1
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
2
|
Yang Y, Yuan K, Liu Y, Wang Q, Lin Y, Yang S, Huang K, Kan T, Zhang Y, Xu M, Yu Z, Fan Q, Wang Y, Li H, Tang T. Constitutively activated AMPKα1 protects against skeletal aging in mice by promoting bone-derived IGF-1 secretion. Cell Prolif 2023; 56:e13476. [PMID: 37042047 PMCID: PMC10542616 DOI: 10.1111/cpr.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Senile osteoporosis is characterized by age-related bone loss and bone microarchitecture deterioration. However, little is known to date about the mechanism that maintains bone homeostasis during aging. In this study, we identify adenosine monophosphate-activated protein kinase alpha 1 (AMPKα1) as a critical factor regulating the senescence and lineage commitment of mesenchymal stem cells (MSCs). A phospho-mutant mouse model shows that constitutive AMPKα1 activation prevents age-related bone loss and promoted MSC osteogenic commitment with increased bone-derived insulin-like growth factor 1 (IGF-1) secretion. Mechanistically, upregulation of IGF-1 signalling by AMPKα1 depends on cAMP-response element binding protein (CREB)-mediated transcriptional regulation. Furthermore, the essential role of the AMPKα1/IGF-1/CREB axis in promoting aged MSC osteogenic potential is confirmed using three-dimensional (3D) culture systems. Taken together, these results can provide mechanistic insight into the protective effect of AMPKα1 against skeletal aging by promoting bone-derived IGF-1 secretion.
Collapse
Affiliation(s)
- Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qishan Wang
- School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yugang Wang
- Department of Trauma Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Hanjun Li
- Clinical Stem Cell Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Tulcan RXS, Ouyang W, Lin C, He M, Wang B. Vanadium pollution and health risks in marine ecosystems: Anthropogenic sources over natural contributions. WATER RESEARCH 2021; 207:117838. [PMID: 34775169 DOI: 10.1016/j.watres.2021.117838] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Vanadium has been classified as a potentially toxic metal and has been given limited attention in comparison to similar trace metals. Similarly, worldwide and continental vanadium pollution and risks remain contested. Here, we synthesized the worldwide concentration of vanadium in marine ecosystems with the relevant ecological and human health risks. We found that vanadium in biota and seawater collected from Asia shows significant increases over the temporal analysis, with rates similar to those reported for vanadium consumption and production. Furthermore, invertebrates have a higher concentration of vanadium than fishes. Similarly, we demonstrate that sediments classified as polluted have concentrations that are not directly correlated with the highest concentrations across continents. Finally, ecological risks were higher from seawater, with potential impacts to 55% of aquatic species in Asia estimated from chronic species sensitivity distribution (SSD). The concentration endangering only 5% of seawater species (HC5) was estimated as 1.13 (0.05-21.19) μg L-1. Estimated daily intakes revealed that overall, there are none to low health risks from aquatic product consumption, yet high risks are plausible to children with consumption patterns in the 95th percentile.
Collapse
Affiliation(s)
- Roberto Xavier Supe Tulcan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- Ministry of Natural Resources, The First Institute of Oceanography, 6 Xianxialing Road, Qingdao 266061, China
| |
Collapse
|
4
|
Wei W, Liu S, Song J, Feng T, Yang R, Cheng Y, Li H, Hao L. MGF-19E peptide promoted proliferation, differentiation and mineralization of MC3T3-E1 cell and promoted bone defect healing. Gene 2020; 749:144703. [PMID: 32339623 DOI: 10.1016/j.gene.2020.144703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
The repair of segmental bone defects and bone fractures is a clinical challenge involving high risk and postsurgical morbidity. Bone injury and partial bone tumor resection via traditional bone grafting result in high complications. Growth factors have been proposed as alternatives to promote bone repair and formation and circumvent these limitations. In this study, we classified different lengths of mechano growth factor (MGF) E peptides in different species and analyzed their effects on MC3T3-E1 cell proliferation, cell cycle, alkaline phosphatase (ALP) activity, differentiation-related factor expression, and cell mineralization. A rabbit bone injury model was constructed, and the repair function of MGF E peptide was verified by injecting the candidate MGF E peptide. We analyzed 52 different MGF-E peptides and classified them into the following four categories: T-MGF-25E, M-MGF-25E, T-MGF-19E, and M-MGF-19E. These peptides were synthesized for further study. T-MGF-19E peptide obviously promoted cell proliferation by regulating cell cycle after MGF E peptide treatment at 72 h. T-MGF-25E and T-MGF-19E peptide significantly promoted the differentiation of osteoblasts on day 14, and M-MGF-25E peptide promoted cell differentiation on day 7. T-MGF-19E, T-MGF-25E, and M-MGF-19E significantly promoted osteoblast mineralization, with T-MGF19E showing the most significant effect. These results implied that T-MGF19E peptide could remarkably promote MC3T3-E1 cell proliferation, differentiation, and mineralization. The rabbit bone defect model showed that the low-dose T-MGF-19E peptide significantly promoted bone injury healing, suggesting its promoting effect on the healing of bone injury.
