1
|
Guo JS, Wang JY, Chen SH, Deng YP, Gao QY, Liu ZX, Liu J, Lv K, Liu N, Bai GY, Shan CL, Feng XQ, Li J. The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide. Biochem Pharmacol 2025; 233:116759. [PMID: 39862990 DOI: 10.1016/j.bcp.2025.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL: commercial name ACT001) has been tested in clinical trials for recurrent GBM. Our previous work has revealed that MCL/DMAMCL could suppress the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue. Intriguingly, MCL does not affect the enzymatic activity of GAPDH but facilitates the nuclear translocation of the GAPDH/Siah1 (E3 ligase) complex. Furthermore, MCL/DMAMCL can exacerbate temozolomide (TMZ)-induced DNA damage. This treatment synergistically induced GBM cell death and suppressed tumour growth in a GBM xenograft mouse model. Collectively, our results reveal that MCL triggers non-glycolysis-related functions of GAPDH and that MCL promotes GBM cell death, especially when combined with TMZ, thus providing a novel strategy for clinical GBM treatment.
Collapse
Affiliation(s)
- Jian-Shuang Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China; College of Pharmacy, Hebei University, Baoding 071002, China
| | - Ji-Yan Wang
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Sheng-Hua Chen
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Yang-Ping Deng
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Qian-Yu Gao
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Zi-Xiao Liu
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Ju Liu
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Ke Lv
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Ning Liu
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Gui-Ying Bai
- Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chang-Liang Shan
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Xue-Quan Feng
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China.
| | - Jing Li
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China; College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Qin S, Zhang X, Zhang Y, Miao D, Wei W, Bai Y. Multi-dimensional bio mass cytometry: simultaneous analysis of cytoplasmic proteins and metabolites on single cells. Chem Sci 2025; 16:3187-3197. [PMID: 39840293 PMCID: PMC11744326 DOI: 10.1039/d4sc05055j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Single-cell multi-dimensional analysis enables more profound biological insight, providing a comprehensive understanding of cell physiological processes. Due to limited cellular contents, the lack of protein and metabolite amplification ability, and the complex cytoplasmic environment, the simultaneous analysis of intracellular proteins and metabolites remains challenging. Herein, we proposed a multi-dimensional bio mass cytometry platform characterized by protein signal conversion and amplification through an orthogonal exogenous enzymatic reaction. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing technology was applied in the quantification of endogenous intracellular protein glycer-aldehyde-3-phosphate dehydrogenase (GAPDH) through exogenous luciferase Nanoluc (Nluc). The simultaneous detection of GAPDH and hundreds of metabolites at the single-cell level was realized for the first time. Semiquantitative analysis of GAPDH together with single-cell metabolomes under S-nitrosoglutathione (GSNO)-induced oxidative stress was investigated. Bioinformatics analysis revealed 16 metabolites that correlated positively with GAPDH expression upon oxidative stress, including long-chain fatty acids (palmitoleic acid, myristic acid, etc.) and UDP-N-acetylglucosamine (UDP-GlcNAc). Potential synergetic functions of GAPDH and UDP-GlcNAc-mediated oxidative stress responses were also elucidated. Our work proposes a novel strategy for the simultaneous quantitative analysis of single-cell intracellular proteins and metabolites, deepens the understanding of inherent anti-oxidative stress response mechanisms, and provides the molecular fundamentals for the study of inherent biological processes.
Collapse
Affiliation(s)
- Shaojie Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xinyi Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
- Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University Beijing 100871 China
| | - Yi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Daiyu Miao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
- Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University Beijing 100871 China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
3
|
Nemec-Bakk AS, Sridharan V, Willey JS, Koturbash I, Williams DK, Chesal M, Patel CM, Borg AM, Reno K, Gifford G, Newhauser W, Williams J, Chancellor JC, Boerma M. Sex-specific effects on the heart from combined exposure to simulated galactic cosmic radiation and hindlimb unloading. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:38-46. [PMID: 39864910 PMCID: PMC11770252 DOI: 10.1016/j.lssr.2024.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/28/2025]
Abstract
Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses. Therefore, we utilized a ground-based mouse model to determine the cardiovascular risks for space radiation exposure while the mice were simultaneously hindlimb suspended to mimic microgravity. 6-month-old male and female C57BL/6 mice were exposed to an absorbed dose of 0 Gy, 0.5 Gy, or 1.5 Gy simulated GCR (GCRsim) that comprised beams of 5 ions at NASA's Space Radiation Laboratory. Subcohorts of mice were hindlimb unloaded (HLU), starting 5 days before GCRsim until the completion of radiation exposure. GCRsim + HLU was performed over 8 hours (0.5 Gy) or 24 hours (1.5 Gy). After completion of GCRsim and HLU, mice were shipped to UAMS for long-term observation. Cardiac function was measured using high resolution ultrasound at 6 and 9 months after exposure. Tissues were collected after the final ultrasound and prepared for further analysis. Female mice exposed to 1.5 Gy + HLU demonstrated a significant increase in body weight compared to ground controls months after GCR exposure; however, there was no change in male body weights. Cardiac ultrasound revealed 0.5 Gy GCRsim decreased left ventricular (LV) mass, LV posterior wall thickness in diastole, and systole in males 6 months after exposure. In females, 1.5 Gy + HLU significantly increased LV posterior wall thickness in diastole and systole at 6 months. These changes in ultrasound measurements were no longer seen at 9 months. Moreover, at 9 months there was no change in total collagen content or density of the capillary network in the heart. Lastly, the combination of GCRsim and HLU influenced immune cell markers in the heart of female mice. These data suggest that combined simulated GCR and microgravity result in minor, yet statistically significant sex-dependent changes to body weight and cardiac structure.
