1
|
Zare Mirakabad H, Khorramizadeh MR. Introduction to the potential of Ferula ovina in dental implant research due to estrogenic bioactive compounds and adhesive properties. PLoS One 2022; 17:e0262045. [PMID: 35041680 PMCID: PMC8765653 DOI: 10.1371/journal.pone.0262045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Recent developments in dental implant have heightened the urgent need to natural tissue adhesives estrogenic materials with ability of promoting the proliferation and osteoblastic differentiation in human dental pulp-derived stem cells, to provide better integration of tissue for dentistry. Up to now, far little attention has been paid to adhesives extract of the root of Ferula sp. which contains biomaterial compounds with estrogenic activities. Prior to undertaking the investigation, analysis of the extract of the root of F. ovina revealed a novel terpenoid, and we identified it as Fenoferin. So far, this paper has focused on Fenoferin compared to Ferutinin and root extract to determine if Fenoferin caused changes in craniofacial cartilage, bone (ceratohyal) and tooth mineralization. Following the purpose of study, we used zebrafish as a well-developed model system for studying bone development, so the developing zebrafish larvae were exposed to various concentration of compounds at 2dpf, and the histological analyses were performed at 6dpf. The result of the current study highlights the importance of F. ovina in studies related to dental regenerative medicine.
Collapse
Affiliation(s)
- Hoda Zare Mirakabad
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - M. Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute (EMRI), TUMS, Tehran, Iran
| |
Collapse
|
2
|
Safi R, El-Sabban M, Najjar F. Ferula hermonis: A Review of Current Use and Pharmacological Studies of its Sesquiterpene Ester Ferutinin. Curr Drug Targets 2021; 21:499-508. [PMID: 31663476 DOI: 10.2174/1389450120666191029155053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
Ferula hermonis Boiss, is an endemic plant of Lebanon, locally known as "shilsh Elzallouh". It has been extensively used in the traditional medicine as an aphrodisiac and for the treatment of sexual impotence. Crude extracts and isolated compounds of ferula hermonis contain phytoestrogenic substances having a wide spectrum of in vitro and in vivo pharmacological properties including anti-osteoporosis, anti-inflammatory, anti-microbial and anti-fungal, anti-cancer and as sexual activity enhancer. The aim of this mini-review is to highlight the traditional and novel applications of this plant's extracts and its major sesquiterpene ester, ferutinin. The phytochemical constituents and the pharmacological uses of ferula hermonis crude extract and ferutinin specifically will be discussed.
Collapse
Affiliation(s)
- Rémi Safi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Chemistry and Biochemistry, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fadia Najjar
- Department of Chemistry and Biochemistry, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Beirut, Lebanon
| |
Collapse
|
3
|
Macrì R, Musolino V, Gliozzi M, Carresi C, Maiuolo J, Nucera S, Scicchitano M, Bosco F, Scarano F, Ruga S, Zito MC, Guarnieri L, Bombardelli E, Mollace V. Ferula L. Plant Extracts and Dose-Dependent Activity of Natural Sesquiterpene Ferutinin: From Antioxidant Potential to Cytotoxic Effects. Molecules 2020; 25:molecules25235768. [PMID: 33297504 PMCID: PMC7731292 DOI: 10.3390/molecules25235768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
The employment studies of natural extracts in the prevention and treatment of several diseases highlighted the role of different species of genus Ferula L., belonging to the Apiaceae family, dicotyledonous plants present in many temperate zones of our planet. Ferula communis L. is the main source of sesquiterpene ferutinin, a bioactive compound studied both in vitro and in vivo, because of different effects, such as phytoestrogenic, antioxidant, anti-inflammatory, but also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. The present review will focus on the molecular mechanisms involved in the different activities of Ferutinin, starting from its antioxidant potential at low doses until its ionophoric property and the subsequent mitochondrial dysfunction induced through administration of high doses, which represent the key point of its anticancer action. Furthermore, we will summarize the data acquired from some experimental studies on different cell types and on several diseases. The results obtained showed an important antioxidant and phytoestrogenic regulation with lack of typical side effects related to estrogenic therapy. The preferential cell death induction for tumor cell lines suggests that ferutinin may have anti-neoplastic properties, and may be used as an antiproliferative and cytotoxic agent in an estrogen dependent and independent manner. Nevertheless, more data are needed to clearly understand the effect of ferutinin in animals before using it as a phytoestrogen or anticancer drug.