Collapse
Affiliation(s)
- Wenzhen Wei
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China; Changchun Qijian Biological Products Co., Ltd., No.1, Torch Road, High Tech Development Zone, Changchun, Jilin Province 130012, China
| | - Songcai Liu
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Jie Song
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China; College of Animal Science, South China Agricultural University, No.483, Wushan, Tianhe Distrct, Guangzhou, Guangdong 510642, China
| | - Haoyang Li
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China.
| |
Collapse
|
5
|
Treviño S, Diaz A. Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 2020; 208:111094. [PMID: 32438270 DOI: 10.1016/j.jinorgbio.2020.111094] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Since the 1970s, the biological role of vanadium compounds has been discussed as insulin-mimetic or insulin-enhancer agents. The action of vanadium compounds has been investigated to determine how they influence the insulin signaling pathway. Khan and coworkers proposed key proteins for the insulin pathway study, introducing the concept "critical nodes". In this review, we also considered critical kinases and phosphatases that participate in this pathway, which will permit a better comprehension of a critical node, where vanadium can act: a) insulin receptor, insulin receptor substrates, and protein tyrosine phosphatases; b) phosphatidylinositol 3'-kinase, 3-phosphoinositide-dependent protein kinase and mammalian target of rapamycin complex, protein kinase B, and phosphatase and tensin homolog; and c) insulin receptor substrates and mitogen-activated protein kinases, each node having specific negative modulators. Additionally, leptin signaling was considered because together with insulin, it modulates glucose and lipid homeostasis. Even in recent literature, the possibility of vanadium acting against metabolic diseases or cancer is confirmed although the mechanisms of action are not well understood because these critical nodes have not been systematically investigated. Through this review, we establish that vanadium compounds mainly act as phosphatase inhibitors and hypothesize on their capacity to affect kinases, which are critical to other hormones that also act on common parts of the insulin pathway.
Collapse
Affiliation(s)
- Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico.
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South, FCQ9, University City, Puebla, C.P. 72560, Mexico.
| |
Collapse
|
6
|
Lavajoo F, Perelló-Amorós M, Vélez EJ, Sánchez-Moya A, Balbuena-Pecino S, Riera-Heredia N, Fernández-Borràs J, Blasco J, Navarro I, Capilla E, Gutiérrez J. Regulatory mechanisms involved in muscle and bone remodeling during refeeding in gilthead sea bream. Sci Rep 2020; 10:184. [PMID: 31932663 PMCID: PMC6957526 DOI: 10.1038/s41598-019-57013-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
The tolerance of fish to fasting offers a model to study the regulatory mechanisms and changes produced when feeding is restored. Gilthead sea bream juveniles were exposed to a 21-days fasting period followed by 2 h to 7-days refeeding. Fasting provoked a decrease in body weight, somatic indexes, and muscle gene expression of members of the Gh/Igf system, signaling molecules (akt, tor and downstream effectors), proliferation marker pcna, myogenic regulatory factors, myostatin, and proteolytic molecules such as cathepsins or calpains, while most ubiquitin-proteasome system members increased or remained stable. In bone, downregulated expression of Gh/Igf members and osteogenic factors was observed, whereas expression of the osteoclastic marker ctsk was increased. Refeeding recovered the expression of Gh/Igf system, myogenic and osteogenic factors in a sequence similar to that of development. Akt and Tor phosphorylation raised at 2 and 5 h post-refeeding, much faster than its gene expression increased, which occurred at day 7. The expression in bone and muscle of the inhibitor myostatin (mstn2) showed an inverse profile suggesting an inter-organ coordination that needs to be further explored in fish. Overall, this study provides new information on the molecules involved in the musculoskeletal system remodeling during the early stages of refeeding in fish.