Collapse
Affiliation(s)
- A S Nemec-Bakk
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - V Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - J S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - I Koturbash
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - D K Williams
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - M Chesal
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
| | - C M Patel
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - A M Borg
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - K Reno
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - G Gifford
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - W Newhauser
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
| | - J Williams
- Departments of Environmental Medicine and Radiation Oncology, University of Rochester, Medical Center, Rochester, New York, USA
| | - J C Chancellor
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA; Department of Preventive Medicine & Population Health, University of Texas Medical Branch, Galveston, Texas, USA; Outer Space Institute, University of British Columbia, Vancouver, Canada
| | - M Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
4
|
Lim H, Denison MIJ, Natarajan S, Lee K, Oh C, Park D. GAPDH Gene Family in Populus deltoides: Genome-Wide Identification, Structural Analysis, and Expression Analysis Under Drought Stress. Int J Mol Sci 2025; 26:335. [PMID: 39796191 PMCID: PMC11720025 DOI: 10.3390/ijms26010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown. Identification and systematic analysis of the GAPDH family in Populus deltoides (P. deltoides) have not been performed. Bioinformatics methods were used to analyze the physicochemical characteristics, structural characteristics, phylogenetic relationships, gene structure, motif analysis, and expression of GAPDH gene family members in P. deltoides. We identified 12 GAPDH members in P. deltoides. Five types of PdGAPDH were identified: GAPA, GAPB, GAPC1, GAPC2, and GAPCp. PdGAPDH genes were differentially expressed in leaves, stems, and roots of 1-year-old poplar seedlings. PdGAPDH gene transcripts showed that PdGAPDH2 and PdGAPDH4 were highly expressed in the leaves. In the roots, seven genes-PdGAPDH01, PdGAPDH05, PdGAPDH06, PdGAPDH07, PdGAPDH08, PdGAPDH09, and PdGAPDH12-showed significantly high expression levels. PdGAPDH02, PdGAPDH03, PdGAPDH04, and PdGAPDH11 showed decreased expression under drought conditions and recovered after re-watering. These results lay the foundation for further studies on the drought stress mechanisms of P. deltoides.
Collapse
Affiliation(s)
- Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | | | | | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | - Danbe Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| |
Collapse
|
5
|
Zhang J, Shen W, Liu F, He H, Han S, Luo L. Integrated approach with UHPLC-Q-Exactive-tandem mass spectrometry, network analysis, and molecular docking to determine potential active compounds and mechanisms of Rhizoma Musae decoction in osteoarthritis treatment. Front Pharmacol 2025; 15:1380335. [PMID: 39822742 PMCID: PMC11735259 DOI: 10.3389/fphar.2024.1380335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/03/2024] [Indexed: 01/19/2025] Open
Abstract
Objective This study aimed to identify the potential active compounds in Rhizoma Musae decoction and understand their mechanisms of action in osteoarthritis treatment. Methods UHPLC-Q-Exactive-MS/MS technology was used for an in-depth analysis of the chemical compounds present in Rhizoma Musae decoction. A network analysis approach was used to construct a comprehensive network of compounds, targets, and pathways, which provided insights into the molecular mechanisms of Rhizoma Musae decoction in osteoarthritis treatment. Results The integrated analysis revealed the presence of 534 chemical compounds in Rhizoma Musae decoction, with 7beta-hydroxyrutaecarpine, 7,8-dihydroxycoumarin, pinocembrin diacetate, and scopoletin being identified as potential active compounds. Potential targets such as GAPDH, AKT1, TNF, IL6, and SRC were implicated in key pathways including MAPK signaling pathway, lipid and atherosclerosis, PI3K-Akt signaling pathway, and IL-17 signaling pathway. Molecular docking studies showed significant binding affinity between the core targets and key components. In vitro cell experiments have demonstrated that RM decoction can enhance cell proliferation and upregulates the expression of TNFα, IL-6, and SRC, while down-regulating the expression of GAPDH and AKT1. Conclusion The potential active compounds present in Rhizoma Musae decoction influence specific targets and signaling pathways involved in osteoarthritis pathogenesis, providing new insights for the functional development and utilization of RM.
Collapse
Affiliation(s)
- Jian Zhang
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wanyan Shen
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Fanzhi Liu
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Hehe He
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Shuquan Han
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lina Luo
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
6
|
Song L, Zhong P, Yu R, Yuan Y, Zhou Y, Qian Y, Yang S, Yi H, Yang Z, Zhao W. Effect of HDAC9-induced deacetylation of glycolysis-related GAPDH lysine 219 on rotavirus replication in rotavirus-infected Caco-2 cells. Virus Genes 2024; 60:621-634. [PMID: 39302542 PMCID: PMC11568057 DOI: 10.1007/s11262-024-02104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.
Collapse
Affiliation(s)
- Lijun Song
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Peicheng Zhong
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Runyu Yu
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yue Yuan
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yujing Zhou
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yupei Qian
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Siyan Yang
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haosen Yi
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Zhiyan Yang
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China.
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
7
|
Talukdar S, Modanwal R, Chaubey GK, Dhiman A, Dilawari R, Raje CI, Raje M. Mycobacterium tuberculosis exploits SIRT2 to trap iron for its intracellular survival. Free Radic Biol Med 2024; 225:794-804. [PMID: 39490773 DOI: 10.1016/j.freeradbiomed.2024.10.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Iron is a critical nutrient for all organisms ranging from bacteria to humans. Ensuring control of this strategic vital resource significantly influences the dynamics of the struggle between host and invading pathogen. Mycobacterium tuberculosis (Mtb), the causative agent of the pulmonary disease tuberculosis (TB), has been plaguing humans for millennia and has evolved to successfully persist and multiply within host cells evading the mammalian immune defences. Invading Mtb appropriates host iron for its survival while the host innate immune response attempts to prevent its stores of this strategic mineral from being appropriated. SIRT2 is a member of the Sirtuin family. These are evolutionary conserved NAD+-dependent deacetylases involved in various cellular processes including regulation of cellular iron homeostasis. Upon Mtb infection of macrophages, SIRT2 expression is enhanced and it translocates from cytosol to nucleus. This is accompanied with a breakdown of the host's iron restriction strategy that compromises host defence mechanisms. However, the underlying mechanism as to how invading Mtb exploits SIRT2 for commandeering host iron remains unknown. In the current study, we report that the decreased bacillary load in cells wherein SIRT2 had been chemically inhibited or knocked down is due to diminished availability of iron. Inhibition or knockdown of SIRT2 in infected cells displays differential modulation of iron import and export proteins suggesting an ongoing struggle by host to limit the bioavailability of iron to pathogen. Flow cytometry analysis of infected macrophages revealed that these cells utilize a non-canonical pathway for evacuation of intracellular iron. This involves the recruitment of a specific pleioform of the moonlighting protein glyceraldehyde-3 phosphate dehydrogenase (GAPDH) to cell surface for capture of iron transporter protein apo-transferrin. Collectively, our findings reveal the process of SIRT2-mediated iron regulation in Mtb pathogenesis and could provide leads for design of novel host-targeted therapeutics.
