road #01-10, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Simon Hird
- Food and Environment Scientific Operations, Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Peter Hancock
- Food and Environment Scientific Operations, Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Schwarz Karin
- Division of Food Technology, Kiel University, Heinrich-Hecht Platz 10, Kiel, 24118, Germany
| | - Demetrowitsch Tobias
- Division of Food Technology, Kiel University, Heinrich-Hecht Platz 10, Kiel, 24118, Germany
| |
Collapse
|
18
|
Taghizadeh H, Emamgholipour S, Hosseinkhani S, Arjmand B, Rezaei N, Dilmaghani-Marand A, Ghasemi E, Panahi N, Dehghanbanadaki H, Ghodssi-Ghassemabadi R, Najjar N, Asadi M, khoshniat M, Larijani B, Razi F. The association between acylcarnitine and amino acids profile and metabolic syndrome and its components in Iranian adults: Data from STEPs 2016. Front Endocrinol (Lausanne) 2023; 14:1058952. [PMID: 36923214 PMCID: PMC10008865 DOI: 10.3389/fendo.2023.1058952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Evidence, albeit with conflicting results, has suggested that cardiometabolic risk factors, including obesity, type 2 diabetes (T2D), dyslipidemia, and hypertension, are highly associated with changes in metabolic signature, especially plasma amino acids and acylcarnitines levels. Here, we aimed to evaluate the association of circulating levels of amino acids and acylcarnitines with metabolic syndrome (MetS) and its components in Iranian adults. METHODS This cross-sectional study was performed on 1192 participants from the large-scale cross-sectional study of Surveillance of Risk Factors of non-communicable diseases (NCDs) in Iran (STEP 2016). The circulating levels of amino acids and acylcarnitines were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in individuals with MetS (n=529) and without MetS (n=663). RESULTS The higher plasma levels of branched-chain amino acids (Val, Leu), aromatic amino acids (Phe, Tyr), Pro, Ala, Glu, and the ratio of Asp to Asn were significantly associated with MetS, whereas lower circulating levels of Gly, Ser, His, Asn, and citrulline were significantly associated with MetS. As for plasma levels of free carnitine and acylcarnitines, higher levels of short-chain acylcarnitines (C2, C3, C4DC), free carnitine (C0), and long-chain acylcarnitines (C16, C18OH) were significantly associated with MetS. Principal component analysis (PCA) showed that factor 3 (Tyr, Leu, Val, Met, Trp, Phe, Thr) [OR:1.165, 95% CI: 1.121-1.210, P<0.001], factor 7 (C0, C3, C4) [OR:1.257, 95% CI: 1.150-1.374, P<0.001], factor 8 (Gly, Ser) [OR:0.718, 95% CI: 0.651-0.793, P< 0.001], factor 9 (Ala, Pro, C4DC) [OR:1.883, 95% CI: 1.669-2.124, P<0.001], factor 10 (Glu, Asp, C18:2OH) [OR:1.132, 95% CI: 1.032-1.242, P= 0.009], factor 11 (citrulline, ornithine) [OR:0.862, 95% CI: 0.778-0.955, P= 0.004] and 13 (C18OH, C18:1 OH) [OR: 1.242, 95% CI: 1.042-1.480, P= 0.016] were independently correlated with metabolic syndrome. CONCLUSION Change in amino acid, and acylcarnitines profiles were seen in patients with MetS. Moreover, the alteration in the circulating levels of amino acids and acylcarnitines is along with an increase in MetS component number. It also seems that amino acid and acylcarnitines profiles can provide valuable information on evaluating and monitoring MetS risk. However, further studies are needed to establish this concept.