Collapse
Affiliation(s)
- F Lavajoo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, I.R., Iran
| | - M Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - E J Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - A Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - N Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - I Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Insulin Enhances the In Vitro Osteogenic Capacity of Flexor Tendon-Derived Progenitor Cells. Stem Cells Int 2019; 2019:1602751. [PMID: 31949435 PMCID: PMC6948345 DOI: 10.1155/2019/1602751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022] Open
Abstract
There is increased incidence of tendon disorders and decreased tendon healing capacity in people with diabetes mellitus (DM). Recent studies have also suggested pathological ossification in repair tendon of people with DM. Therefore, the objective of this study is to investigate the effects of insulin supplementation, an important pathophysiologic stimulus of DM, on tendon progenitor cell (TPC) proliferation and in vitro osteogenic capacity. Passage 3 TPCs were isolated from collagenase-digested, equine superficial digital flexor tendons. TPC proliferation was measured via MTT assay after 3 days of monolayer culture in medium supplemented with 0, 0.007, 0.07, and 0.7 nM insulin. In vitro osteogenic capacity of TPCs (Alizarin Red staining, osteogenic mRNA expression, and alkaline phosphatase bioactivity) was assessed with 0, 0.07, and 0.7 nM insulin-supplemented osteogenic induction medium. Insulin (0.7 nM) significantly increased TPC proliferation after 3 days of monolayer culture. Alizarin Red staining of insulin-treated TPC osteogenic cultures demonstrated robust cell aggregation and mineralized matrix secretion, in a dose-dependent manner. Runx2, alkaline phosphatase, and Osteonectin mRNA and alkaline phosphatase bioactivity of insulin-treated TPC cultures were significantly higher at day 14 of osteogenesis compared to untreated controls. Addition of picropodophyllin (PPP), a selective IGF-I receptor inhibitor, mitigated the increased osteogenic capacity of TPCs, indicating that IGF-I signaling plays an important role. Our findings indicate that hyperinsulinemia may alter TPC phenotype and subsequently impact the quality of repair tendon tissue.
Collapse
|
8
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
9
|
Chin KY, Wan Ngah WZ, Ima-Nirwana S. Lessons from the Bone Chapter of the Malaysian Aging Men Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060531. [PMID: 27231930 PMCID: PMC4923988 DOI: 10.3390/ijerph13060531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
Male osteoporosis in Malaysia is a largely neglected problem. Therefore, a bone health study in men using quantitative ultrasonometry was launched as part of the Malaysian Aging Men Study in 2009–2012. This review aimed to summarize the findings of the aforementioned bone health study. The study examined the bone health of Chinese and Malaysian men aged 20 years and above living in Kuala Lumpur using a quantitative ultrasound device. Participants answered a questionnaire on their demographic details and physical activity status. Body anthropometry of the participants was measured and their blood collected for biochemical analysis. Results showed that a significant proportion of the Malaysian Chinese and Malay men had suboptimal bone health indicated by calcaneal speed of sound and vitamin D status. Age-related decline of the calcaneal speed of sound in these men was gradual and biphasic without ethnic difference. Body anthropometry such as height, weight, body mass index, and body fat percentage contributed to the variation of the calcaneal speed of sound in Malaysian men. Age-related changes in testosterone, insulin-like growth factor 1, and thyroid stimulating hormone also influenced the calcaneal speed of sound in these men. This study serves as a reminder that male osteoporosis in Malaysia should be an issue of concern. It is also a basis for a more comprehensive study on bone health in men in the future.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| |
Collapse
|
10
|
Feng X, Huang D, Lu X, Feng G, Xing J, Lu J, Xu K, Xia W, Meng Y, Tao T, Li L, Gu Z. Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway. Dev Growth Differ 2014; 56:615-24. [PMID: 25388971 DOI: 10.1111/dgd.12179] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 01/05/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis.
Collapse
Affiliation(s)
- Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chin KY, Ima-Nirwana S, Mohamed IN, Hanapi Johari M, Ahmad F, Mohamed Ramli ES, Wan Ngah WZ. Insulin-like growth factor-1 is a mediator of age-related decline of bone health status in men. Aging Male 2014; 17:102-6. [PMID: 24593848 DOI: 10.3109/13685538.2014.896895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE The role of insulin-like growth factor-1 (IGF-1) in bone health in men is debatable. This study aimed to determine whether IGF-1 is a mediator in age-related decline of bone health status measured by calcaneal speed of sound (SOS) in Malaysian men. METHODS The study recruited 279 Chinese and Malay men. Their demographic data, weight, height, calcaneal SOS were taken and fasting blood was collected for total testosterone, sex-hormone binding globulin and IGF-1 assays. The associations between the studied variables were assessed using multiple linear regression (MLR) analysis. Mediator analysis was performed using Sobel test. RESULTS There was a significant and parallel decrease of IGF-1 and SOS with age (p < 0.05). Serum IGF-1 was significantly and positively associated with SOS (p < 0.05) but after further adjustment for age, the significance was lost (p > 0.05). The strength of the association between age and SOS decreased after adjusting for IGF-1 level but it remained significant (p < 0.05). Sobel test revealed that IGF-1 was a significant partial mediator in the relationship between age and SOS (z = -4.3). CONCLUSION Serum IGF-1 is a partial mediator in the age-related decline of bone health in men as determined by calcaneal ultrasound. A prospective study should be performed to validate this relationship.