Collapse
Affiliation(s)
- Sharmila Talukdar
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | | | - Asmita Dhiman
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rahul Dilawari
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education & Research, Phase X, Sector 67, SAS Nagar, Punjab, India, 160062
| | - Manoj Raje
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
8
|
Li Z, Peng H, Huang Y, Lv B, Tang C, Du J, Yang J, Fu L, Jin H. Systematic analysis of the global characteristics and reciprocal effects of S-nitrosylation and S-persulfidation in the human proteome. Free Radic Biol Med 2024; 224:335-345. [PMID: 39218121 DOI: 10.1016/j.freeradbiomed.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitter-mediated cysteine post-translational modifications, including S-nitrosylation (SNO) and S-persulfidation (SSH), play crucial roles and interact in various biological processes. However, there has been a delay in appreciating the interactional rules between SNO and SSH. Here, all human S-nitrosylated and S-persulfidated proteomic data were curated, and comprehensive analyses from multiple perspectives, including sequence, structure, function, and exact protein impacts (e.g., up-/down-regulation), were performed. Although these two modifications collectively regulated a wide array of proteins to jointly maintain redox homeostasis, they also exhibited intriguing differences. First, SNO tended to be more accessible and functionally clustered in pathways associated with cell damage repair and other protein modifications, such as phosphorylation and ubiquitination. Second, SSH preferentially targeted cysteines in disulfide bonds and modulated tissue development and immune-related pathways. Finally, regardless of whether SNO and SSH occupied the same position of a given protein, their combined effect tended to be suppressive when acting synergistically; otherwise, SNO likely inhibited while SSH activated the target protein. Indeed, a side-by-side comparison of SNO and SSH shed light on their globally reciprocal effects and provided a reference for further research on gasotransmitter-mediated biological effects.
Collapse
Affiliation(s)
- Zongmin Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
9
|
Sun X, Ye G, Li J, Yuan L, Bai G, Xu YJ, Zhang J. The tumor suppressor Parkin exerts anticancer effects through regulating mitochondrial GAPDH activity. Oncogene 2024; 43:3215-3226. [PMID: 39285229 DOI: 10.1038/s41388-024-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Cancer cells preferentially utilize glycolysis for energy production, and GAPDH is a critical enzyme in glycolysis. Parkin is a tumor suppressor and a key protein involved in mitophagy regulation. However, the tumor suppression mechanism of Parkin has still not been elucidated. In this study, we identified mitochondrial GAPDH as a new substrate of the E3 ubiquitin ligase Parkin, which mediated GAPDH ubiquitination in human cervical cancer. The translocation of GAPDH into mitochondria was driven by the PINK1 kinase, and either PINK1 or GAPDH mutation prevented the accumulation of GAPDH in mitochondria. Parkin caused the ubiquitination of GAPDH at multiple sites (K186, K215, and K219) located within the enzyme-catalyzed binding domain of the GAPDH protein. GAPDH ubiquitination was required for mitophagy, and stimulation of mitophagy suppressed cervical cancer cell growth, indicating that mitophagy serves as a type of cell death. Mechanistically, PHB2 served as a key mediator in GAPDH ubiquitination-induced mitophagy through stabilizing PINK1 protein and GAPDH mutation resulted in the reduced distribution of PHB2 in mitophagic vacuole. In addition, ubiquitination of GAPDH decreased its phosphorylation level and enzyme activity and inhibited the glycolytic pathway in cervical cancer cells. The results of in vivo experiments also showed that the GAPDH mutation increased glycolysis in cervical cancer cells and accelerated tumorigenesis. Thus, we concluded that Parkin may exert its anticancer function by ubiquitinating GAPDH in mitochondria. Taken together, our study further clarified the molecular mechanism of tumor suppression by Parkin through the regulation of energy metabolism, which provides an experimental basis for the development of new drugs for the treatment of human cervical cancer.
Collapse
Affiliation(s)
- Xin Sun
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Guiqin Ye
- Department of Clinical Laboratory, Yuhuan People's Hospital, Taizhou, China
| | - Jiuzhou Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, China
| | - Liyang Yuan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gongxun Bai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
10
|
Ramirez-Franco J, Debreux K, Sangiardi M, Belghazi M, Kim Y, Lee SH, Lévêque C, Seagar M, El Far O. The downregulation of Kv 1 channels in Lgi1 -/-mice is accompanied by a profound modification of its interactome and a parallel decrease in Kv 2 channels. Neurobiol Dis 2024; 196:106513. [PMID: 38663634 DOI: 10.1016/j.nbd.2024.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
In animal models of LGI1-dependent autosomal dominant lateral temporal lobe epilepsy, Kv1 channels are downregulated, suggesting their crucial involvement in epileptogenesis. The molecular basis of Kv1 channel-downregulation in LGI1 knock-out mice has not been elucidated and how the absence of this extracellular protein induces an important modification in the expression of Kv1 remains unknown. In this study we analyse by immunofluorescence the modifications in neuronal Kv1.1 and Kv1.2 distribution throughout the hippocampal formation of LGI1 knock-out mice. We show that Kv1 downregulation is not restricted to the axonal compartment, but also takes place in the somatodendritic region and is accompanied by a drastic decrease in Kv2 expression levels. Moreover, we find that the downregulation of these Kv channels is associated with a marked increase in bursting patterns. Finally, mass spectrometry uncovered key modifications in the Kv1 interactome that highlight the epileptogenic implication of Kv1 downregulation in LGI1 knock-out animals.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| | - Kévin Debreux
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Marion Sangiardi
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Maya Belghazi
- Marseille Protéomique (MaP), Plateforme Protéomique IMM, CNRS FR3479, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Yujin Kim
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Suk-Ho Lee
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Christian Lévêque
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Michael Seagar
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Oussama El Far
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
11
|
Keenan EK, Bareja A, Lam Y, Grimsrud PA, Hirschey MD. Cysteine S-acetylation is a post-translational modification involved in metabolic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595030. [PMID: 38826225 PMCID: PMC11142221 DOI: 10.1101/2024.05.21.595030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cysteine is a reactive amino acid central to the catalytic activities of many enzymes. It is also a common target of post-translational modifications (PTMs), such as palmitoylation. This longchain acyl PTM can modify cysteine residues and induce changes in protein subcellular localization. We hypothesized that cysteine could also be modified by short-chain acyl groups, such as cysteine S-acetylation. To test this, we developed sample preparation and non-targeted mass spectrometry protocols to analyze the mouse liver proteome for cysteine acetylation. Our findings revealed hundreds of sites of cysteine acetylation across multiple tissue types, revealing a previously uncharacterized cysteine acetylome. Cysteine acetylation shows a marked cytoplasmic subcellular localization signature, with tissue-specific acetylome patterns and specific changes upon metabolic stress. This study uncovers a novel aspect of cysteine biochemistry, highlighting short-chain modifications alongside known long-chain acyl PTMs. These findings enrich our understanding of the landscape of acyl modifications and suggest new research directions in enzyme activity regulation and cellular signaling in metabolism.