Collapse
Affiliation(s)
- Hananeh Taghizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Hosseinkhani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran, Iran
| | - Negar Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Dilmaghani-Marand
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nekoo Panahi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Dehghanbanadaki
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Najjar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen khoshniat
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Farideh Razi,
| |
Collapse
|
19
|
Stable-Isotope Dilution GC-MS Measurement of Metformin in Human Serum and Urine after Derivatization with Pentafluoropropionic Anhydride and Its Application in Becker Muscular Dystrophy Patients Administered with Metformin, l-Citrulline, or Their Combination. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123850. [PMID: 35744973 PMCID: PMC9229792 DOI: 10.3390/molecules27123850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Metformin (N,N-dimethylguanylguanidine) is one of the most prescribed drugs with pleiotropic, exerted in part by not fully elucidated mechanisms of action. We developed and validated a gas chromatography-mass spectrometry (GC-MS) method for the quantitative analysis of metformin (metformin-d0) in 10-µL aliquots of human serum and urine using N,N-[dimethylo-2H6]guanylguanidine (metformin-d6) as the internal standard. The method involves evaporation of the samples to dryness, derivatization with pentafluoropropionic (PFP) anhydride in ethyl acetate (30 min, 65 °C), and extraction into toluene. The negative-ion chemical ionization GC-MS spectra of the PFP derivatives contain a single intense ion with mass-to-charge (m/z) ratios of m/z 383 for metformin-d0 and m/z 389 for metformin-d6. Our results suggest that all amine/imine groups of metformin-d0 and metformin-d6 are converted to their N,N,N-tripentafluoropropionyl derivatives, which cyclize to form a symmetric triazine derivative, of which the non-ring amine group is amidated. Quantification was performed by selected-ion monitoring (SIM) of m/z 383 and m/z 389. Upon validation, the method was applied to determine serum and urine metformin concentrations in 19 patients with Becker muscular dystrophy (BMD). Serum and urine samples were collected at baseline (Visit I), after six weeks of supplementation (Visit II) with metformin (3 × 500 mg/d; metformin group; n = 10) or l-citrulline (3 × 1500 mg/d; citrulline group; n = 9) followed by a six-week supplementation with 3 × 500 mg/d of metformin plus 3 × 1500 mg/d l-citrulline. At Visit I, the metformin concentration in the serum and urine was very low in both groups. The metformin concentrations in the serum and urine of the patients who first took metformin (MET group) were higher at Visit II and Visit III. The metformin concentration in the serum and urine samples of the patients who first took l-citrulline (CITR group) were higher at Visit III. The serum and urine concentrations of metformin were insignificantly lower in the CITR group at Visit III. The mean fractional excretion (FE) rate of metformin was 307% (Visit II) and 322% (Visit III) in the MET group, and 290% in the CITR group (Visit III). This observation suggests the accumulation of metformin in the kidney and its secretion in the urine. The GC-MS is suitable to measure reliably circulating and excretory metformin in clinical settings.
Collapse
|
20
|
de Zawadzki A, Thiele M, Suvitaival T, Wretlind A, Kim M, Ali M, Bjerre AF, Stahr K, Mattila I, Hansen T, Krag A, Legido-Quigley C. High-Throughput UHPLC-MS to Screen Metabolites in Feces for Gut Metabolic Health. Metabolites 2022; 12:metabo12030211. [PMID: 35323654 PMCID: PMC8950041 DOI: 10.3390/metabo12030211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Feces are the product of our diets and have been linked to diseases of the gut, including Chron’s disease and metabolic diseases such as diabetes. For screening metabolites in heterogeneous samples such as feces, it is necessary to use fast and reproducible analytical methods that maximize metabolite detection. As sample preparation is crucial to obtain high quality data in MS-based clinical metabolomics, we developed a novel, efficient and robust method for preparing fecal samples for analysis with a focus in reducing aliquoting and detecting both polar and non-polar metabolites. Fecal samples (n = 475) from patients with alcohol-related liver disease and healthy controls were prepared according to the proposed method and analyzed in an UHPLC-QQQ targeted platform in order to obtain a quantitative profile of compounds that impact liver-gut axis metabolism. MS analyses of the prepared fecal samples have shown reproducibility and coverage of n = 28 metabolites, mostly comprising bile acids and amino acids. We report metabolite-wise relative standard deviation (RSD) in quality control samples, inter-day repeatability, LOD (limit of detection), LOQ (limit of quantification), range of linearity and method recovery. The average concentrations for 135 healthy participants are reported here for clinical applications. Our high-throughput method provides a novel tool for investigating gut-liver axis metabolism in liver-related diseases using a noninvasive collected sample.