Collapse
|
12
|
Fish: a suitable system to model human bone disorders and discover drugs with osteogenic or osteotoxic activities. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ddmod.2014.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Tiago DM, Marques CL, Roberto VP, Cancela ML, Laizé V. Mir-20a regulates in vitro mineralization and BMP signaling pathway by targeting BMP-2 transcript in fish. Arch Biochem Biophys 2013; 543:23-30. [PMID: 24361749 DOI: 10.1016/j.abb.2013.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of vertebrate development but their role during skeletogenesis remains unknown. In this regard, we investigated the mineralogenic activity of miR-20a, a miRNA associated with osteogenesis, in fish bone-derived cells. Expression of miR-20a was up-regulated during differentiation and its overexpression inhibited mineralization, suggesting a role in fish tissue calcification. In this regard, a conserved miR-20a binding site was identified in bone morphogenetic protein 2 (BMP-2) 3'UTR and its functionality was evidenced through luciferase assays, and further confirmed by western-blot and qPCR. Type II BMP receptor (BMPR2) is also targeted by miR-20a in mammalian systems and evidence was collected for the presence of a binding site in fish sequences. We propose that miR-20a is a regulator of BMP pathway through specific action on BMP-2 and possibly BMPR2. Overexpression of miR-20a was also shown to up-regulate matrix Gla protein (MGP) transcript, a physiological inhibitor of calcification previously found to form a complex with BMP-2. We propose that MGP may play a role in the anti-mineralogenic effect promoted by miR-20a by decreasing availability of BMP-2. This study gives new insights into miRNA-mediated regulation of BMP-2, and sheds light into the potential role of miR-20a as a regulator of skeletogenesis.
Collapse
Affiliation(s)
- Daniel M Tiago
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal.
| | - Cátia L Marques
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Vânia P Roberto
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal
| |
Collapse
|
14
|
Xin J, Wang Y, Wang Z, Lin F. Functional and transcriptomic analysis of the regulation of osteoblasts by mechano-growth factor E peptide. Biotechnol Appl Biochem 2013; 61:193-201. [DOI: 10.1002/bab.1152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 08/19/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Juan Xin
- College of Communication Engineering; Chongqing China
- Research Center of Bioinspired Material Science and Engineering; College of Bioengineering; Chongqing University; Chongqing China
| | - Yuanliang Wang
- Research Center of Bioinspired Material Science and Engineering; College of Bioengineering; Chongqing University; Chongqing China
- Key Laboratory of Biorheological Science and Technology; Chongqing University, Ministry of Education; Chongqing China
| | - Zhen Wang
- Green Biologics Limited; Abingdon Oxfordshire UK
| | - Fuchun Lin
- Research Center of Bioinspired Material Science and Engineering; College of Bioengineering; Chongqing University; Chongqing China
- Key Laboratory of Biorheological Science and Technology; Chongqing University, Ministry of Education; Chongqing China
| |
Collapse
|
15
|
Wang S, Mu J, Fan Z, Yu Y, Yan M, Lei G, Tang C, Wang Z, Zheng Y, Yu J, Zhang G. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res 2012; 8:346-56. [PMID: 22286010 DOI: 10.1016/j.scr.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 01/09/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) plays an important role in the regulation of tooth root development, and stem cells from apical papilla (SCAPs) are responsible for the formation of root pulp and dentin. To date, it remains unclear whether IGF-1 can regulate the function of SCAPs. In this study, SCAPs were isolated and purified from human immature root apex, and stimulated by 100 ng/mL exogenous IGF-1. The effects of IGF-1 on the proliferation and differentiation of SCAPs were subsequently investigated. IGF-1 treated SCAPs presented the morphological and ultrastructural changes. Cell proliferation, alkaline phosphatase (ALP) activity and mineralization capacity of SCAPs were increased by IGF-1. Western blot and quantitative RT-PCR analyses further demonstrated that the expression of osteogenic-related proteins and genes (e.g., alkaline phosphatase, runt-related transcription factor 2, osterix, and osteocalcin) was significantly up-regulated in IGF-1 treated SCAPs, whereas the expression