Collapse
Affiliation(s)
- E. Keith Keenan
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham NC 27701
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham NC 27710
| | - Akshay Bareja
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham NC 27701
- Division of Endocrinology, Metabolism, & Nutrition, Department of Medicine, Duke University, Medical Center, Durham NC 27710
| | - Yannie Lam
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham NC 27701
| | - Paul A. Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham NC 27701
- Division of Endocrinology, Metabolism, & Nutrition, Department of Medicine, Duke University, Medical Center, Durham NC 27710
| | - Matthew D. Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham NC 27701
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham NC 27710
- Division of Endocrinology, Metabolism, & Nutrition, Department of Medicine, Duke University, Medical Center, Durham NC 27710
| |
Collapse
|
12
|
Xu J, Wang R, Zhang X, Zhuang W, Zhang Y, Lin J, Zhan P, Chen S, Lu H, Wang A, Liao C. Identification and expression profiling of GAPDH family genes involved in response to Sclerotinia sclerotiorum infection and phytohormones in Brassica napus. FRONTIERS IN PLANT SCIENCE 2024; 15:1360024. [PMID: 38745922 PMCID: PMC11091349 DOI: 10.3389/fpls.2024.1360024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a crucial enzyme in glycolysis, an essential metabolic pathway for carbohydrate metabolism across all living organisms. Recent research indicates that phosphorylating GAPDH exhibits various moonlighting functions, contributing to plant growth and development, autophagy, drought tolerance, salt tolerance, and bacterial/viral diseases resistance. However, in rapeseed (Brassica napus), the role of GAPDHs in plant immune responses to fungal pathogens remains unexplored. In this study, 28 genes encoding GAPDH proteins were revealed in B. napus and classified into three distinct subclasses based on their protein structural and phylogenetic relationships. Whole-genome duplication plays a major role in the evolution of BnaGAPDHs. Synteny analyses revealed orthologous relationships, identifying 23, 26, and 26 BnaGAPDH genes with counterparts in Arabidopsis, Brassica rapa, and Brassica oleracea, respectively. The promoter regions of 12 BnaGAPDHs uncovered a spectrum of responsive elements to biotic and abiotic stresses, indicating their crucial role in plant stress resistance. Transcriptome analysis characterized the expression profiles of different BnaGAPDH genes during Sclerotinia sclerotiorum infection and hormonal treatment. Notably, BnaGAPDH17, BnaGAPDH20, BnaGAPDH21, and BnaGAPDH22 exhibited sensitivity to S. sclerotiorum infection, oxalic acid, hormone signals. Intriguingly, under standard physiological conditions, BnaGAPDH17, BnaGAPDH20, and BnaGAPDH22 are primarily localized in the cytoplasm and plasma membrane, with BnaGAPDH21 also detectable in the nucleus. Furthermore, the nuclear translocation of BnaGAPDH20 was observed under H2O2 treatment and S. sclerotiorum infection. These findings might provide a theoretical foundation for elucidating the functions of phosphorylating GAPDH.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Crop Research, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center)/Fujian Province Characteristic Dry Crop Variety Breeding Engineering Technology Research Center, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiong Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhuang
- Institute of Crop Research, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center)/Fujian Province Characteristic Dry Crop Variety Breeding Engineering Technology Research Center, Fuzhou, China
| | - Yang Zhang
- Institute of Crop Research, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center)/Fujian Province Characteristic Dry Crop Variety Breeding Engineering Technology Research Center, Fuzhou, China
| | - Jianxin Lin
- Institute of Crop Research, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center)/Fujian Province Characteristic Dry Crop Variety Breeding Engineering Technology Research Center, Fuzhou, China
| | - Penglin Zhan
- Institute of Crop Research, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center)/Fujian Province Characteristic Dry Crop Variety Breeding Engineering Technology Research Center, Fuzhou, China
| | - Shanhu Chen
- Institute of Crop Research, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center)/Fujian Province Characteristic Dry Crop Variety Breeding Engineering Technology Research Center, Fuzhou, China
| | - Heding Lu
- Institute of Crop Research, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center)/Fujian Province Characteristic Dry Crop Variety Breeding Engineering Technology Research Center, Fuzhou, China
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changjian Liao
- Institute of Crop Research, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center)/Fujian Province Characteristic Dry Crop Variety Breeding Engineering Technology Research Center, Fuzhou, China
| |
Collapse
|
13
|
Dong HQ, Hu XY, Liang SJ, Wang RS, Cheng P. Selection of reference genes in liproxstatin-1-treated K562 Leukemia cells via RT-qPCR and RNA sequencing. Mol Biol Rep 2024; 51:55. [PMID: 38165476 DOI: 10.1007/s11033-023-08912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Reverse transcription quantitative polymerase chain reaction (RT-qPCR) can accurately detect relative gene expression levels in biological samples. However, widely used reference genes exhibit unstable expression under certain conditions. METHODS AND RESULTS Here, we compared the expression stability of eight reference genes (RPLP0, RPS18, RPL13, EEF1A1, β-actin, GAPDH, HPRT1, and TUBB) commonly used in liproxstatin-1 (Lip-1)-treated K562 cells using RNA-sequencing and RT-qPCR. The expression of EEF1A1, ACTB, GAPDH, HPRT1, and TUBB was considerably lower in cells treated with 20 μM Lip-1 than in the control, and GAPDH also showed significant downregulation in the 10 μM Lip-1 group. Meanwhile, when we used geNorm, NormFinder, and BestKeeper to compare expression stability, we found that GAPDH and HPRT1 were the most unstable reference genes among all those tested. Stability analysis yielded very similar results when geNorm or BestKeeper was used but not when NormFinder was used. Specifically, geNorm and BestKeeper identified RPL13 and RPLP0 as the most stable genes under 20 μM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable under 10 μM Lip-1 treatment. TUBB and EEF1A1 were the most stable genes in both treatment groups according to the results obtained using NormFinder. An assumed most stable gene was incorporated into each software to validate the accuracy. The results suggest that NormFinder is not an appropriate algorithm for this study. CONCLUSIONS Stable reference genes were recognized using geNorm and BestKeeper but not NormFinder. Overall, RPL13 and RPLP0 were the most stable reference genes under 20 μM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable genes under 10 μM Lip-1 treatment.