Collapse
Affiliation(s)
- Andressa de Zawadzki
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Odense University Hospital, 5000 Odense, Denmark; (M.T.); (A.K.)
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Tommi Suvitaival
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Asger Wretlind
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Min Kim
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Mina Ali
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Annette F. Bjerre
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Karin Stahr
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Ismo Mattila
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, 5000 Odense, Denmark; (M.T.); (A.K.)
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Cristina Legido-Quigley
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
- Institute of Pharmaceutical Science, King’s College London, London SE19NH, UK
- Correspondence:
| |
Collapse
|
21
|
A UHPLC-PDA method for the quantitative analysis of total amino acids in infant formula with microwave-assisted acid hydrolysis. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02078-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Dinu A, Apetrei C. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan. Int J Mol Sci 2022; 23:1218. [PMID: 35163145 PMCID: PMC8835779 DOI: 10.3390/ijms23031218] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the studies on developing sensors and biosensors-with an obvious interdisciplinary character-have drawn the attention of many researchers specializing in various fundamental, but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and is aimed at synthesizing the most relevant studies on the construction and functioning of versatile devices, of electrochemical sensors and biosensors, respectively. The first part presents examples of the most representative scientific research focusing on the role and the importance of the phenylalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure and their impact on the central nervous system. The second part is dedicated to presenting and exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors and biosensors developed so far to detect amino acids with the aid of conductor polymers and molecularly imprinted polymers from the point of view of the performances obtained, with emphasis on the detection methods, on the electrochemical reactions that take place upon detection, and on the electroanalytical performances. The present study was carried out with a view to highlighting, for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing efficient devices that might be used in the quality control of medicines, as well as in studying and monitoring diseases associated with these amino acids.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, RO-800008 Galati, Romania;
| |
Collapse
|
23
|
Ren W, Wang T, Hu X, Li Y, Ji Z, Guo H, Cao H, Huang J. Development and application of sequential window acquisition of all theoretical mass spectra data acquisition modes on ultra-high-performance liquid chromatography triple-quadrupole/time-of-flight mass spectrometry for metabolic profiling of amino acids in human plasma. J Sep Sci 2021; 44:4209-4221. [PMID: 34592055 DOI: 10.1002/jssc.202100573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/06/2022]
Abstract
Accumulating evidence suggests that amino acids are important indicators of nutritional and metabolic status. A high-resolution mass spectrometry method based on sequential window acquisition of all theoretical mass spectra acquisition was developed for the simultaneous determination of 16 amino acids in human plasma. Sample preparation by protein precipitation using a mixture of acetonitrile and formic acid was followed by a BEH Amide column. The superiority of this method was investigated by comparing it to time-of-flight scan and multiple reaction monitoring modes. The limit of detection in sequential window acquisition of all theoretical mass spectra mode for threonine, methionine, histidine, citrulline, and tryptophan is 0.1 ng on the column; for lysine and asparagine is 0.2 ng; for alanine, pyroglutamic acid, leucine, ornithine, and aspartate is 0.5 ng, for arginine is 1.0 ng; for glutamate and serine is 2.0 ng; for glutamine is 10.0 ng. This method was linear in the range 0.8-40 μg/mL for arginine, citrulline, glutamate, histidine, leucine, methionine, pyroglutamic acid, threonine, tryptophan; 2-100 μg/mL for asparagine, aspartate, lysine, ornithine, serine; and 4-200 μg/mL for alanine, glutamine with good accuracy and precision. Significantly different levels in 11 amino acids were observed between childhood and adulthood, representing the growth and development of individuals relating to the level of amino acids.