Collapse
Affiliation(s)
- Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
- Correspondence: (R.M.); (V.M.); Tel./Fax: +39-0961-3694301 (R.M. & V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
- Correspondence: (R.M.); (V.M.); Tel./Fax: +39-0961-3694301 (R.M. & V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Ezio Bombardelli
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| |
Collapse
|
4
|
Zare Mirakabad H, Farsi M, Malekzadeh Shafaroudi S, Bagheri A, Iranshahi M, Moshtaghi N. Comparison the Effect of Ferutinin and 17β-Estradiol on Bone Mineralization of Developing Zebrafish ( Danio rerio) Larvae. Int J Mol Sci 2019; 20:ijms20061507. [PMID: 30917511 PMCID: PMC6470982 DOI: 10.3390/ijms20061507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
There is an urgent need to develop novel drugs for osteoporosis which occurs due to estrogen deficiency. Phytoestrogens derived from medicinal plants would be the best alternative to chemical drugs with harmful side effects. The main purpose of the present study was to investigate the effect of ferutinin compared to 17β-estradiol (E2) on bone mineralization of zebrafish larvae. Regarding the lack of publications, the histology analysis was performed after exposure to E2 to find effective treatment on bone mineralization of developing zebrafish larvae. Then, the larvae were exposed to four concentrations of ferutinin at three time points to assess the mortality, the expression of some related genes and histology of the ceratohyal and hyomandibular of treated larvae. The RT-PCR result of the treatment groups demonstrated the similar expression pattern in the larvae which were exposed to 1.25 μg/mL of ferutinin and 2 µM of E2 at 2 dpf, which confirmed the result of histology analysis. In addition, RT-qPCR of high concentration of ferutinin and E2 demonstrated that bmp2a/b and esr1 were downregulated and upregulated when the larvae were exposed to 5 μg/mL of ferutinin and 10 µM of E2, respectively.
Collapse
Affiliation(s)
- Hoda Zare Mirakabad
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91775-1163, Iran.
| | - Mohammad Farsi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91775-1163, Iran.
| | | | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91775-1163, Iran.
| | - Mehrdad Iranshahi
- Department of Pharmacognosy; Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran.
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91775-1163, Iran.
| |
Collapse
|
5
|
Ferretti M, Cavani F, Roli L, Checchi M, Magarò MS, Bertacchini J, Palumbo C. Interaction among Calcium Diet Content, PTH (1-34) Treatment and Balance of Bone Homeostasis in Rat Model: The Trabecular Bone as Keystone. Int J Mol Sci 2019; 20:ijms20030753. [PMID: 30754633 PMCID: PMC6387065 DOI: 10.3390/ijms20030753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The present study is the second step (concerning normal diet restoration) of the our previous study (concerning the calcium-free diet) to determine whether normal diet restoration, with/without concomitant PTH (1-34) administration, can influence amounts and deposition sites of the total bone mass. Histomorphometric evaluations and immunohistochemical analysis for Sclerostin expression were conducted on the vertebral bodies and femurs in the rat model. The final goals are (i) to define timing and manners of bone mass changes when calcium is restored to the diet, (ii) to analyze the different involvement of the two bony architectures having different metabolism (i.e., trabecular versus cortical bone), and (iii) to verify the eventual role of PTH (1-34) administration. Results evidenced the greater involvement of the trabecular bone with respect to the cortical bone, in response to different levels of calcium content in the diet, and the effect of PTH, mostly in the recovery of trabecular bony architecture. The main findings emerged from the present study are (i) the importance of the interplay between mineral homeostasis and skeletal homeostasis in modulating and guiding bone's response to dietary/metabolic alterations and (ii) the evidence that the more involved bony architecture is the trabecular bone, the most susceptible to the dynamical balance of the two homeostases.