Collapse
Affiliation(s)
- Hai-Qun Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xue-Ying Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shi-Jing Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Ren-Sheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Peng Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
14
|
Santos R, Lokmane L, Ozdemir D, Traoré C, Agesilas A, Hakibilen C, Lenkei Z, Zala D. Local glycolysis fuels actomyosin contraction during axonal retraction. J Cell Biol 2023; 222:e202206133. [PMID: 37902728 PMCID: PMC10616508 DOI: 10.1083/jcb.202206133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
In response to repulsive cues, axonal growth cones can quickly retract. This requires the prompt activity of contractile actomyosin, which is formed by the non-muscle myosin II (NMII) bound to actin filaments. NMII is a molecular motor that provides the necessary mechanical force at the expense of ATP. Here, we report that this process is energetically coupled to glycolysis and is independent of cellular ATP levels. Induction of axonal retraction requires simultaneous generation of ATP by glycolysis, as shown by chemical inhibition and genetic knock-down of GAPDH. Co-immunoprecipitation and proximal-ligation assay showed that actomyosin associates with ATP-generating glycolytic enzymes and that this association is strongly enhanced during retraction. Using microfluidics, we confirmed that the energetic coupling between glycolysis and actomyosin necessary for axonal retraction is localized to the growth cone and near axonal shaft. These results indicate a tight coupling between on-demand energy production by glycolysis and energy consumption by actomyosin contraction suggesting a function of glycolysis in axonal guidance.
Collapse
Affiliation(s)
- Renata Santos
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Institut des Sciences Biologiques, Centre national de la recherche scientifique, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l’Ecole Normale Supérieure, École Normale Supérieure, Centre national de la recherche scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Dersu Ozdemir
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Clément Traoré
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Annabelle Agesilas
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Coralie Hakibilen
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Diana Zala
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| |
Collapse
|
15
|
Kok JML, Dowd GC, Cabral JD, Wise LM. Macrocystis pyrifera Lipids Reduce Cytokine-Induced Pro-Inflammatory Signalling and Barrier Dysfunction in Human Keratinocyte Models. Int J Mol Sci 2023; 24:16383. [PMID: 38003573 PMCID: PMC10671590 DOI: 10.3390/ijms242216383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Atopic dermatitis is a chronic condition where epidermal barrier dysfunction and cytokine production by infiltrating immune cells exacerbate skin inflammation and damage. A total lipid extract from Macrocystis pyrifera, a brown seaweed, was previously reported to suppress inflammatory responses in monocytes. Here, treatment of human HaCaT keratinocytes with M. pyrifera lipids inhibited tumour necrosis factor (TNF)-α induced TNF receptor-associated factor 2 and monocyte chemoattractant protein (MCP)-1 protein production. HaCaT cells stimulated with TNF-α, interleukin (IL)-4, and IL-13 showed loss of claudin-1 tight junctions, but little improvement was observed following lipid pre-treatment. Three-dimensional cultures of HaCaT cells differentiated at the air-liquid interface showed increased MCP-1 production, loss of claudin-1 tight junctions, and trans-epidermal leakage with TNF-α, IL-4, and IL-13 stimulation, with all parameters reduced by lipid pre-treatment. These findings suggest that M. pyrifera lipids have anti-inflammatory and barrier-protective effects on keratinocytes, which may be beneficial for the treatment of atopic dermatitis or other skin conditions.
Collapse
Affiliation(s)
- Jamie M. L. Kok
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| | - Georgina C. Dowd
- The New Zealand Institute for Plant and Food Research Limited, Nelson 7043, New Zealand;
| | - Jaydee D. Cabral
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| | - Lyn M. Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
16
|
Medvedeva MV, Kleimenov SY, Samygina VR, Muronetz VI, Schmalhausen EV. S-nitrosylation and S-glutathionylation of GAPDH: Similarities, differences, and relationships. Biochim Biophys Acta Gen Subj 2023; 1867:130418. [PMID: 37355052 DOI: 10.1016/j.bbagen.2023.130418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
The aim of this work was to compare the effect of reversible post-translational modifications, S-nitrosylation and S-glutathionylation, on the properties of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and to reveal the mechanism of the relationship between these modifications. Comparison of S-nitrosylated and S-glutathionylated GAPDH showed that both modifications inactivate the enzyme and change its spatial structure, decreasing the thermal stability of the protein and increasing its sensitivity to trypsin cleavage. Both modifications are reversible in the presence of dithiothreitol, however, in the presence of reduced glutathione and glutaredoxin 1, the reactivation of S-glutathionylated GAPDH is much slower (10% in 2 h) compared to S-nitrosylated GAPDH (60% in 10 min). This suggests that S-glutathionylation is a much less reversible modification compared to S-nitrosylation. Incubation of HEK 293 T cells in the presence of H2O2 or with the NO donor diethylamine NONOate results in accumulation of sulfenated GAPDH (by data of Western blotting) and S-glutathionylated GAPDH (by data of immunoprecipitation with anti-GSH antibodies). Besides GAPDH, a protein of 45 kDa was found to be sulfenated and S-glutathionylated in the cells treated with H2O2 or NO. This protein was identified as beta-actin. The results of this study confirm the previously proposed hypothesis based on in vitro investigations, according to which S-nitrosylation of the catalytic cysteine residue (Cys152) of GAPDH with subsequent formation of cysteine sulfenic acid at Cys152 may promote its S-glutathionylation in the presence of cellular GSH. Presumably, the mechanism may be valid in the case of beta-actin.