Collapse
Affiliation(s)
- Wenbo Ren
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Tingting Wang
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Xiuhong Hu
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Yanyan Li
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Zhengchao Ji
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Haiyang Guo
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Haiwei Cao
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Jing Huang
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| |
Collapse
|
24
|
Ahn HT, Jang IS, Dang TV, Kim YH, Lee DH, Choi HS, Yu BJ, Kim MI. Effective Cryopreservation of a Bioluminescent Auxotrophic Escherichia coli-Based Amino Acid Array to Enable Long-Term Ready-to-Use Applications. BIOSENSORS-BASEL 2021; 11:bios11080252. [PMID: 34436054 PMCID: PMC8393857 DOI: 10.3390/bios11080252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
Amino acid arrays comprising bioluminescent amino acid auxotrophic Escherichia coli are effective systems to quantitatively determine multiple amino acids. However, there is a need to develop a method for convenient long-term preservation of the array to enable its practical applications. Here, we reported a potential strategy to efficiently maintain cell viability within the portable array. The method involves immobilization of cells within agarose gel supplemented with an appropriate cryoprotectant in individual wells of a 96-well plate, followed by storage under freezing conditions. Six cryoprotectants, namely dimethyl sulfoxide, glycerol, ethylene glycol, polyethylene glycol, sucrose, and trehalose, were tested in the methionine (Met) auxotroph-based array. Carbohydrate-type cryoprotectants (glycerol, sucrose, and trehalose) efficiently preserved the linearity of determination of Met concentration. In particular, the array with 5% trehalose exhibited the best performance. The Met array with 5% trehalose could determine Met concentration with high linearity (R2 value = approximately 0.99) even after storage at −20 °C for up to 3 months. The clinical utilities of the Met and Leu array, preserved at −20 °C for 3 months, were also verified by successfully quantifying Met and Leu in spiked blood serum samples for the diagnosis of the corresponding metabolic diseases. This long-term preservation protocol enables the development of a ready-to-use bioluminescent E. coli-based amino acid array to quantify multiple amino acids and can replace the currently used laborious analytical methods.
Collapse
Affiliation(s)
- Hee Tae Ahn
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - In Seung Jang
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Thinh Viet Dang
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - Yi Hyang Kim
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Dong Hoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - Hyeun Seok Choi
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Byung Jo Yu
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
- Correspondence: (B.J.Y.); (M.I.K.); Tel.: +82-41-589-8456 (B.J.Y.); +82-31-750-8563 (M.I.K.)
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
- Correspondence: (B.J.Y.); (M.I.K.); Tel.: +82-41-589-8456 (B.J.Y.); +82-31-750-8563 (M.I.K.)
| |
Collapse
|
25
|
Zhang L, Zheng W, Li X, Wang S, Xiao M, Xiao R, Zhang D, Ke N, Cai H, Cheng J, Chen X, Gong M. A merged method for targeted analysis of amino acids and derivatives using parallel reaction monitoring combined with untargeted profiling by HILIC-Q-Orbitrap HRMS. J Pharm Biomed Anal 2021; 203:114208. [PMID: 34148019 DOI: 10.1016/j.jpba.2021.114208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
With continuously increased scan rate and sensitivity, high resolution mass spectrometry (HRMS) allows for both reliable targeted analysis (e.g., parallel reaction monitoring, PRM) and a global overview for discovery-based untargeted profiling (e.g., data dependent acquisition, DDA) to be performed. Based on previous study on PRM for large scale targeted metabolomics quantification, we developed an innovative method merged targeted and untargeted approaches in a single run. In our workflow, the scheduled PRM for targeted analysis of amino acids and derivatives combined with the full scan was acquired in every sample injection by hydrophilic interaction liquid chromatography tandem quadrupole-Orbitrap high resolution mass spectrometry (HILIC-Q-Orbitrap HRMS). The identification of metabolic features from full scan was further performed with DDA methodology on grouped quality control (QC) samples and matched with available database. Specifically, 20 amino acids and 40 derivatives were selected for targeted analysis with optimal chromatographic separation and PRM parameters. All isomers within the selected metabolites were totally separated in the robust HILIC condition. 36 of selected metabolites were well-detected and showed a good linearity and reproducibility in NIST SRM 1950 plasma. Moreover, the absolute quantification performance of targeted PRM method was systematically validated using 10 amino acids with the corresponding stable isotope-labeled internal standards (SIL-IS). Finally, the newly developed method was successfully applied to analysis of the plasma samples from patients of pancreatic benign tumor and pancreatic cancer. The significant reduction of circulating amino acids in patients with pancreatic malignancy was confirmed by targeted PRM method and other amino acids modifications as well as polar metabolites were identified with untargeted profiling. Therefore, we have established a workflow that combines specifically and reliably targeted PRM method as well as broad-coverage untargeted profiling, which provides an innovative strategy for basic and clinical metabolomics study.