Collapse
Affiliation(s)
- Marzia Ferretti
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Francesco Cavani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, 41126 Modena, Italy.
| | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Maria Sara Magarò
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Jessika Bertacchini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
6
|
Safi R, Hamade A, Bteich N, El Saghir J, Assaf MD, El-Sabban M, Najjar F. A ferutinin analogue with enhanced potency and selectivity against ER-positive breast cancer cells in vitro. Biomed Pharmacother 2018; 105:267-273. [PMID: 29860218 DOI: 10.1016/j.biopha.2018.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022] Open
Abstract
Estrogen is considered a risk factor for breast cancer since it promotes breast-cell proliferation. The jaesckeanadiol-3-p-hydroxyphenylpropanoate, a hemi-synthetic analogue of the natural phytoestrogen ferutinin (jaesckeanadiol-p-hydroxybenzoate), is designed to be devoid of estrogenic activity. This analogue induces a cytotoxic effect 30 times higher than that of ferutinin towards MCF-7 breast cancer cell line. We compared these two compounds with respect to their effect on proliferation, cell cycle distribution and cancer stem-like cells in the MCF-7 cell line. Treatment with ferutinin (30 μM) and its analogue (1 μM) produced significant accumulation of cells at the pre G0/G1 cell cycle phase and triggered apoptosis. Importantly, this compound retains its anti-proliferative activity against breast cancer stem/progenitor cells that are naturally insensitive to ferutinin at the same dose. These results position ferutinin analogue as an effective compound inhibiting the proliferation of estrogen-dependent breast cancer cells and consistently targeting their stem-like cells.
Collapse
Affiliation(s)
- Rémi Safi
- Departments of Chemistry-Biochemistry and Biology, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aline Hamade
- Departments of Chemistry-Biochemistry and Biology, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Lebanon
| | - Najat Bteich
- Departments of Chemistry-Biochemistry and Biology, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Lebanon
| | - Jamal El Saghir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mona Diab Assaf
- Department of Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Fadia Najjar
- Departments of Chemistry-Biochemistry and Biology, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Lebanon.
| |
Collapse
|
7
|
Zavatti M, Guida M, Maraldi T, Beretti F, Bertoni L, La Sala GB, De Pol A. Estrogen receptor signaling in the ferutinin-induced osteoblastic differentiation of human amniotic fluid stem cells. Life Sci 2016; 164:15-22. [PMID: 27629493 DOI: 10.1016/j.lfs.2016.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/01/2016] [Accepted: 09/10/2016] [Indexed: 12/16/2022]
Abstract
AIMS Ferutinin is a diaucane sesquiterpene with a high estrogenic activity. Since ferutinin is able to enhance osteoblastic differentiation of human amniotic fluid stem cells (hAFSCs), the aim of this study was to evaluate the role of the estrogen receptors α (ERα) and G-protein coupled receptor 30 (GPR30) in ferutinin-mediated osteoblastic differentiation. Moreover, it was investigated if MEK/ERK and PI3K/Akt signaling pathways are involved in ferutinin-induced effects. MAIN METHODS hAFSCs were cultured in a standard medium or in an osteoblastic medium for 14 or 21days and ferutinin was added at 10-8M. Immunofluorescence techniques and Western-blot 21analysis were used to study estrogen receptors and signaling pathways. KEY FINDINGS In both undifferentiated and differentiated hAFSCs we identified ERα and GPR30 with a nuclear or cytoplasmatic localization, respectively. The presence of ferutinin in the osteoblastic medium leads to an increase in ERα expression. To dissect the role of estrogen receptors, MPP and G15 were used to selectively block ERα and GPR30, respectively. Notably, ferutinin enhanced osteoblastic differentiation in cells challenged with G15. Ferutinin was able to increase ERK and Akt phosphorylations with a different timing activation. These phosphorylations were antagonized by PD0325901, a MEK inhibitor, and wortmannin, a PI3K inhibitor. Both MPP and G15 inhibited the ferutinin-induced MEK/ERK and PI3K/Akt pathway activations. In the osteoblastic condition, PD0325901, but not wortmannin, reduced the expression of OPN and RUNX-2, whereas ferutinin abrogated the down-modulation triggered by PD0325901. SIGNIFICANCE PI3K/Akt pathways seems to mediate the enhancement of hAFSCs osteoblastic differentiation triggered by ferutinin through ERα.
Collapse
Affiliation(s)
- M Zavatti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - M Guida
- EURAC Research, Center for Biomedicine, Bolzano, Italy
| | - T Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - F Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - L Bertoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - G B La Sala
- Unit of Obstetrics and Ginecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - A De Pol
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
9
|
Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur. BIOMED RESEARCH INTERNATIONAL 2015; 2015:304178. [PMID: 26064895 PMCID: PMC4434225 DOI: 10.1155/2015/304178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022]
Abstract
Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1) baseline, (2) normal diet for 4 weeks, (3) calcium-deprived diet for 4 weeks, and (4) calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34) 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis), an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis). Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.