Collapse
Affiliation(s)
- M V Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - S Yu Kleimenov
- Bach Institute of Biochemistry, Research Center of Biotechnology of Russian Academy of Sciences, Leninsky prospect 33, bld. 2, Moscow 119071, Russia; Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova 26, Moscow 119334, Russia
| | - V R Samygina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre Crystallography and Photonics of Russian Academy of Sciences, Leninsky prospect 59, Moscow 119333, Russia
| | - V I Muronetz
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
17
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
18
|
Itakura M, Kubo T, Kaneshige A, Nakajima H. Glyceraldehyde-3-phosphate dehydrogenase regulates activation of c-Jun N-terminal kinase under oxidative stress. Biochem Biophys Res Commun 2023; 657:1-7. [PMID: 36963174 DOI: 10.1016/j.bbrc.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acts as a sensor under oxidative stress, leading to induction of various biological responses. Given that mitogen-activated protein kinase (MAPK) signaling pathways mediate cellular responses to a wide variety of stimuli, including oxidative stress, here, we aimed to elucidate whether a cross-talk cascade between GAPDH and MAPKs occurs under oxidative stress. Of the three typical MAPKs investigated-extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK)-we found that hydrogen peroxide (H2O2)-induced JNK activation is significantly reduced in HEK293 cells treated with small-interfering (si)RNA targeting GAPDH. Co-immunoprecipitation with a GAPDH antibody further revealed protein-protein interactions between GAPDH and JNK in H2O2-stmulated cells. Notably, both JNK activation and these interactions depend on oxidation of the active-site cysteine (Cys152) in GAPDH, as demonstrated by rescue experiments with either exogenous wild-type GAPDH or the cysteine-substituted mutant (C152A) in endogenous GAPDH-knockdown HEK293 cells. Moreover, H2O2-induced translocation of Bcl-2-associated X protein (Bax) into mitochondria, which occurs downstream of JNK activation, is attenuated by endogenous GAPDH knockdown in HEK293 cells. These results suggest a novel role for GAPDH in the JNK signaling pathway under oxidative stress.
Collapse
Affiliation(s)
- Masanori Itakura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Takeya Kubo
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Akihiro Kaneshige
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan.
| |
Collapse
|
19
|
Pavkova I, Kopeckova M, Link M, Vlcak E, Filimonenko V, Lecova L, Zakova J, Laskova P, Sheshko V, Machacek M, Stulik J. Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase Is Relocalized during Intracellular Infection and Reveals Effect on Cytokine Gene Expression and Signaling. Cells 2023; 12:cells12040607. [PMID: 36831274 PMCID: PMC9954481 DOI: 10.3390/cells12040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Correspondence: ; Tel.: +420-973-255-201
| | - Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Erik Vlcak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Department of Biology of the Cell Nucleus, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lenka Lecova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jitka Zakova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Pavlina Laskova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Valeria Sheshko
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
20
|
Salivary Redox Homeostasis in Human Health and Disease. Int J Mol Sci 2022; 23:ijms231710076. [PMID: 36077473 PMCID: PMC9455999 DOI: 10.3390/ijms231710076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Homeostasis is a self-regulatory dynamic process that maintains a stable internal environment in the human body. These regulations are essential for the optimal functioning of enzymes necessary for human health. Homeostasis elucidates disrupted mechanisms leading to the development of various pathological conditions caused by oxidative stress. In our work, we discuss redox homeostasis and salivary antioxidant activity during healthy periods and in periods of disease: dental carries, oral cavity cancer, periodontal diseases, cardiovascular diseases, diabetes mellitus, systemic sclerosis, and pancreatitis. The composition of saliva reflects dynamic changes in the organism, which makes it an excellent tool for determining clinically valuable biomarkers. The oral cavity and saliva may form the first line of defense against oxidative stress. Analysis of salivary antioxidants may be helpful as a diagnostic, prognostic, and therapeutic marker of not only oral, but also systemic health.
Collapse
|
21
|
Jie H, Zhang SM, Ding FR, Chun-Lian Tang, Li XY. Glyceraldehyde-3-phosphate dehydrogenase affects the growth of Schistosoma japonicum schistosomula. Acta Trop 2022; 235:106667. [PMID: 36030883 DOI: 10.1016/j.actatropica.2022.106667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022]
Abstract
This study was conducted to evaluate the effect of glyceraldehyde-3-phosphate dehydrogenase from Schistosoma japonicum (SjGAPDH) on the growth of schistosomula. Quantitative reverse transcription PCR and immunohistochemical analysis were performed to analyze the mRNA levels and immune localization of SjGAPDH. RNA interference experiments were conducted to further examine the role of SjGAPDH in the schistosomula growth of S. japonicum. The results demonstrated that SjGAPDH mRNA was expressed during all stages of S. japonicum development, with its expression gradually increasing over time. SjGAPDH was mainly distributed on the surface and in some parenchymal cells of S. japonicum. Double-stranded RNA-mediated GAPDH knockdown reduced SjGAPDH expression by approximately 59%. Light microscopic observations revealed that the size, length, width, volume, and area of schistosomula in the SjGAPDH interference group were significantly lower than those in the enhanced green fluorescent protein control group. These findings indicate that SjGAPDH may affect the growth of S. japonicum schistosomula and could be a useful target for treating schistosomiasis.