Collapse
Affiliation(s)
- Lu Zhang
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Zheng
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Li
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shisheng Wang
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming Xiao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Xiao
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dingkun Zhang
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nengwen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huawei Cai
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolei Chen
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Meng Gong
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Esmati P, Najjar N, Emamgholipour S, Hosseinkhani S, Arjmand B, Soleimani A, Kakaii A, Razi F. Mass spectrometry with derivatization method for concurrent measurement of amino acids and acylcarnitines in plasma of diabetic type 2 patients with diabetic nephropathy. J Diabetes Metab Disord 2021; 20:591-599. [PMID: 34222079 PMCID: PMC8212236 DOI: 10.1007/s40200-021-00786-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/20/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Amino acids (AAs) and acylcarnitines play a key role in metabolic disease and can be used as biomarkers of various diseases such as malignancies, type 2 diabetes (T2D), insulin resistance, and cardiovascular diseases, therefore, designing an accurate and simple laboratory method that simultaneously measure both groups of substances, could improve the process of analytes quantification. In this research, a flow injection tandem mass spectrometry (FI-MS/MS) method for simultaneous measurement of AAs and acylcarnitines in addition to results of validation is explained. METHODS Samples were mixed with internal standards and after derivatization (with butanolic-HCL), AAs, and acylcarnitines were quantified by tandem mass spectrometry (SCIEX API 3200). Analytical performance studies were designed based on the Clinical and Laboratory Standards Institute (CLSI) guidelines including precision, accuracy, linearity, and limit of detection-quantification (LOD-LOQ) experiments. Samples from patients with T2D in different stages of kidney disease were also analyzed to ensure the clinical usage of the method. RESULTS Performance evaluation of the method demonstrated adequate results. The mean of estimated inter-assay precision (reported as a coefficient variation) for AAs and acylcarnitines were less than 8.7% and 12.3%, the estimated mean bias was below 8.8% and 10.2% respectively. LOD of analytes ranged between 0.6-10 μmol per liter (μmol/L) for AAs and 0.02-1 μmol/L for acylcarnitines. LOQ analytes showed a range of 2-25 μmol/L and 0.05-5 μmol/L for AAs and carnitine/acylcarnitines respectively. In diabetic patients sample analysis, a significant increase in acylcarnitines (C2, C4, C5DC, C6, C8, C10, C14) and citrulline with a significant decrease in valine were seen in patients with severely increased albuminuria. CONCLUSION FI-MS/MS method with pre-injection derivatization with butanolic-HCL can be used for concurrent measurement of AAs and carnitine/acylcarnitines in a short time and it satisfies the analytical performance requirements. This method is applied for AAs and carnitine/acylcarnitines measurement in patient with T2DM and results show some of the acylcarnitines and AAs can be involved in diabetic nephropathy development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40200-021-00786-3.