Collapse
|
10
|
Li C, Li Q, Liu R, Niu Y, Pan Y, Zhai Y, Mei Q. Medicinal herbs in the prevention and treatment of osteoporosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1-22. [PMID: 24467532 DOI: 10.1142/s0192415x14500013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Osteoporosis is a common disease with wide prevalence, especially in the elderly population. Osteoporosis induced fractures not only decrease the patient's life quality, but also cause heavy financial burden to the society. Although current medications for osteoporosis are effective, numerous adverse effects have been observed accompanying their clinical applications. Effective prevention and therapy strategies with high safety are critical, which benefit both individual patients and the whole society. Traditional Chinese medicines have been used for thousands of years to treat bone related diseases in China and a number of modern preparations have been developed that are currently commercially available. In addition, several medicinal herbs demonstrated therapeutic effects against osteoporosis in animal models. This paper reviewed the anti-osteoporotic effects of traditional Chinese formulas, medicinal herbs and bioactive constituents based on clinical trials and in vivo animal studies. Due to the lack of rigorous studies to compare the effectiveness with conventional interventions, traditional formulas are recommended as alternative medications or supplements to treat osteoporosis at the current stage. Although there are abundant natural resources with anti-osteoporotic effects, either in the form of medicinal herbs or bioactive components, much work need to be accomplished before they are developed into potential drugs.
Collapse
Affiliation(s)
- Chenrui Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Systematic review and meta-analysis of the bone protective effect of phytoestrogens on osteoporosis in ovariectomized rats. Nutr Res 2014; 34:467-77. [PMID: 25026913 DOI: 10.1016/j.nutres.2014.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/08/2014] [Accepted: 05/12/2014] [Indexed: 01/08/2023]
|
12
|
Effects of Er-Zhi-Wan on microarchitecture and regulation of Wnt/β-catenin signaling pathway in alveolar bone of ovariectomized rats. ACTA ACUST UNITED AC 2014; 34:114-119. [DOI: 10.1007/s11596-014-1241-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/20/2013] [Indexed: 12/31/2022]
|
13
|
Zavatti M, Resca E, Bertoni L, Maraldi T, Guida M, Carnevale G, Ferrari A, De Pol A. Ferutinin promotes proliferation and osteoblastic differentiation in human amniotic fluid and dental pulp stem cells. Life Sci 2013; 92:993-1003. [PMID: 23583571 DOI: 10.1016/j.lfs.2013.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/16/2013] [Accepted: 03/27/2013] [Indexed: 02/06/2023]
Abstract
AIMS The phytoestrogen Ferutinin plays an important role in prevention of osteoporosis caused by ovariectomy-induced estrogen deficiency in rats, but there is no evidence of its effect on osteoblastic differentiation in vitro. In this study we investigated the effect of Ferutinin on proliferation and osteoblastic differentiation of two different human stem cells populations, one derived from the amniotic fluid (AFSCs) and the other from the dental pulp (DPSCs). MAIN METHODS AFSCs and DPSCs were cultured in a differentiation medium for 14 or 21days with or without the addition of Ferutinin at a concentration ranging from 10(-11) to 10(-4)M. 17β-Estradiol was used as a positive drug at 10(-8)M. Cell proliferation and expression of specific osteoblast phenotype markers were analyzed. KEY FINDINGS MTT assay revealed that Ferutinin, at concentrations of 10(-8) and 10(-9)M, enhanced proliferation of both AFSCs and DPSCs after 72h of exposure. Moreover, in both stem cell populations, Ferutinin treatment induced greater expression of the osteoblast phenotype markers osteocalcin (OCN), osteopontin (OPN), collagen I, RUNX-2 and osterix (OSX), increased calcium deposition and osteocalcin secretion in the culture medium compared to controls. These effects were more pronounced after 14days of culture in both populations. SIGNIFICANCE The enhancing capabilities on proliferation and osteoblastic differentiation displayed by the phytoestrogen Ferutinin make this compound an interesting candidate to promote bone formation in vivo.
Collapse
Affiliation(s)
- M Zavatti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|