Collapse
Affiliation(s)
- Hao Jie
- Wuhan University of Science and Technology, No. 947 Heping Street, Wuhan 430081, China
| | - Si-Ming Zhang
- Wuhan University of Science and Technology, No. 947 Heping Street, Wuhan 430081, China
| | - Fan-Rong Ding
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan 430063, China
| | - Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan 430063, China.
| | - Xiang-You Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan 430063, China.
| |
Collapse
|
22
|
Silvestro S, Diomede F, Chiricosta L, Zingale VD, Marconi GD, Pizzicannella J, Valeri A, Avanzini MA, Calcaterra V, Pelizzo G, Mazzon E. The Role of Hypoxia in Improving the Therapeutic Potential of Mesenchymal Stromal Cells. A Comparative Study From Healthy Lung and Congenital Pulmonary Airway Malformations in Infants. Front Bioeng Biotechnol 2022; 10:868486. [PMID: 35774062 PMCID: PMC9237219 DOI: 10.3389/fbioe.2022.868486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) play an important role in the field of regenerative medicine thanks to their immunomodulatory properties and their ability to secrete paracrine factors. The use of MSCs has also been tested in children with congenital lung diseases inducing fibrosis and a decrease in lung function. Congenital malformations of the pulmonary airways (CPAM) are the most frequently encountered lung lesion that results from defects in early development of airways. Despite the beneficial properties of MSCs, interventions aimed at improving the outcome of cell therapy are needed. Hypoxia may be an approach aimed to ameliorate the therapeutic potential of MSCs. In this regard, we evaluated the transcriptomic profile of MSCs collected from pediatric patients with CPAM, analyzing similarities and differences between healthy tissue (MSCs-lung) and cystic tissue (MSCs-CPAM) both in normoxia and in cells preconditioned with hypoxia (0.2%) for 24 h. Study results showed that hypoxia induces cell cycle activation, increasing in such a way the cell proliferation ability, and enhancing cell anaerobic metabolism in both MSCs-lung and MSCs-CPAM-lung. Additionally, hypoxia downregulated several pro-apoptotic genes preserving MSCs from apoptosis and, at the same time, improving their viability in both comparisons. Finally, data obtained indicates that hypoxia leads to a greater expression of genes involved in the regulation of the cytoskeleton in MSCs-lung than MSCs-CPAM.
Collapse
Affiliation(s)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | - Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- Pediatric Department, Children’s Hospital “Vittore Buzzi”, Milano, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, Milan, Italy
| | | |
Collapse
|
23
|
Hyslop PA, Chaney MO. Mechanism of GAPDH Redox Signaling by H 2O 2 Activation of a Two-Cysteine Switch. Int J Mol Sci 2022; 23:4604. [PMID: 35562998 PMCID: PMC9102624 DOI: 10.3390/ijms23094604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by reactive oxygen species such as H2O2 activate pleiotropic signaling pathways is associated with pathophysiological cell fate decisions. Oxidized GAPDH binds chaperone proteins with translocation of the complex to the nucleus and mitochondria initiating autophagy and cellular apoptosis. In this study, we establish the mechanism by which H2O2-oxidized GAPDH subunits undergo a subunit conformational rearrangement. H2O2 oxidizes both the catalytic cysteine and a vicinal cysteine (four residues downstream) to their respective sulfenic acids. A 'two-cysteine switch' is activated, whereby the sulfenic acids irreversibly condense to an intrachain thiosulfinic ester resulting in a major metastable subunit conformational rearrangement. All four subunits of the homotetramer are uniformly and independently oxidized by H2O2, and the oxidized homotetramer is stabilized at low temperatures. Over time, subunits unfold forming disulfide-linked aggregates with the catalytic cysteine oxidized to a sulfinic acid, resulting from thiosulfinic ester hydrolysis via the highly reactive thiosulfonic ester intermediate. Molecular Dynamic Simulations provide additional mechanistic insights linking GAPDH subunit oxidation with generating a putative signaling conformer. The low-temperature stability of the H2O2-oxidized subunit conformer provides an operable framework to study mechanisms associated with gain-of-function activities of oxidized GAPDH to identify novel targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul A. Hyslop
- Arkley Research Labs, Arkley BioTek, LLC, 4444 Decatur Blvd., Indianapolis, IN 46241, USA
| | - Michael O. Chaney
- Eli Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA;
| |
Collapse
|
24
|
Molecular characterization of glyceraldehyde-3-phosphate dehydrogenase from Eimeria tenella. Parasitol Res 2022; 121:1749-1760. [PMID: 35366097 DOI: 10.1007/s00436-022-07508-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
Abstract
Chicken coccidiosis is an extremely common and lethally epidemic disease caused by Eimeria spp. The control measures of coccidiosis depend mainly on drugs. However, the ensuing drug resistance problem has brought considerable economic loss to the poultry industry. In our previous study, comparative transcriptome analyses of a drug-sensitive (DS) strain and two drug-resistant strains (diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains) of Eimeria tenella were carried out by transcriptome sequencing. The expression of glyceraldehyde-3-phosphate dehydrogenase of E. tenella (EtGAPDH) was upregulated in the two resistant strains. In this study, we cloned and characterized EtGAPDH. Indirect immunofluorescence localization was used to observe the distribution of EtGAPDH in E. tenella. The results showed that the protein was distributed mainly on the surface of sporozoites and merozoites, and in the cytoplasm of merozoites. qPCR was performed to detect the transcription level of EtGAPDH in the different developmental stages of the E. tenella DS strain. The transcription level of EtGAPDH was significantly higher in second-generation merozoites than in the other three stages. The transcription level of EtGAPDH in the different drug-resistant strains and DS strain of E. tenella was also analyzed by qPCR. The results showed that the transcription level was significantly higher in the two drug-resistant strains (MRR and DZR) than in the DS strain. As the concentration of diclazuril and maduramicin increased, the transcription levels also increased. Western blot results showed that EtGAPDH protein was upregulated in the DZR and MRR strains. Enzyme activity showed that the enzyme activity of EtGAPDH was higher in the two resistant strains than in the DS strain. These results showed that EtGAPDH possess several roles that separate and distinct from its glycolytic function and maybe involved in the development of E. tenella resistance to anticoccidial drugs.