Collapse
Affiliation(s)
- Parsa Esmati
- Department of mechanical engineering, University of Bristol, Bristol, UK
- Metabolomics and genomics research center, Endocrinology and metabolism molecular-cellular sciences institute, Tehran University of medical sciences, Tehran, Iran
| | - Niloufar Najjar
- Metabolomics and genomics research center, Endocrinology and metabolism molecular-cellular sciences institute, Tehran University of medical sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Hosseinkhani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and genomics research center, Endocrinology and metabolism molecular-cellular sciences institute, Tehran University of medical sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Soleimani
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Kakaii
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Beneath Dr. Shariati Hospital, Gomnam Highway, Tehran, Iran
| |
Collapse
|
27
|
GC-MS Discrimination of Citrulline from Ornithine and Homocitrulline from Lysine by Chemical Derivatization: Evidence of Formation of N5-Carboxy-ornithine and N6-Carboxy-lysine. Molecules 2021; 26:molecules26082301. [PMID: 33921162 PMCID: PMC8071523 DOI: 10.3390/molecules26082301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/01/2022] Open
Abstract
Derivatization of amino acids by 2 M HCl/CH3OH (60 min, 80 °C) followed by derivatization of the intermediate methyl esters with pentafluoropropionic anhydride (PFPA) in ethyl acetate (30 min, 65 °C) is a useful two-step derivatization procedure (procedure A) for their quantitative measurement in biological samples by gas chromatography-mass spectrometry (GC-MS) as methyl ester pentafluoropropionic (PFP) derivatives, (Me)m-(PFP)n. This procedure allows in situ preparation of trideutero-methyl esters PFP derivatives, (d3Me)m-(PFP)n, from synthetic amino acids and 2 M HCl/CD3OD for use as internal standards. However, procedure A converts citrulline (Cit) to ornithine (Orn) and homocitrulline (hCit) to lysine (Lys) due to the instability of their carbamide groups under the acidic conditions of the esterification step. In the present study, we investigated whether reversing the order of the two-step derivatization may allow discrimination and simultaneous analysis of these amino acids. Pentafluoropropionylation (30 min, 65 °C) and subsequent methyl esterification (30 min, 80 °C), i.e., procedure B, of Cit resulted in the formation of six open and cyclic reaction products. The most abundant product is likely to be N5-Carboxy-Orn. The second most abundant product was confirmed to be Orn. The most abundant reaction product of hCit was confirmed to be Lys, with the minor reaction product likely being N6-Carboxy-Lys. Mechanisms are proposed for the formation of the reaction products of Cit and hCit via procedure B. It is assumed that at the first derivatization step, amino acids form (N,O)-PFP derivatives including mixed anhydrides. At the second derivatization step, the Cit-(PFP)4 and hCit-(PFP)4 are esterified on their C1-Carboxylic groups and on their activated Nureido groups. Procedure B also allows in situ preparation of (d3Me)m-(PFP)n from synthetic amino acids for use as internal standards. It is demonstrated that the derivatization procedure B enables discrimination between Cit and Orn, and between hCit and Lys. The utility of procedure B to measure simultaneously these amino acids in biological samples such as plasma and urine remains to be demonstrated. Further work is required to optimize the derivatization conditions of procedure B for biological amino acids.
Collapse
|
28
|
Baskal S, Bollenbach A, Tsikas D. Two-Step Derivatization of Amino Acids for Stable-Isotope Dilution GC-MS Analysis: Long-Term Stability of Methyl Ester-Pentafluoropropionic Derivatives in Toluene Extracts. Molecules 2021; 26:molecules26061726. [PMID: 33808814 PMCID: PMC8003615 DOI: 10.3390/molecules26061726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023] Open
Abstract
Analysis of amino acids by gas chromatography-mass spectrometry (GC–MS) requires at least one derivatization step to enable solubility in GC–MS-compatible water-immiscible organic solvents such as toluene, to make them volatile to introduce into the gas chromatograph and thermally stable enough for separation in the GC column and introduction into the ion-source, and finally to increase their ionization by increasing their electronegativity using F-rich reagents. In this work we investigated the long-term stability of the methyl esters pentafluoropropionic (Me-PFP) derivatives of 21 urinary amino acids prepared by a two-step derivatization procedure and extraction by toluene. In situ prepared trideuteromethyl ester pentafluoropropionic derivatives were used as internal standards. GC–MS analysis (injection of 1 µL aliquots and quantification by selected-ion monitoring of specific mass fragments) was performed on days 1, 2, 8, and 15. Measured peak areas and calculated peak area ratios were used to evaluate the stability of the derivatives of endogenous amino acids and their internal standards, as well as the precision and the accuracy of the method. All analyses were performed under routine conditions. Me-PFP derivatives of endogenous amino acids and their stable-isotope labelled analogs were stable in toluene for 14 days. The peak area values of the derivatives of most amino acids and their internal standards were slightly higher on days 8 and 15 compared to days 1 and 2, yet the peak area ratio values of endogenous amino acids to their internal standards did not change. Our study indicates that Me-PFP derivatives of amino acids from human urine samples can easily be prepared, are stable at least for 14 days in the extraction solvent toluene, and allow for precise and accurate quantitative measurements by GC–MS using in situ prepared deuterium-labelled methyl ester as internal standard.
Collapse
|