of odontoblast-specific markers (e.g., dentin sialoprotein and dentin sialophosphoprotein) was down-regulated by IGF-1. In vivo results revealed that IGF-1 treated SCAPs mostly gave birth to bone-like tissues while untreated SCAPs mainly generated dentin-pulp complex-like structures after transplantation. The present study revealed that IGF-1 can promote the osteogenic differentiation and osteogenesis capacity of SCAPs, but weaken their odontogenic differentiation and dentinogenesis capability, indicating that IGF-1 treated SCAPs can be used as a potential candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochem Cell Biol 2012; 137:513-25. [PMID: 22227802 DOI: 10.1007/s00418-011-0908-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2011] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a potent mitogenic protein which can enhance the osteogenic differentiation of periodontal ligament (PDL) fibroblasts. However, it remains unclear whether IGF-1 can stimulate the osteogenic differentiation and osteogenesis of human periodontal ligament stem cells (PDLSCs). In this study, STRO-1(+) PDLSCs were isolated from human PDL tissues, treated with IGF-1, and their osteogenic capacity was investigated in vitro and in vivo. Dimethyl-thiazol-diphenyl tetrazolium bromide assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 can stimulate the proliferation ability of PDLSCs and 100 ng/mL is the optimal concentration. Exogenous IGF-1 can modify the ultrastructure, enhance the alkaline phosphatase activity, the mineralization ability of PDLSCs, and increase the expression of osteogenic markers (runt-related transcription factor 2, osterix, and osteocalcin) at mRNA and protein levels. In vivo transplantation illustrated that IGF-1 treated implants generated more mineralized tissues, and presented stronger expression of RUNX2, OSX, and OCN than control group. Moreover, the expression of phosphor-ERK and phosphor-JNK in these stem cells was upregulated by IGF-1, indicating that MAPK signaling pathway was activated during the osteogenic differentiation of PDLSCs mediated by IGF-1. Together, the results showed that IGF-1 can promote the osteogenic differentiation and osteogenesis of STRO-1(+) PDLSCs via ERK and JNK MAPK pathway, suggesting that IGF-1 is a potent agent for stem cell-based periodontal tissue regeneration.
Collapse
|
17
|
Xin C, Bingbing Z, Yuanliang W, Chengyu X, Li Y, Moyuan D, Qin P, Yuxiao L. Mechano-growth factor E peptide inhibits the differentiation and mineralization of osteoblasts. Arch Oral Biol 2011; 57:720-7. [PMID: 22186070 DOI: 10.1016/j.archoralbio.2011.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 11/10/2011] [Accepted: 11/25/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the effects of mechano-growth factor E (MGF-E) peptide derived from an IGF-1 isoform on the differentiation and mineralization of osteoblasts. METHODS MGF-E peptide corresponding to the carboxy terminal 24 amino acid peptide of human MGF was synthesized. MGF-E (1 nM) peptide was then used to treat the pre-osteoblast line MC3T3-E1. At predetermined times, alkaline phosphatase (ALP) activity was quantified using an enzyme activity assay kit. The expression levels of collagen I (Col I) and osteopontin (OPN), and core binding factor 1 (Cbfα-1) were detected by reverse transcription polymerase chain reaction and Western blot analysis. The effect of MGF-E on mineralization was determined by Alizarin Red staining and calcium concentration analysis. The kinase inhibitor PD98059 was used to investigate Erk pathway involvement in the MGF-E role. RESULTS In the MGF-E-treated osteoblasts, ALP activity decreased with increased Erk activation. The transcription and translation of Col I were inhibited, but those of OPN were enhanced. PD98059 abolished the inhibitory effect and increased the expression of Col I, but decreased that of OPN. Treatment with MGF-E alone up-regulated the mRNA and total protein levels of Cbfα-1, but decreased the fraction of activated Cbfα-1 in the nucleus. Mineralization was delayed by MGF-E, as shown by the bone nodule staining and calcium concentration analysis. These delayed actions were weakened after treatment with PD98059. CONCLUSIONS MGF-E could inhibit osteoblast differentiation and mineralization. The possible mechanisms are increased Erk activity and decreased Cbfα-1 nuclear translocation.
Collapse
Affiliation(s)
- Chen Xin
- Bioengineering College, Chongqing University, Chongqing 400030, China
| | | | | | | | | | | | | | | |
Collapse
|