Collapse
|
25
|
Muronetz VI, Medvedeva MV, Sevostyanova IA, Schmalhausen EV. Modification of Glyceraldehyde-3-Phosphate Dehydrogenase with Nitric Oxide: Role in Signal Transduction and Development of Apoptosis. Biomolecules 2021; 11:1656. [PMID: 34827652 PMCID: PMC8615796 DOI: 10.3390/biom11111656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
This review focuses on the consequences of GAPDH S-nitrosylation at the catalytic cysteine residue. The widespread hypothesis according to which S-nitrosylation causes a change in GAPDH structure and its subsequent binding to the Siah1 protein is considered in detail. It is assumed that the GAPDH complex with Siah1 is transported to the nucleus by carrier proteins, interacts with nuclear proteins, and induces apoptosis. However, there are several conflicting and unproven elements in this hypothesis. In particular, there is no direct confirmation of the interaction between the tetrameric GAPDH and Siah1 caused by S-nitrosylation of GAPDH. The question remains as to whether the translocation of GAPDH into the nucleus is caused by S-nitrosylation or by some other modification of the catalytic cysteine residue. The hypothesis of the induction of apoptosis by oxidation of GAPDH is considered. This oxidation leads to a release of the coenzyme NAD+ from the active center of GAPDH, followed by the dissociation of the tetramer into subunits, which move to the nucleus due to passive transport and induce apoptosis. In conclusion, the main tasks are summarized, the solutions to which will make it possible to more definitively establish the role of nitric oxide in the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Maria V. Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Irina A. Sevostyanova
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
| | - Elena V. Schmalhausen
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
| |
Collapse
|
26
|
Armijos-Jaramillo V, Mosquera A, Rojas B, Tejera E. The search for molecular mimicry in proteins carried by extracellular vesicles secreted by cells infected with Plasmodium falciparum. Commun Integr Biol 2021; 14:212-220. [PMID: 34527168 PMCID: PMC8437455 DOI: 10.1080/19420889.2021.1972523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Red blood cells infected with Plasmodium falciparum secrete extracellular vesicles in order to facilitate the survival and infection of human cells. Various researchers have studied the composition of these extracellular vesicles and identified the proteins contained inside. In this work, we used that information to detect potential P. falciparum molecules that could be imitating host proteins. We carried out several searches to detect sequences and structural similarities between the parasite and host. Additionally, the possibility of functional mimicry was explored in line with the potential role that each candidate can perform for the parasite inside the host. Lastly, we determined a set of eight sequences (mainly moonlighting proteins) with a remarkable resemblance to human proteins. Due to the resemblance observed, this study proposes the possibility that certain P. falciparum molecules carried by extracellular vesicles could be imitating human proteins to manipulate the host cell's physiology.
Collapse
Affiliation(s)
- Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Andrea Mosquera
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Brian Rojas
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Eduardo Tejera
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
27
|
Sakaguchi M, Nishiuchi R, Bando M, Yamada Y, Kondo R, Mitsumori M, Shiokawa A, Kanazawa M, Ikeguchi S, Kikyo F, Tanaka S. Prolyl oligopeptidase participates in the cytosine arabinoside-induced nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase in a human neuroblastoma cell line. Biochem Biophys Res Commun 2021; 572:65-71. [PMID: 34358965 DOI: 10.1016/j.bbrc.2021.07.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a binding partner of prolyl oligopeptidase (POP) in neuroblastoma NB-1 cells and that the POP inhibitor, SUAM-14746, inhibits cytosine arabinoside (Ara-C)-induced nuclear translocation of GAPDH and protects against Ara-C cytotoxicity. To carry out a more in-depth analysis of the interaction between POP and GAPDH, we generated POP-KO NB-1 cells and compared the nuclear translocation of GAPDH after Ara-C with or without SUAM-14746 treatment to wild-type NB-1 cells by western blotting and fluorescence immunostaining. Ara-C did not induce the nuclear translocation of GAPDH and SUAM-14746 did not protect against Ara-C cytotoxicity in POP-KO cells. These results indicate that the anticancer effects of Ara-C not only include the commonly known antimetabolic effects, but also the induction of cell death by nuclear transfer of GAPDH through interaction with POP.
Collapse
Affiliation(s)
- Minoru Sakaguchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Ryota Nishiuchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mika Bando
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yui Yamada
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Rie Kondo
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mika Mitsumori
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ai Shiokawa
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Miyuki Kanazawa
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shiori Ikeguchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Fumi Kikyo
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Satoshi Tanaka
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
28
|
Tsikas D. Post-translational modifications (PTM): analytical approaches, signaling, physiology and pathophysiology-part I. Amino Acids 2021; 53:485-487. [PMID: 33929637 PMCID: PMC8107173 DOI: 10.1007/s00726-021-02984-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany.
| |
Collapse
|
29
|
Post A, Bollenbach A, Bakker SJL, Tsikas D. Whole-body arginine dimethylation is associated with all-cause mortality in adult renal transplant recipients. Amino Acids 2021; 53:541-554. [PMID: 33651245 PMCID: PMC8107162 DOI: 10.1007/s00726-021-02965-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Arginine residues in proteins can be singly or doubly methylated post-translationally. Proteolysis of arginine-methylated proteins provides monomethyl arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). ADMA and SDMA are considered cardiovascular risk factors, with the underlying mechanisms being not yet fully understood. SDMA lacks appreciable metabolism and is almost completely eliminated by the kidney, whereas ADMA is extensively metabolized to dimethylamine (DMA), with a minor ADMA fraction of about 10% being excreted unchanged in the urine. Urinary DMA and ADMA are useful measures of whole-body asymmetric arginine-dimethylation, while urinary SDMA serves as a whole-body measure of symmetric arginine-dimethylation. In renal transplant recipients (RTR), we previously found that higher plasma ADMA concentrations and lower urinary ADMA and SDMA concentrations were associated with a higher risk of all-cause mortality. Yet, in this RTR collective, no data were available for urinary DMA. For the present study, we additionally measured the excretion rate of DMA in 24-h collected urine samples of the RTR and of healthy kidney donors in the cohort, with the aim to quantitate whole-body asymmetric (ADMA, DMA) and symmetric (SDMA) arginine-dimethylation. We found that lower DMA excretion rates were associated with higher all-cause mortality, yet not with cardiovascular mortality. In the healthy donors, kidney donation was associated with considerable decreases in ADMA (by - 39%, P < 0.0001) and SDMA (by - 21%, P < 0.0001) excretion rates, yet there was no significant change in DMA (by - 9%, P = 0.226) excretion rate. Our results suggest that protein-arginine dimethylation is altered in RTR compared to healthy kidney donors and that it is pronouncedly shifted from symmetric to asymmetric arginine-dimethylation, with whole-body protein-arginine dimethylation being almost unaffected.
Collapse
Affiliation(s)
- Adrian Post
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands
| | - Alexander Bollenbach
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|